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Abstract

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by no more than one other edge. A non-1-planar
graph G is minimal if the graph G−e is 1-planar for every edge e of G. We prove that there are infinitely many minimal non-1-planar
graphs (MN-graphs). It is known that every 6-vertex graph is 1-planar. We show that the graph K7 − K3 is the unique 7-vertex
MN-graph.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A graph is 1-immersed into a surface if it can be drawn on the surface so that each edge is crossed by no more than
one other edge. A graph is 1-planar if it is 1-immersed into the plane (has a plane 1-immersion).

The notion of 1-immersion of a graph was introduced by Ringel [9] when trying to color the vertices and faces of a
plane graph so that adjacent or incident elements receive distinct colors (here we have a 1-planar graph G whose vertex
set is the union of the vertex set and the face set of the plane graph, and two vertices of G are adjacent if and only if the
corresponding elements are adjacent or incident).

Little is known about 1-planar graphs. Borodin [1,2] proved that every 1-planar graph is 6-colorable. Some properties
of maximal 1-planar graphs are considered in [10]. It was shown in [3] that every 1-planar graph is acyclically 20-
colorable. The existence of subgraphs of bounded vertex degrees in 1-planar graphs is investigated in [7]. It was shown
in [4,5] that a 1-planar graph with n vertices has at most 4n−8 edges and that this upper bound is tight. In the paper [6]
it was observed that the class of 1-planar graphs is not closed under the operation of edge deletion. Much less is known
about non-1-planar graphs. The only result [8] (not counting the Borodin’s result that every non-6-colorable graph is
non-1-planar) is that the graph obtained from the complete graph K6 by adding a new vertex adjacent to exactly four
vertices of the K6 is non-1-planar.

A graph G is a minimal non-1-planar graph (MN-graph, for short) if G is non-1-planar, but G − e is 1-planar for
every edge e of G. In this paper we study MN-graphs.

The problem of constructing MN-graphs is connected with the problem of determining whether a given graph is
non-1-planar. By Kuratowski’s theorem, planarity can be characterized by forbidding the minors K5 and K3,3. Here
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the following natural question arises: Can 1-planarity be characterized by forbidding some minors? The answer to the
question is in the negative since there is a 1-planar subdivision of every graph G. Indeed, take a plane drawing of G
and then for every edge with at least two crossing points, place on the edge a new 2-valent vertex between every pair
of adjacent crossing points. We obtain a 1-planar subdivision of G. In other words, the set of 1-planar graphs is not
closed under taking minors.

Every non-1-planar graph G contains as a subgraph some MN-graph which can be obtained by deleting edges from G
trying to preserve non-1-planarity of the obtained graphs. If there were only finitely many MN-graphs, then we would
have the following good characterization of non-1-planar graphs: a graph is non-1-planar if and only if it contains as a
subgraph some of the MN-graphs. However, in Section 2 we show that there are infinitely many MN-graphs.

Now, when we face a problem of determining whether a given graph G is not 1-planar, we can use two approaches.
We can try to show that the chromatic number of G is at least 7; then, by the Borodin’s result, the graph G is not
1-planar. But it is not easy to determine the chromatic number of a graph and, besides, many non-1-planar graphs are
6-colorable. Then we can try to show that G contains as a subgraph some graph H such that we already know that
H is non-1-planar. As such a graph H, it is convenient to use graphs with small number of vertices and edges, say,
MN-graphs. Surprisingly enough, as far as we know, no MN-graphs were given in the literature.

Since K6 has a plane 1-immersion, all 6-vertex graphs are 1-planar. In Section 3 we show that the graph K7 − K3 is
the unique 7-vertex MN-graph.

Having no characterization of non-1-planar graphs, it is difficult to show that a graph is non-1-planar. Here the main
question is: What structural properties of a graph make the graph to be non-1-planar? One of such structural properties
is implemented in Section 2 when constructing infinitely many MN-graphs: a non-1-planar graph G has a subgraph Q
with a unique plane 1-immersion, and the 1-immersion of Q prevents to draw the remaining part of G on the plane so
that to obtain a plane 1-immersion of G.

2. An infinite family of minimal non-1-planar graphs

In this section we first give some definitions. Then we construct an infinite family of MN-graphs.
From this point on, by a 1-immersion of a graph we mean a plane 1-immersion. The notation (v1, v2, . . . , vn) denotes

the cycle of a graph consisting of edges (vi, vi+1), i = 1, 2, . . . , n, where vn+1 = v1.
The boundary of a face of an embedding of a graph G is a closed walk in G called the boundary walk of the face.

The boundary walk of a face has two opposite directions. A face of an embedding of G will be designated as a cyclic
sequence [v1, v2, . . . , vm] of vertices (for convenience, we enclose the sequence in brackets) obtained by listing the
incident boundary vertices when traversing the boundary walk of the face in some chosen direction. The sequences
[v1, v2, . . . , vm] and [vm, . . . , v2, v1] designate the same face. By the face set of a plane embedding we mean the set
of the boundary walks of all faces of the embedding.

Given a 1-immersion of a graph, delete all pairs of crossing edges. We obtain a plane embedding of a subgraph of
the graph called the spanning embedding corresponding to the 1-immersion. The 1-immersion is uniquely determined
by the face set of the spanning embedding and by pairs of crossing edges lying inside the faces.

When we say that a graph has exactly one 1-immersion, we mean that for every two 1-immersions � and �′ of the
graph, the following holds:

• If � and �′ are spanning embeddings of � and �′, respectively, then the embeddings are embeddings of the same
graph and have the same face set.

• The same pairs of crossing edges lie inside every faces F and F ′ of � and �′, respectively, such that the faces have
the same boundary walk.

Considering the plane, when we say that a vertex lies inside (resp. outside) a face or a non-self-intersecting embedded
cycle, we mean that the vertex lies in the interior (resp. exterior) of the face or the embedded cycle, and does not lie
on the boundary walk of the face or on the embedded cycle, respectively. A vertex lies in a face if the vertex lies either
inside the face or on the boundary walk of the face.

The following lemma gives a method of proving the existence of an MN-graph whose edge number lies in some
known interval.
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Fig. 1. The graph G(t), t �2.

Lemma 1. If there is a non-1-planar graph G such that G − e is 1-planar for some m edges e of G, then the graph G
contains as a subgraph an MN-graph P such that m� |E(P )|� |E(G)|.

Proof. Deleting successively some edges from G such that the obtained graphs are non-1-planar, we will finally obtain
an MN-graph P which is a subgraph of G. Suppose that there is a subset ˜E ⊆ E(G) with |˜E| = m such that G − e is
1-planar for all e ∈ ˜E. Clearly, ˜E ⊆ E(P ), whence the lemma follows. �

In this section, for every t �2 we construct a non-1-planar graph G(t) with |E(G(t))|=28t +25, such that the graph
G(t) − e is 1-planar for some 2t − 1 edges e of G(t).

Theorem 1. There are infinitely many MN-graphs.

Proof. The graphs G(t) having been constructed for every t �2, then, by Lemma 1, for every t �2 there is an MN-graph
R(t) with 2t − 1� |E(R(t))|�28t + 25. Now, for every infinite sequence 2� t1 < t2 < · · · < ti < ti+1 < · · · of integers
such that 28ti + 25 < 2ti+1 − 1 for i = 1, 2, . . ., we obtain an infinite sequence R(t1), R(t2), . . . , R(ti), R(ti+1) . . . of
different MN-graphs such that 2ti − 1� |E(R(ti))|�28ti + 25 < 2ti+1 − 1� |E(R(ti+1))| for i = 1, 2, . . . . �

The non-1-planar graph G(t), t �2, has a subgraph Q(t) which has exactly one 1-immersion, and the 1-immersion
of Q(t) prevents to draw the remaining part of G(t) on the plane so that to obtain a 1-immersion of G(t).

Fig. 1(a) shows a 1-immersion of Q(t) (to avoid clattering the figure and the text we denote n=2t +2). The spanning
embedding has 3n quadrangular faces and the 1-immersion of Q(t) is obtained if we insert a pair of crossing diagonals
into each of the faces. The side edges join 5-valent vertices. We will show (Theorem 2) that Q(t) has exactly one
1-immersion. The graph G(t) is obtained from Q(t) if we add t new edges (v

(4)
i , v

(4)
n−i ), i = 1, 2, . . . , t , and join the

vertices v
(4)
t+1 and v

(4)
n by a path consisting of t − 1 edges (see Fig. 1(b) where all the edges and the path are depicted
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Fig. 2. A subgraph K4 of the graph Q(t).

Fig. 3. Connecting two vertices by 6 disjoint paths.

inside the 2-cell bounded by the cycle (v
(4)
1 , v

(4)
2 , . . . , v

(4)
n )). Clearly, G(t) − e is 1-planar for each of the 2t − 1 new

edges e shown inside the cycle.
Now we show that G(t) is non-1-planar. Indeed, if G(t) is 1-planar, then every 1-immersion of G(t) is obtained

if we take the unique 1-immersion of Q(t) and place the new t edges and the new path in such a way as to obtain a
1-immersion of G(t). Since the new edges and the new path do not cross the crossing diagonals of the 1-immersion
of Q(t), there must be a 1-immersion of G(t) in which the new edges and path are placed inside the 2-cell with the
boundary cycle (v

(4)
1 , v

(4)
2 , . . . , v

(4)
n ) such that every edge is crossed by no more than one other edge, but it is impossible

since the path can be crossed by at most t − 1 new edges (see Fig. 1(b)).
Before proving Theorem 2, we need Lemmas 2–5.
Two paths connecting vertices v and w of a graph are disjoint if v and w are the only common vertices of the paths.
By inspecting Fig. 1(a), we obtain the following observation.

Observation 1. The vertex sets of the subgraphs K4 of Q(t) are exactly all the sets

V
(k)
i = {v(k)

i , v
(k)
i+1, v

(k+1)
i+1 , v

(k+1)
i }

for all i = 1, 2, . . . , n, and k = 1, 2, 3 (here v
(k)
n+1 = v

(k)
1 for k = 1, 2, 3), see Fig. 2. For every V

(k)
i , either all vertices

of the V
(k)
i are 8-valent or exactly two vertices are 5-valent and the other two vertices are 8-valent.

Lemma 2. In every 1-immersion of Q(t), for every embedded 3-cycle of Q(t), either there is no 8-valent vertex of
Q(t) inside the cycle or there is no 8-valent vertex of Q(t) outside the cycle.

Proof. If there is an embedded 3-cycle such that one 8-valent vertex lies inside the cycle and one other 8-valent vertex
lies outside the cycle, then the two vertices can be connected by at most 6 disjoint paths (see Fig. 3). Now, to prove
the lemma it suffices to show that in Q(t) every two 8-valent vertices v and w are connected by 7 disjoint paths.
Fig. 4 shows these 7 paths. In the figure, the vertices v and w are encircled and the edges of the paths are depicted in
thick lines. Recall that in Fig. 1(a) we have n = 2t + 2�6. �

Lemma 3. In every 1-immersion of Q(t), two edges of every subgraph K4 of Q(t) intersect.

Proof. Suppose to the contrary that given a 1-immersion of Q(t), there is a subgraph K4 of Q(t) such that no two
edges of the subgraph intersect. Then in the 1-immersion the subgraph K4 is triangularly embedded in the plane (see
Fig. 5(a)). By Lemma 2, all 8-valent vertices of Q(t) lie in one face of the triangular embedding, say, [y, v, w]. Then



V.P. Korzhik / Discrete Mathematics 308 (2008) 1319–1327 1323

Fig. 4. Seven disjoint paths joining two 8-valent vertices of Q(t).

Fig. 5. A triangular embedding of a subgraph K4 of Q(t).

the vertex x is 5-valent and, by Observation 1, one other vertex of the K4, say, the vertex y, is 5-valent also. Without
loss of generality, let the vertices of the K4 be located in Q(t) as shown in Fig. 5(b). We have the following:

(A) The vertex x is adjacent to the 8-valent vertex 2 lying inside the face [y, v, w] in Fig. 5(a), hence the edge (x, 2)

crosses some edge of the 3-cycle (y, v, w).

Every 5-valent vertex z different from the vertices 1, x, y, and 3 is adjacent to three 8-valent vertices different from
v and w, hence, taking (A) into account, we obtain that the vertex z lies inside the face [y, v, w]. Now we have that
each of the vertices 1 and 3 is adjacent to three vertices lying inside the face [y, v, w]: two 8-valent vertices (different
from v and w) and one 5-valent vertex. Hence, taking (A) into account, the vertices 1 and 3 must lie inside the face
[y, v, w] also. We obtain that all vertices of Q(t), except the 5-valent vertex x, lie in the face [y, v, w].

Now consider the 3-cycle (x, 1, 2). The edges (x, 1) and (x, 2) cross distinct edges of the cycle (y, v, w) and, as a
result, one of the vertices y,v, and w lies inside the cycle. Since 8-valent vertices are not separated by an embedded
3-cycle, the 5-valent vertex y lies inside the cycle (x, 1, 2) (see Fig. 5(c)) and no 8-valent vertex lies inside the
cycle (x, 1, 2). The vertex y is adjacent to the 8-valent vertex 4, hence, the edge (y, 4) crosses the edge (1, 2). The
vertex y is adjacent to the vertex 3. Since the edges of the cycle (x, 1, 2) are crossed by the edges (y, v), (y, w), and
(y, 4), respectively, the vertex 3 lies inside the cycle. But then the vertex 3 is not adjacent to any 8-valent vertex, a
contradiction. �

It follows from Lemma 3 that in every 1-immersion of Q(t), for every subgraph K4 of Q(t), some 4-cycle of the
K4 is quadrangularly embedded in the plane and two crossing diagonals are inserted in one of the two faces of the
embedding. The 4-gonal face in which the crossing diagonals are inserted is called the 4-cross of the subgraph K4 of
Q(t) in the 1-immersion of Q(t).
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Fig. 6. The interior of the 4-cross of a subgraph K4 containing some vertices of Q(t).

Fig. 7. An intersected edge of a 4-cross is an �-edge.

Lemma 4. In every 1-immersion of Q(t), for every subgraph K4 of Q(t), there are no vertices of Q(t) inside the
4-cross of the K4.

Proof. First we show that Q(t) is 5-connected. Suppose, for a contradiction, that there is a cutset W of Q(t) such that
|W | < 5. It was shown in the proof of Lemma 2 that every two 8-valent vertices of Q(t) are connected by 7 disjoint
paths. Hence, one of the connected components of Q(t) − W does not contain 8-valent vertices, that is, the connected
component is a path on m�1 vertices such that all vertices of the path are 5-valent in Q(t). It is easy to see that if
m < 5 (resp. m�5), then in Q(t) the vertices of the path are adjacent to m + 4�5 (resp. to at least m) vertices of W , a
contradiction. Hence, Q(t) is 5-connected.

Now, suppose, for a contradiction, that in some 1-immersion of Q(t), for some subgraph K4 of Q(t), there are
vertices of Q(t) inside the 4-cross of the K4, say, inside the cycle (x, 2, 3) (see Fig. 6, where [1, 2, 3, 4] is the 4-cross
of the K4 and x is the crossing point). Then there can be at most one edge crossing the edge (2, 3) and joining a vertex
inside the cycle (x, 2, 3) with some vertex y outside the 4-cross. Hence, the set {2, 3, y} contains a cutset of Q(t), a
contradiction, since Q(t) is 5-connected. �

An edge that a subgraph K4 of Q(t) shares with another subgraph K4 of Q(t) is called an �-edge.

Lemma 5. In every 1-immersion of Q(t), for every subgraph K4 of Q(t), the two intersected edges of the subgraph
are not �-edges.

Proof. Suppose that in some 1-immersion of Q(t), for some subgraph K4 of Q(t), in the 4-cross [1, 2, 3, 4] of the K4
the intersected edge (1, 3) is an �-edge (see Fig. 7). Then one of the vertices 2 and 4 lie inside the 4-cross of another
subgraph K4 of Q(t), contrary to Lemma 4. �

Lemma 6. In every 1-immersion of Q(t), for i = 1, 2, . . . , n, and k = 1, 2, 3, the 4-cross of the subgraph K4 of Q(t)

with vertex set V
(k)
i is

[v(k)
i , v

(k)
i+1, v

(k+1)
i+1 , v

(k+1)
i ]. (1)

Proof. Consider an arbitrary 1-immersion of Q(t).
If all vertices of V

(k)
i are 8-valent, then the subgraph K4 with vertex set V

(k)
i has exactly four �-edges, and the

�-edges form a 4-cycle

(v
(k)
i , v

(k)
i+1, v

(k+1)
i+1 , v

(k+1)
i ). (2)
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By Lemma 5, the boundary walk of the 4-cross of the K4 is a 4-cycle consisting of all four �-edges. But the K4 has
only one such cycle, namely, the cycle (2). Hence, the 4-cross of the K4 with vertex set V

(k)
i is (1).

If two vertices of V
(k)
i are 5-valent, the subgraph K4 with vertex set V

(k)
i has exactly three �-edges, and the �-

edges together with the side edge of the K4 form the 4-cycle (2). The crossing diagonals in the 4-cross of the K4 are
nonadjacent edges of the K4. The only edge of the K4 not adjacent to the side edge is an �-edge. Hence, by Lemma 5,
the boundary walk of the 4-cross of the K4 is a 4-cycle consisting of all three �-edges and the side edge. But the K4

has only one such 4-cycle, namely, the cycle (2). Hence, the 4-cross of the K4 with vertex set V
(k)
i is (1). �

Theorem 2. The graph Q(t), t �2, has exactly one 1-immersion.

Proof. It follows from Lemma 4, that given an arbitrary 1-immersion � of Q(t), the 4-cross of a subgraph K4 of Q(t) is
a face of the spanning embedding � corresponding to the 1-immersion. Then, by Lemma 6, we obtain that (1) is a face of
� for i=1, 2, . . . , n, and k=1, 2, 3, and the 4-gonal faces of � are exactly the 4-gonal faces of the spanning embedding
� corresponding to the 1-immersion � of Q(t) given in Fig. 1(a). Each of the remaining faces of � is bounded by a
closed walk of Q(t) consisting of side edges only (in � every nonside edge belongs to two 4-gonal faces). But the side
edges of Q(t) form two disjoint cycles (v

(1)
1 , v

(1)
2 , . . . , v

(1)
n ) and (v

(4)
1 , v

(4)
2 , . . . , v

(4)
n ). Hence, the remaining faces of

� are determined uniquely, they are the same as in �,namely, [v(1)
1 , v

(1)
2 , . . . , v

(1)
n ] and [v(4)

1 , v
(4)
2 , . . . , v

(4)
n ], and, in �

and �, no crossing edges are inserted in the two n-gonal faces. Hence, Q(t) has exactly one 1-immersion. �

3. The 7-vertex minimal non-1-planar graph

In this section we show that the graph K7 − K3 is the unique 7-vertex MN-graph.

Lemma 7. The graph K7 − K3 is not 1-planar.

Proof. The graph K5 has exactly one (up to isomorphism) 1-immersion shown in Fig. 8. Given a 1-immersion of
K6 − K2, deleting a 4-valent vertex we obtain the 1-immersion of K5. It is easy to see that there are only three
ways to place the sixth (4-valent) vertex in Fig. 8 to obtain non-isomorphic 1-immersions of K6 − K2; these three
non-isomorphic 1-immersions of K6 − K2 are shown in Fig. 9 where the two non-adjacent vertices are encircled.

If there is a 1-immersion of K7 − K3, then deleting a 4-valent vertex in the 1-immersion we obtain one of the three
1-immersions of K6 −K2 shown in Fig. 9. But the reader can check that there is no way to place the seventh (4-valent)
vertex in each of the 1-immersions shown in Fig. 9 to obtain a 1-immersion of K7 − K3. �

For a graph H with at most 7 vertices, denote by K7 − H the graph obtained from K7 by deleting all edges of a
subgraph H of K7. Clearly, for a subgraph H ′ of H, if K7 − H ′ is 1-planar, then K7 − H is 1-planar too.

Fig. 8. The 1-immersion of K5.

Fig. 9. Three non-isomorphic 1-immersions of K6 − K2.
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Fig. 10. Graphs with small number of edges.

Fig. 11. Plane 1-immersions of K7 − Q and K7 − G2.

Theorem 3. The graph K7 − K3 is the unique 7-vertex MN-graph.

Proof. First we show that K7 − K3 is an MN-graph. Because of the symmetry of the graph, it suffices to show that the
graphs K7 −Q1 and K7 −Q2 are 1-planar (see Fig. 10). Fig. 11(a) shows a 1-immersion of K7 −Q (two non-adjacent
edges (2, 7) and (5, 6) are missing). Since the graph Q is a subgraph of Q1 and Q2, the graphs K7 − Q1 and K7 − Q2
are 1-planar.

Now we show that K7 − K3 is a unique MN-graph. Since the graph P (see Fig. 10) is a subgraph of K3, the graphs
K7, K7 minus one edge, and K7 − P are non-1-planar and are not MN-graphs (that is, all 7-vertex graphs with 21, 20,
and 19 edges are non-1-planar and are not MN-graphs). Every 7-vertex graph with 18 edges is obtained from K7 by
deleting three edges. These three edges induce one of the five graphs G1, G2, . . . , G5 shown in Fig. 10. A 1-immersion
of K7 − G2 is shown in Fig. 11(b) (the edges (5, 3), (5, 4) and (5, 7) are missing). The graph Q is a subgraph of G3,
G4, and G5, hence the graphs K7 − Gi , i = 3, 4, 5, are 1-planar. We obtain that K7 − K3 is the unique non-1-planar
graph with 18 edges. It follows that all 7-vertex graphs with 17 edges are 1-planar. The proof is complete. �

One can wonder what other MN-graphs with more vertices can look like. It is not difficult to show that the 8-vertex
graph obtained from K7−K3 if we place a new 2-valent vertex on an edge joining two 6-valent vertices is an MN-graph.
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