Global Stability for Two-Species Lotka–Volterra Systems with Delay

Zhengyi Lu
Department of Mathematics, Sichuan University, Chengdu, 610064, People’s Republic of China

and

Wendi Wang
Department of Mathematics, Southwest Normal University, Chongqing, 630715, People’s Republic of China

Submitted by J. Eisenfeld

Received September 18, 1995

In this paper, a two-species delayed Lotka–Volterra system without delayed intraspecific competitions is considered. It is proved that the system is globally stable for all off-diagonal delays \(\tau_{12}, \tau_{21} \geq 0 \), if and only if the interaction matrix of the system satisfies Condition WDD.

We study here the global stability of the two-species Lotka–Volterra system with discrete delay,

\[
\begin{align*}
\dot{x}_1(t) &= x_1(t) \left[r_2 + a_{11}x_1(t) + a_{12}x_2(t - \tau_{12}) \right], \\
\dot{x}_2(t) &= x_2(t) \left[r_2 + a_{21}x_1(t - \tau_{21}) + a_{22}x_2(t) \right],
\end{align*}
\]

with initial conditions

\[
\begin{align*}
x_i(t) &= \phi_i(t) \geq 0, \ t \in [-\tau_0, 0]; \quad \phi_i(0) > 0, \ i = 1, 2.
\end{align*}
\]

* Project supported by the Foundation of the State Education Commission of China and the National Natural Science Foundation of China.

© 1997 Academic Press
Here \(x_i\) represents the density of species \(i\), and \(r_i\) the reproduction rate, \(\tau_{ij} \geq 0\) \((i \neq j; \ i, j = 1, 2)\) the constant time lag, and \(\tau_0 = \max(\tau_{ij})\). \(a_{ij}\) \((i, j = 1, 2)\) is constant and \(\phi_i(t)\) \((i = 1, 2)\) continuous on \([-\tau_0, 0]\).

In the sequel, system (1) is supposed to have a unique positive equilibrium \(x^* = (x_1^*, x_2^*)\). For system (1), sufficient conditions are given to ensure the global stability of \(x^*,\) for example, [1]. It can be checked that all the known sufficient conditions to ensure the global stability of \(x^*\) are stronger than the following weakly diagonally dominant condition.

Condition (WDD). \(a_{11} < 0, \ a_{22} < 0, \ -a_{12}a_{21} \leq a_{11}a_{22}, \) and \(a_{12}a_{21} < a_{11}a_{22}\) if \(a_{12}a_{21} < 0\).

In fact, it will be proved that in some sense, **Condition (WDD)** is necessary for global stability of the system. The main result of this note is as follows.

Theorem. System (1) is globally stable for all \(\tau_{12}, \tau_{21} \geq 0\) if and only if **Condition (WDD)** holds.

Proof. Sufficiency. Since the system has a positive equilibrium \(x^* = (x_1^*, x_2^*)\), by using the transformation

\[
\tilde{x}_1 = x_1 - x_1^*, \quad \tilde{x}_2 = x_2 - x_2^*,
\]

it becomes

\[
\begin{align*}
\dot{\tilde{x}}_1(t) &= (x_1^* + x_1(t))[a_{11}x_1(t) + a_{12}x_2(t - \tau_{12})], \\
\dot{\tilde{x}}_2(t) &= (x_2^* + x_2(t))[a_{21}x_1(t - \tau_{21}) + a_{22}x_2(t)],
\end{align*}
\]

where we used \(x_i(t)\) instead of \(\tilde{x}_i(t), \ i = 1, 2.\) Following [4], we consider the Liapunov functional \(V: C(-\tau, 0)^2 \to R\) by

\[
V(\phi) = \sum_{i=1}^{2} c_i \left(\phi_i(0) - x_i^* \ln \frac{\phi_i(0) + x_i^*}{x_i^*} \right) + \sum_{i,j=1, i \neq j}^{2} d_{ij} \int_{-\tau_{ij}}^{0} \phi_j(\theta)d\theta,
\]

where \(c_1 = -2a_{11}a_{21}, \ c_2 = -2a_{11}a_{22}, \ d_{12} = a_{11}^2a_{21}^2, \) and \(d_{21} = a_{11}^2a_{22}^2.\) Since the case \(a_{12}a_{21} = 0\) is easy, we consider the case \(a_{12}a_{21} \neq 0.\) Now by **Condition (WDD)**,

\[
\dot{V}(\phi) \leq -a_{12}^2(a_{11}\phi_1(0) + a_{12}\phi_2(-\tau_{12}))^2 \\
- a_{11}^2(a_{21}\phi_1(-\tau_{21}) + a_{22}\phi_2(0))^2.
\]

Hence,

\[
E = \{\phi = (\phi_1, \phi_2): \dot{V}(\phi) = 0\} \\
= \{\phi = (\phi_1, \phi_2): a_{11}\phi_1(0) + a_{12}\phi_2(-\tau_{12}) = 0, \ a_{21}\phi_1(-\tau_{21}) + a_{22}\phi_2(0) = 0\}.
\]
To show the global stability, we just need to prove that the LaSalle’s invariant set M contained in E has only the trivial solution [2]. Now suppose that $x(t) = (x_1(t), x_2(t))$ is any solution in M, then it must satisfy

$$a_{11}x_1(t) + a_{12}x_2(t - \tau_{12}) = 0, \quad a_{21}x_1(t - \tau_{21}) + a_{22}x_2(t) = 0. \quad (4)$$

Clearly, system (3) and the equalities in (4) lead to

$$\dot{x}_i = 0 \quad i = 1, 2.$$

Hence, $x_i = 0$ for $i = 1, 2$.

Therefore, x^* is globally stable for system (1).

Necessity. The characteristic equation of system (1) at x^* takes the form

$$(z^2 + pz + q) + re^{-\tau} = 0, \quad (5)$$

where $p = a_{11}x_1^* + a_{22}x_2^*$, $q = a_{11}a_{22}x_1^*x_2^*$, $r = -a_{12}a_{21}x_1^*x_2^*$, and $\tau = \tau_{12} + \tau_{21}$.

When $\tau = 0$, (5) becomes

$$z^2 + pz + (q + r) = 0. \quad (6)$$

The uniqueness of the positive equilibrium x^* implies $q + r \neq 0$. Since system (1) with $\tau_{12} = \tau_{21} = 0$ is globally stable and $q + r \neq 0$, the eigenvalues of (6) have negative real parts, namely

$$p > 0, \quad \text{and} \quad q + r > 0. \quad (7)$$

Here we used the fact that $p = 0$ is the sufficient and necessary condition for (1) with $\tau_{12} = \tau_{21} = 0$ to be integrable [3].

In the case of $a_{12}a_{21} \geq 0$, (8) is clearly identical to Condition (WDD).

In the case of $a_{12}a_{21} < 0$, we will show that if Condition (WDD) fails, then there is a τ_0 such that for $\tau \neq \tau_0$, system (1) can possess a periodic solution. Clearly, if Condition (WDD) does not hold, (7) together with $a_{12}a_{21} < 0$ implies

$$r^2 > q^2.$$

Substituting $z = x + iy$ into (5), we have

$$(x^2 + ixy - y^2 + px + ipy + q) + re^{-\tau}(\cos \tau y - i \sin \tau y) = 0. \quad (8)$$

By separating the real and imaginary parts of (8), we obtain

$$x^2 - y^2 + px + q + re^{-\tau} \cos \tau y = 0,$$

$$2xy + py - re^{-\tau} \sin \tau y = 0. \quad (9)$$
Letting $x = 0$, (9) leads to

\[y^2 - q = r \cos \tau y, \]

(10)

\[2py = r \sin \tau y. \]

(11)

From (10) and (11), we obtain

\[(y^2 - q)^2 + p^2 y^2 = r^2. \]

Letting y be a positive solution of the above equation and substituting it into (11), we can get τ_0 such that at τ_0, (5) has an eigenvalue iy. Furthermore, at τ_0,

\[\dot{x} = \left(y^2 + r^2 - q^2 \right) / \left((p + q\tau - y^2\tau)^2 + (2y + py\tau)^2 \right) > 0. \]

By the Hopf bifurcation theorem [2], system (1) has a periodic solution near τ_0.

This completes the proof of the theorem.

Remark. This theorem can serve as a partial extension of the main result of [4].

ACKNOWLEDGMENT

The authors thank the referee for the valuable suggestions.

REFERENCES