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Abstract

Following an elegant approach that merges the effects of the stringy spacetime uncertainty relation into primordial p
tions suggested by Brandenberger and Ho, we show the mode equation up to the first order of non-commutative par
new approximation is provided to calculate the mode functions analytically in the non-commutative power-law inflation
It turns out that non-commutativity of spacetime can provide small corrections to the power spectrum of primordial fluc
as the first-year results of WMAP indicate. Moreover, using the WMAP data, we obtain the value of expansion parame
commutative parameter and find the approximation is viable. In addition, we determined the string scalels � 2.0× 10−29 cm.
 2004 Elsevier B.V.Open access under CC BY license. 
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The cosmological parameters and the proper
of inflationary models are tightly constraint by th
recent result from Wilkinson Microwave Anisotropy
Probe (WMAP)[1], Sloan Digital Sky Survey (SDSS
and Two degree Field (2dF) galaxy clustering ana
ses[2], and from the latest SNIa data[3]. The stan-
dard inflationary�CDM model provides a good fit t
the observed cosmic microwave background (CM
anisotropies. The first-year results of WMAP al
bring us something intriguing. Some analyses[4–7]
show that the new data of CMB suggest an ano
alously low quadrupole and octupole and a larger r

E-mail address: kychz@shnu.edu.cn(X.-z. Li).
0370-2693 2004 Elsevier B.V.
doi:10.1016/j.physletb.2004.09.003

Open access under CC BY license. 
ning of the spectral index of the power spectrum th
that predicted by standard single scalar field inflat
models satisfying the slow-roll conditions.

On the other hand, it is well known that durin
the period of inflation, the classical gravitational th
ory, general relativity, might break down due to t
very high energies at that time and the correction from
string theory may take effect. In the non-perturbat
string/M theory, any physical process at the very sh
distance takes an uncertainty relation, called stri
spacetime uncertainty relation (SSUR),

(1)�tp�xp � l2s ,

wheretp andxp are the physical time and space,ls is
the string length scale. It is suggested that the SSU
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a universal property for strings as well as D-branes[8].
Unfortunately, we now have no ideas to derive cosm
ogy directly from string/M theory. Brandenberger a
Ho [9] have proposed a variation of spacetime n
commutative field theory to realize the stringy spa
time uncertainty relation without breaking any of t
global symmetries of the homogeneous isotropic u
verse. If the inflation is affected by physics at a sc
close to string scale, one expects that spacetime
certainty must leave vestiges in the CMB power sp
trum[10–12]. It is found that, in the non-commutativ
inflation context, IR modes are created on scales la
than the Hubble radius and thus are not as squeez
they would be in the commutative case. Cai[13] shows
that the choice of initial vacuum has a significant
fect on the power spectrum of density fluctuation in
a non-commutative spacetime. Following Ref.[9], the
scalar fluctuations of tachyon inflation were discus
in non-commutative spacetime[14].

While the standard model is observationally w
justified, successful non-commutative models pre
that there should be observable deviations from
Undoubtedly, we should expect that the effect of
non-commutativity of the spacetime may only provi
a small correction to the prediction of the stand
model.

The primary observational test of inflation is obs
vation of CMB. Temperature fluctuations in the CM
are related to perturbationsin the metric at the surfac
at last scattering. During the inflationary epoch, m
ric perturbations are created by field fluctuation, a
quantum fluctuations on small scales are rapidly r
shifted to scales much larger than the Hubble rad
The metric perturbations can be decomposed acc
ing to their spin with respect to a local rotation of t
spatial coordinates on hypersurfaces of constant t
This leads to two types: scalar perturbations wh
couple to the stress-energy of matter in the unive
and form “seeds” for structure formation, and ten
perturbations which do not couple to matter.

In this Letter, we show the equation of mode fun
tions up to the first order of non-commutative pa
meter λ beyond the slow-roll approximation. Whe
the string scalels → 0, mode equation can be reduc
to one in ordinary commutative spacetime. The mo
equation of non-commutative inflation is complicate
and computing the power spectrum will in gene
require numerical evaluation. However, the spectr
s

can be evaluated analytically in power-law inflatio
There are corrections to the primordial power sp
trum which arise in the non-commutative power-la
models. These corrections lead to a blue tilt (ns > 1)
for small wavenumber and a red one (ns < 1) for large
wavenumber which accords with the first-year res
of WMAP [1].

Following the scenario proposed by Brandenber
and Ho[9], the model incorporating the SSUR can
written as

(2)S = V

∫
k<k0

dτ̃ d3k z2
k(τ̃ )

(
ζ ′−kζ

′
k − k2ζ−kζk

)
,

whereV denotes the total spatial coordinate volu
and the primes represent derivatives with respect to
time variableτ̃ , which is related to the conformal tim
τ via

(3)dτ̃ =
(

a

aeff

)2

dτ,

wherea is the scale factor, andaeff is defined as

(4)aeff ≡
(

β+
k

β−
k

)1/4

.

Here,β±
k are determined by

(5)β±
k = 1

2

[
a±2(τ̂ + kl2s

) + a±2(τ̂ − kl2s
)]

,

in which the new time variablêτ is defined asdτ̂ =
a2dτ . zk in Eq. (2) is some smeared version of th
“Mukhanov variable”z over a range of time of char
acteristic scale�τ = l2s k,

(6)zk = (
β+

k β−
k

)1/4
z = aφ̇

H

(
β+

k β−
k

)1/4
,

whereH andφ are Hubble rate and inflaton field, r
spectively, and overdot denotes derivative with resp
to cosmic timet .

From the action(2), the equation of motion of th
scalar perturbations mode equation can be written

(7)u′′
k +

(
k2 − z′′

k

zk

)
uk = 0,

where the mode function is defined byuk = zkζk.
Apparently, if the string length scalels goes to zero

the action(2) will reduce to the action for the fluctu
ations in the classical spacetime, which leads to
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equation of motion of perturbations

(8)
d2uk

dτ2
+

(
k2 − 1

z

d2z

dτ2

)
uk = 0,

whereuk now is reduced tozζk. Using the slow-roll
parameters

(9)ε = M2
pl

4π

(
H ′(φ)

H(φ)

)2

,

(10)η = M2
pl

4π

H ′′(φ)

H(φ)
,

(11)ξ = M2
pl

4π

(
H ′(φ)H ′′′(φ)

H 2(φ)

)1/2

,

the expression for1
z

d2z

dτ2 can be written as[15]

1

z

d2z

dτ2
= 2(aH)2

(12)

×
(

1+ ε − 3

2
η + ε2 − 2εη + 1

2
η2 + 1

2
ξ2

)
.

The non-local coupling in time between the bac
ground and the fluctuation is manifested in Eq.(5). As
mentioned above, we assume that the effect of SS
only provides a small correction to the prediction
standard scenario that produce the primordial fluc
ation. This is equivalent to suppose thatkl2s � |τ̂ | in
Eq. (5). This condition is crucial because SSUR tak
effects only viaβ±

k and it will be showed that the com
putations in the following are all based on this assum
tion. In order to calculate the non-commutative pow
spectrum correctly, we introduce a non-commuta
parameterλ as

(13)λ(k, t) ≡ H 2k2

a2M4
s

,

wherek is the comoving wavenumber of a perturb
tion mode, andMs = l−1

s is the string mass scale
There exists a great difference between the slow-
parametersε, η and the non-commutative parameterλ.
According to the definition, slow-roll parameters
not involve a which increases rapidly during infla
tion. Note thatλ contains scale factora, which is
in contrast to the slow-roll parameters. We note
general picture of fluctuations during inflation: for
given fluctuation whose initial wavelength∼ a/k is
within the Hubble radius, itoscillates till the wave-
length becomes of the order of the Hubble radius sc
when the wavelength crosses the Hubble radius,
fluctuation ceases to oscillate and gets frozen in.
ter a prolix but straightforward calculation, we o
tain

z′′
k

zk

= 1

z

d2z

dτ2

[
1− 2(1+ ε)λ

]

(14)

+ 2a2H 2λ
[
3ε + η + 3εη + ε2 + εη(ε − η)

]
,

up to the first order ofλ, where 1
z

d2z
dτ2 is defined in

Eq. (12). Clearly, whenls → 0 or Ms → ∞, the

quantity z′′
k/zk and τ̃ will be reduced to1

z
d2z
dτ2 and

τ , respectively, and then the mode equation(7) in
non-commutative spacetime will recover the one
ordinary commutative spacetime(8).

Brandenberger and Ho[9] have shown that, fo
each modek of fluctuation, there is a critical timẽτ0 at
which the spacetime uncertainty relation is satura
andk andτ̃0 have the relation

(15)k = aeff(τ̃0)

ls
.

τ̃0 is also the time when the mode is generated. Be
the critical timeτ̃0, the fluctuations do not contain th
modek.

Let us now consider power law inflation mode
where the scale factor can be given bya(τ) = l0|τ |1+β

whereβ is a number such thatβ � −2 and the co-
efficient l0 has the dimension of a length. In ord
for slow-roll parameterε to be a little number, we
may assumeβ is close to−2. In the limit caseβ =
−2, which corresponds to exponential expansion,
length l0 is nothing but the Hubble radius,l0 = lH .
Supposing thatls � l0, according to Eq.(15), we ob-
tain that−kτ̃0 ≈ l0/ls 	 1 provided thatβ is close
to −2, which means that the modek is generated on
scales inside the Hubble radius in the local vacu
state.

In power law models, the slow-roll parameters c
all be determined exactly,

(16)ε = η = ξ = 2+ β

1+ β
,
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which is a virtue of this class of models, and the mo
equation(7) thus is reduced to

(17)

d2uk

dτ̃2 +
[
k2 − β(1+ β)

1

τ2

+ 4αk2(1+ β)2(5+ 5β + β2)

× 1

|τ |8+4β

]
uk = 0,

where the parameterα ≡ (ls/ l0)
4, and the relation be

tween conformal timeτ andτ̃ can be rewritten as

(18)τ̃ = τ + αk2 (1+ β)(3+ 2β)

(5+ 4β)

1

|τ |5+4β
.

In principle, we can solve Eq.(18), then insert the
solutionτ (τ̃ ) into Eq. (17) and finally obtain the so
lution uk(τ̃ ) of Eq. (17). However, this procedure i
too complicated to implement directly in practice. T
situation here are in many ways equivalent to the m
ified dispersion relations considered by Brandenbe
and Martin in Ref.[16]. Note that Eq.(17) is a lin-
ear equation and we have assumedα � 1. Therefore,
we can use perturbation method to solve Eqs.(17) and
(18). For this purpose, let

(19)τ = τ (0) + ατ (1) + α2τ (2) + · · · ,
(20)uk = u

(0)
k + αu

(1)
k + α2u

(2)
k + · · · .

Inserting them into Eqs.(17) and (18), we obtain that

(21)τ = τ̃ − αk2 (1+ β)(3+ 2β)

(5+ 4β)

1

|τ̃ |5+4β
+ O

(
α2),

and then

(22)u
′′(0)
k +

[
k2 − β(1+ β)

τ̃2

]
u

(0)
k = 0,

(23)u
′′(1)
k +

[
k2 − β(1+ β)

τ̃2

]
u

(1)
k = h(τ̃ ),

where

h(τ̃ ) = 2k2(1+ β)2

|τ̃ |8+4β

(24)×
[
β(3+ 2β)

(5+ 4β)
− 2

(
5+ 5β + β2)]u

(0)
k .

If the non-commutative spacetime effects are igno
the mode functionuk is reduced tou(0)

k which obeys
Eq. (22). It is easy to find that Eq.(22) is nothing but
Eq.(8)with τ replaced bỹτ . Thus, if we impose that in
the ultraviolet regime (−τ̃0 > −τ̃ 	 1/k), the solution
of Eq.(22)matches the plane-wave solution we exp
in flat spacetime and obey the Wronskian condition

(25)u∗
k

duk

dτ̃
− uk

du∗
k

dτ̃
= −i,

the exact solution of Eq.(22)becomes

uk(τ̃ )(0) =
√

π

2
exp

[
i
π

2

(
ν + 1

2

)]

(26)× (−τ̃ )1/2H(1)
ν (−kτ̃ ),

where, the parameterν = −1
2 − β . For solving Eq.

(23), we can use the general methods of both homo
neous and inhomogeneous linear ordinary differen
equations. The general solutions of the second-orde
equation can be written as

(27)uk(τ̃ )(1) = ϕ2

∫
ϕ1h

W
dτ̃ − ϕ1

∫
ϕ2h

W
dτ̃ ,

where two linearly independent solutions of the hom
geneous equation

(28)ϕ1 = (−τ̃ )1/2H(1)
ν (−kτ̃ ),

(29)ϕ2 = (−τ̃ )1/2H(2)
ν (−kτ̃ ),

and the Wronskian of the two solutions of homog
neous equation

(30)W = ϕ2
dϕ1

dτ̃
− ϕ1

dϕ2

dτ̃
.

Fortunately, the integral in Eq.(27) can be explicitly
integrated.

On the subhorizon scales, i.e. fork2τ̃2
0 	 k2τ̃2 	 1,

since

ϕ1 ∼
√

2

πk
e−i(kτ̃+ π

2 ν+ π
4 ),

ϕ2 ∼
√

2

πk
ei(kτ̃+ π

2 ν+ π
4 )

and

u
(0)
k ∼ 1√

2k
e−ikτ̃ ,

inserting these expressions into Eq.(27), we obtain
that

u
(1)
k ≈ ik

(1+ β)2(50+ 87β+ 48β2 + 8β3)

(5+ 4β)(7+ 4β)

(31)× (−τ̃ )−7−4β e−ikτ̃

√ .

2k



D.-j. Liu, X.-z. Li / Physics Letters B 600 (2004) 1–6 5

er-
,

on

ated
the
it is

ub-

f
ill

pec-
rge
-

ases
-
m is

e-
ec-

e,
ec-
n.

re-
s

the
-

ned
w-

-
y

g to

l of
We are specially interested in solution on the sup
horizon scales, i.e., fork2τ̃2 � 1. For these scales

sinceH
(1)
ν (x � 1) =

√
2
π
e−iπ/22ν−3/2 �(ν)

�(3/2)
x−ν , we

obtain that

(32)u
(0)
k ≈ ei(ν− 1

2 ) π
2 2ν− 3

2
�(ν)

�(3/2)

1√
2k

(−kτ̃ )
1
2−ν,

and

u
(1)
k ≈ − (1+ β)2(50+ 87β+ 48β2 + 8β3)√

π(75+ 140β+ 84β2 + 16β3)

× 2− 3
2−βe−i π

2 (β+1)

(33)× �(−1/2− β)k
5
2+β(−τ̃ )−5−3β.

Therefore, we can express the power spectrum
superhorizon scales of the comoving curvature as

PR(k)

= k3

2π2

∣∣∣∣uk(τ̃c)

zk(τ̃c)

∣∣∣∣
2

� k3

2π2

u
(0)
k u

(0)∗
k + α(u

(0)
k u

(1)∗
k + u

(0)∗
k u

(1)
k )

z2
k

∣∣∣∣
τ̃=τ̃c

(34)

� 2−2β−2�(ν)2k4+2β

π2M2
pll

2
0ε

[
1+ 2αf (β)k2(−τ̃c)

−6−4β
]
,

where

f (β) = −(1+ β)2

(35)×
(

1+ 50+ 87β+ 48β2 + 8β3

75+ 140β+ 84β2 + 16β3

)
,

and τ̃c is the time when fluctuation modek comes
across the Hubble radius, (i.e., for−τ̃c ≈ 1/k). Just
as Lidsey et al. have pointed in Ref.[15] that, in spite
of the appearance of spectrum equation, the calcul
value for the spectrum is not the value at which
scale crosses outside the Hubble radius. Rather,
the asymptotic value ask/aH → 0, but rewritten in
terms of the values the quantities had when the H
ble radius was crossed.

We may now compute the spectra indexns of the
scalar metric perturbation on superhorizon scales

(36)

ns − 1 ≡ d lnPR(k)

d lnk
≈ 2(2+ β)

[
1+ 4αf (β)k8+4β

]
.

Fig. 1. The spectral indexns − 1 for different wavenumberk, where
the parameterα = 10−2 andβ = −2.1.

The running of the spectrum index is

(37)
dns

d lnk
≈ 32α(2+ β)2f (β)k8+4β.

Obviously, when the parameterα → 0 (i.e., Ms →
∞), the contribution from the non-commutativity o
spacetime to the spectral index and its running w
also vanish. Note that in the vicinity ofβ = −2, f (β)

is negative. Thus, the spectrum has a negative s
tral index for small scales and a positive one for la
scales (seeFig. 1), while the running is always nega
tive. Since the slope of the power spectrum decre
as β goes towards to−2, the more rapidly the uni
verse is accelerating, the closer the power spectru
to being scale-invariant. In the limit caseβ = −2, the
results for commutativeand non-commutative spac
times converge at a completely scale-invariant sp
trum.

In the non-commutative inflationary spacetim
there are corrections to the primordial power sp
trum which arise in a model of power-law inflatio
These corrections lead to a blue tilt (ns > 1) for
small wavenumber and a red one (ns < 1) for large
wavenumber which accords with the first-year
sults of WMAP [1]. The origin of the suppression
in the power spectrum of the fluctuations is that
non-commutativity of the spacetime delayed the gen
eration of the fluctuation modes and then postpo
the time when they crossing the Hubble radius. Ho
ever, in the de Sitter limit, i.e., forε = η = ξ = 0,
the non-commutativity of the spacetime has no influ
ence in the spectrum, this is because no time dela
can be generated in this special case. Accordin
the analysis of the results of WMAP[1,10], for the
scalar modes, the mean and the 68% error leve
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01)
the 1d marginalized likelihood for the power spe
trum slopens = 0.93+0.02

−0.03, dns/d lnk = −0.031+0.016
−0.017

at k = 0.05 Mpc−1 andns = 1.20+0.12
−0.11, dns/d ln k =

−0.077+0.050
−0.052 at k = 0.002 Mpc−1. Using the data

at k = 0.05 Mpc−1, the parametersβ and α should
be constraint byβ � −2.08 andα � 0.0186, respec
tively. The parameterα is so small that ensure that o
treatments, i.e., Eqs.(19) and (20), are suitable. Us
ing the values of parametersβ and α gained above
we predict thatns � 1.11, dns/d lnk � −0.089 at
the scale ofk = 0.002 Mpc−1. This results are in
good agreement with those obtained in Ref.[10]. Al-
though the predicted central values of the spectra in
and its running have small deviations from the c
responding WMAP data, but they both fall with
the error bar. The differences exist due to the f
that at the large scales, the effect of higher ord
in α is not completely negligible. As these highe
order effects is taken into account, the result wo
be improved. In addition, using the WMAP data th
PR(k = 0.002 Mpc−1) = 2.09× 10−9 and the para
meters obtained above, we estimate the string s
ls � 1.2× 104lp � 2.0× 10−29 cm, which is also con
sistent with the result obtained in Refs.[11,12].

In summary, following the elegant idea that mer
the effects of the stringy spacetime uncertainty rela
into primordial perturbations proposed by Brande
berger and Ho, we obtain the mode equation up
the first order of non-commutative parameter. Mo
over, we also provide a new analytical approximat
to calculate the mode functions in the power-law
flation models. It turns out that non-commutativity
spacetime can provide small corrections to the po
spectrum of primordial fluctuations and our results
consistent with the previous results and WMAP da
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