Metadata, citation and similar papers at core.a

ded by Elsevier -

sSciENCE ((J)piRECT"
PHYSICS LETTERS B

ELSEVIER Physics Letters B 600 (2004) 1-6

www.elsevier.com/locate/physletb

Non-commutative power-law inflation:
mode equation and spectra index

Dao-jun Liu, Xin-zhou Li

Shanghai United Center for Astrophysics (SUCA), Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
Received 2 August 2004; received in revised form 6 September 2004; accepted 6 September 2004

Editor: P.V. Landshoff

Abstract

Following an elegant approach that merges the effects of the stringy spacetime uncertainty relation into primordial perturba-
tions suggested by Brandenberger and Ho, we show the mode equation up to the first order of non-commutative parameter. A
new approximation is provided to calculate the mode functions analytically in the non-commutative power-law inflation models.

It turns out that non-commutativity of spacetime can provide small corrections to the power spectrum of primordial fluctuations
as the first-year results of WMAP indicate. Moreover, using the WMAP data, we obtain the value of expansion parameter, non-
commutative parameter and find the approximation is viable. In addition, we determined the strirg scal@x 10729 cm.

0 2004 Elsevier B.VOpen access under CC BY license.

The cosmological parameters and the properties ning of the spectral index of the power spectrum than
of inflationary models are tightly constraint by the that predicted by standard single scalar field inflation
recent result from Wilkinso Microwave Anisotropy models satisfying the slow-roll conditions.

Probe (WMAP)[1], Sloan Digital Sky Survey (SDSS) On the other hand, it is well known that during
and Two degree Field (2dF) galaxy clustering analy- the period of inflation, the classical gravitational the-
ses[2], and from the latest SNla dafd]. The stan- ory, general relativity, might break down due to the
dard inflationaryACDM model provides a good fitto  very high energies at that tierand the correction from
the observed cosmic microwave background (CMB) string theory may take effect. In the non-perturbative
anisotropies. The first-year results of WMAP also string/M theory, any physical process at the very short
bring us something intriguing. Some analygés7] distance takes an uncertainty relation, called stringy
show that the new data of CMB suggest an anom- spacetime uncertainty relation (SSUR),
alously low quadrupole and octupole and a larger run- 2
Aty Axp 213, D)
wherer, andx, are the physical time and spacgis
E-mail address: kychz@shnu.edu.cfX.-z. Li). the string length scale. It is suggested that the SSUR is

0370-26931 2004 Elsevier B.VOpen access under CC BY license.
doi:10.1016/j.physletb.2004.09.003


https://core.ac.uk/display/82125528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:kychz@shnu.edu.cn
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2 D.-. Liu, X.-z Li / Physics Letters B 600 (2004) 1-6

a universal property for strings as well as D-braj@s
Unfortunately, we now have no ideas to derive cosmol-
ogy directly from string/M theory. Brandenberger and
Ho [9] have proposed a variation of spacetime non-
commutative field theory to realize the stringy space-
time uncertainty relation without breaking any of the
global symmetries of the homogeneous isotropic uni-
verse. If the inflation is affected by physics at a scale

can be evaluated analytically in power-law inflation.
There are corrections to the primordial power spec-
trum which arise in the non-commutative power-law
models. These corrections lead to a blue iilt ¢ 1)
for small wavenumber and a red ong 1) for large
wavenumber which accords with the first-year result
of WMAP [1].

Following the scenario proposed by Brandenberger

close to string scale, one expects that spacetime un-and Ho[9], the model incorporating the SSUR can be

certainty must leave vestiges in the CMB power spec-
trum[10-12] It is found that, in the non-commutative

inflation context, IR modes are created on scales larger S =V
than the Hubble radius and thus are not as squeezed as

they would be in the commutative case. {Ja] shows
that the choice of initial vacuum has a significant ef-
fect on the power spectrunt density fluctuation in
a non-commutative spacetime. Following R#éi, the
scalar fluctuations of tachyon inflation were discussed

written as

/ A% a3k 22(5) (¢4 gh — K2,
k<ko

2

whereV denotes the total spatial coordinate volume
and the primes represent derivatives with respect to the
time variabler, which is related to the conformal time

T via

in non-commutative spacetinf&4]. i (2 2d 3
While the standard model is observationally well “* =\ ;] 4% ©)
justified, successful non-commutative models predict . . )
that there should be observable deviations from it. wherea is the scale factor, anty is defined as
Undoubtedly, we should expect that the effect of the B 1/4
non-commutativity of the spacetime may only provide deff = (/3—_) : 4
a small correction to the prediction of the standard k
model. Here,,ﬂki are determined by
The primary observational test of inflation is obser-
vation of CMB. Temperature fluctuations in the CMB ﬁki — E[giz(f + klsz) + aiz(f - klf)], (5)

are related to perturbatioimsthe metric at the surface
at last scattering. During the inflationary epoch, met- in which the new time variablé is defined as/t =
ric perturbations are created by field fluctuation, and a®dz. z; in Eq. (2) is some smeared version of the
guantum fluctuations on small scales are rapidly red- “Mukhanov variable”z over a range of time of char-
shifted to scales much larger than the Hubble radius. acteristic scale\t = Ik,
The metric perturbations can be decomposed accord- ad
ing to their spin with respect to a local rotation of the 7, — (,32_,3](—)1/4Z — ﬁ(ﬂ:ﬁk_)mv (6)
spatial coordinates on hypersurfaces of constant time.
This leads to two types: scalar perturbations which whereH and¢ are Hubble rate and inflaton field, re-
couple to the stress-energy of matter in the universe spectively, and overdot denotes derivative with respect
and form “seeds” for structure formation, and tensor to cosmic timer.
perturbations which do not couple to matter. From the actior(2), the equation of motion of the

In this Letter, we show the equation of mode func- scalar perturbations mode equation can be written as
tions up to the first order of non-commutative para- ”
meter . beyond the slow-roll approximation. When ) + <k2 - Z—k>uk =0,
the string scalé, — 0, mode equation can be reduced <k
to one in ordinary commutative spacetime. The mode where the mode function is defined by = z; .
equation of non-commutative inflation is complicated, Apparently, if the string length scalggoes to zero,
and computing the power spectrum will in general the action(2) will reduce to the action for the fluctu-
require numerical evaluation. However, the spectrum ations in the classical spacetime, which leads to the

(7
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equation of motion of perturbations
dzuk

1d22
2 ’ _
0:2 +(k _Zﬁ)”k_o’

whereu; now is reduced ta¢;. Using the slow-roll
parameters
2
M

3 (H’(¢))2
4 \H(p) )’
O
"= 4 H@)
3 M_§|<H/(¢)HW(¢))1/2
T A H2(¢) ’

. d2 .
the expression fm} d—rg can be written agl5]

®)

©)

(10)

11)

1d?%;
——= =2(aH)?
72 (aH)
3 2 1, 1.
l+e—— -2 = —£°).
x( +e 277+e en+2n +25
12)
The non-local coupling in time between the back-
ground and the fluctuation is manifested in E5). As

mentioned above, we assume that the effect of SSURK = I,

only provides a small correction to the prediction of
standard scenario that produce the primordial fluctu-
ation. This is equivalent to suppose tlmﬁ < |t]in

Eq. (5). This condition is crucial because SSUR takes
effects only via;Bki and it will be showed that the com-
putations in the following are all based on this assump-
tion. In order to calculate the non-commutative power
spectrum correctly, we introduce a non-commutative
parametei as

2k2
a’M®’

N

13)

wherek is the comoving wavenumber of a perturba-
tion mode, andM, = l;l is the string mass scale.
There exists a great difference between the slow-roll
parameters, n and the non-commutative parameter
According to the definition, slow-roll parameters do
not involve a which increases rapidly during infla-
tion. Note thati contains scale facto#, which is

in contrast to the slow-roll parameters. We note the
general picture of fluctuations during inflation: for a
given fluctuation whose initial wavelength a/k is

within the Hubble radius, ibscillates till the wave-
length becomes of the order of the Hubble radius scale;
when the wavelength crosses the Hubble radius, the
fluctuation ceases to oscillate and gets frozen in. Af-
ter a prolix but straightforward calculation, we ob-
tain

7l ld%
—=-—|1-2(1 A
Zk zdrz[ 1+e)]
+2a%°H?\[3¢ + 1+ 3en + €2 + enle — )],
(14)
up to the first order of, Where%jzg is defined in

Eq. (12). Clearly, whenl;, — 0 orTMs — o0, the

quantity z;'/zx and ¥ will be reduced to%ji*’é and
7, respectively, and then the mode equat{@j in
non-commutative spacetime will recover the one in
ordinary commutative spacetini@).

Brandenberger and H{®] have shown that, for
each modé of fluctuation, there is a critical tim& at
which the spacetime uncertainty relation is saturated,

andk andtg have the relation

aeff(70)

(15)

7o is also the time when the mode is generated. Before
the critical timetp, the fluctuations do not contain the
modek.

Let us now consider power law inflation models
where the scale factor can be givendiy) = lo|t|11#
where 8 is a number such tha® < —2 and the co-
efficient [p has the dimension of a length. In order
for slow-roll parameter to be a little number, we
may assumes is close to—2. In the limit case8 =
—2, which corresponds to exponential expansion, the
length /o is nothing but the Hubble radiug = /.
Supposing that; « I, according to Eq(15), we ob-
tain that—k7o ~ lp/l; >> 1 provided thatg is close
to —2, which means that the modeis generated on
scales inside the Hubble radius in the local vacuum
state.

In power law models, the slow-roll parameters can
all be determined exactly,

2+ 8

1+ 8’ (16)

e=n=t=



which is a virtue of this class of models, and the mode
equation(7) thus is reduced to

dzuk
dt?

) 1
+ |:k —BL+P =
T
+ 4ak?(1+ B)?(5+58 + p2)
! i|uk =0,

X |t|8+4ﬂ
where the parameter= (I;/lo)*, and the relation be-
tween conformal time and? can be rewritten as

1+pB+28) 1
(B+4p) |t

In principle, we can solve Eq{18), then insert the
solutiont(7) into Eq.(17) and finally obtain the so-
lution ux (7) of Eq. (17). However, this procedure is
too complicated to implement directly in practice. The
situation here are in many ways equivalent to the mod-

17

T=1+ak?

(18)
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the ultraviolet regime-{7o > —7 > 1/k), the solution
of Eq.(22) matches the plane-wave solution we expect
in flat spacetime and obey the Wronskian condition

duy du?t
* k .
—_ = — 25
Mg T agr T (25)
the exact solution of Eq22) becomes
1

up($)@ = g ex i%(v + E)]

x (=)YV2HD (—kT), (26)

where, the parameter= —3 — f. For solving Eq.

(23), we can use the general methods of both homoge-
neous and inhomogeneous linear ordinary differential
equations. The general sibns of the second-order
equation can be written as

h
up($)® =§02f L

. p2h
w #1

drt, 27
Rz @7)

ified dispersion relations considered by Brandenberger where two linearly independent solutions of the homo-

and Martin in Ref.[16]. Note that Eq.(17) is a lin-

ear equation and we have assureed 1. Therefore,
we can use perturbation method to solve E#jg) and
(18). For this purpose, let

t=19 tar® 4o2c@ 4. 19)
Up = u,(co) + au,((l) + azu,(cz) + - (20)

Inserting them into Eq417) and (18)we obtain that

__2dEpGL2p 1

=7 5148 5W +0(e?), (21)

and then

1
@ + [kz _ LR )]u;f’) =0, (22)
T
1
™ + [kz _ AR ;2“ ﬂ)]u;}) =h(?), (23)
where
. 2kP(1+ B)?
MO ="z
BB+ 2p) 2\ |0
—— —2(5+5 . (24
< Torap Ao+ @
If the non-commutative spacetime effects are ignored,

the mode function is reduced tm,(co) which obeys

Eq.(22). Itis easy to find that E22) is nothing but
Eq.(8)with T replaced byt. Thus, if we impose thatin

geneous equation
o1=(—D)Y2HD (—k?), (28)
g2 = (—D)Y2H? (—k?), (29)
and the Wronskian of the two solutions of homoge-
neous equation

dg2
Yar
Fortunately, the integral in E27) can be explicitly
integrated.

On the subhorizon scales, i.e. 1613 > k272 > 1,
since

oL~ /ikefi(kar%er%),
T

@2~ /ikei(kﬂ%wr%)
T

and

(30)

MONS —ikt

LV

inserting these expressions into E@7), we obtain
that

L@ o L+ BP(50+ 878+ 486% + 86°)
(5+4B)(7+4p)

i
‘(i) T

T

(31)
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We are specially interested in solution on the super-
horizon scales, i.e., fok?72 « 1. For these scales,

since M (x < 1) = \/ge”'”/22”’3/2‘rr<§;)2)x*”, we
obtain that

O~ pi-DEp-§ TO 1 og

2
i r3/2 vk (32)

and
@ _ (L4 B*(50+ 87+ 484" + 88°)
‘ V7 (75+ 1408+ 8442 + 16
% 2~ 3B ,~i3(B+D

X T(=1/2 — B)k2+B(—7)~536 (33)

Therefore, we can express the power spectrum on dng

superhorizon scales of the comoving curvature as

Pr(k)
k3
~ 272
_E O e + o)
22 z,% F=%.
2726721 (v)2pA+2p

217212
T Mplloe

up(z.) |2

Zk(fc)
u](CO)uj(CO)*

[14 20f (B)K?(—7) 0],
(34)
where

f(B)=—(1+p)?
., 50+878+ 4867 +8p°
75+ 1408+ 8482 + 163
and 7. is the time when fluctuation mode comes

across the Hubble radius, (i.e., fert, ~ 1/k). Just
as Lidsey et al. have pointed in R§E5] that, in spite

), (35)

of the appearance of spectrum equation, the calculated

value for the spectrum is not the value at which the

scale crosses outside the Hubble radius. Rather, it is

the asymptotic value als/a H — 0, but rewritten in

terms of the values the quantities had when the Hub-

ble radius was crossed.
We may now compute the spectra indexof the
scalar metric perturbation on superhorizon scales

_dInPg(k)

~ 8+4p8
Tt 22+ B)[1+ daf (BKTTY].

(36)

ng —

ns-1

0.04

k
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-0.02

-0.04

Fig. 1. The spectral index; — 1 for different wavenumbek, where
the parameter = 102 andg = —2.1.

The running of the spectrum index is

~ 3222+ B2 f(B)KETP. (37)

dInk
Obviously, when the parameter — 0 (i.e., My —

o0), the contribution from the non-commutativity of
spacetime to the spectral index and its running will
also vanish. Note that in the vicinity ¢f= —2, 1 (8)

is negative. Thus, the spectrum has a negative spec-
tral index for small scales and a positive one for large
scales (se€ig. 1), while the running is always nega-
tive. Since the slope of the power spectrum decreases
as f goes towards te-2, the more rapidly the uni-
verse is accelerating, the closer the power spectrum is
to being scale-invariant. In the limit cage= —2, the
results for commutativand non-commutative space-
times converge at a completely scale-invariant spec-
trum.

In the non-commutative inflationary spacetime,
there are corrections to the primordial power spec-
trum which arise in a model of power-law inflation.
These corrections lead to a blue tilt,(> 1) for
small wavenumber and a red ong (< 1) for large
wavenumber which accords with the first-year re-
sults of WMAP [1]. The origin of the suppressions
in the power spectrum of the fluctuations is that the
non-commutativity of the sgcetime delayed the gen-
eration of the fluctuation modes and then postponed
the time when they crossing the Hubble radius. How-
ever, in the de Sitter limit, i.e., foe =n =& =0,
the non-commutativity of th spacetime has no influ-
ence in the spectrum, ihis because no time delay
can be generated in this special case. According to
the analysis of the results of WMAR,10], for the
scalar modes, the mean and the 68% error level of
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