
Nuclear Instruments and Methods in Physics Research A ∎ (∎∎∎∎) ∎∎∎–∎∎∎

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect
Nuclear Instruments and Methods in
Physics Research A
http://d
0168-90

n Corr
E-m
URL

Pleas
nima
journal homepage: www.elsevier.com/locate/nima
Neutron detection in the frame of spatial magnetic spin resonance

Erwin Jericha a,n, Joachim Bosina a,b,c, Peter Geltenbort c, Masahiro Hino d, Wilfried Mach a,
Tatsuro Oda e, Gerald Badurek a

a TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria
b Austrian Academy of Sciences, Stefan Meyer Institute, Boltzmanngasse 3, 1090 Wien, Austria
c Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
d Kyoto University, Research Reactor Institute, Kumatori, Osaka 590-0494, Japan
e Kyoto University, Department of Nuclear Engineering, Kyoto 615-8540, Japan
a r t i c l e i n f o

Article history:
Received 15 March 2016
Accepted 29 April 2016

Keywords:
Neutron detection
Neutron time-of-flight
Polarized neutrons
Spatial magnetic spin resonance
Spin flipper
x.doi.org/10.1016/j.nima.2016.04.103
02/& 2016 The Authors. Published by Elsevie

esponding author.
ail address: jericha@ati.ac.at (E. Jericha).
: http://www.ati.ac.at (E. Jericha).

e cite this article as: E. Jericha, et a
.2016.04.103i
a b s t r a c t

This work is related to neutron detection in the context of the polarised neutron optics technique of
spatial magnetic spin resonance. By this technique neutron beams may be tailored in their spectral
distribution and temporal structure. We have performed experiments with very cold neutrons (VCN) at
the high-flux research reactor of the Institut Laue Langevin (ILL) in Grenoble to demonstrate the potential
of this method. A combination of spatially and temporally resolving neutron detection allowed us to
characterize a prototype neutron resonator. With this detector we were able to record neutron time-of-
flight spectra, assess and minimise neutron background and provide for normalisation of the spectra
owing to variations in reactor power and ambient conditions at the same time.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The development of spatial magnetic spin resonance dates back
to the 1960s. Its first experimental realisation was reported in
1968 [1]. There it was found that a magnetic field configuration
consisting of a periodic spatially alternating static resonator field
B1 and a static homogeneous selector field B0 orthogonal to B1
changes the polarisation of a neutron beam as a function of neu-
tron wavelength λ. Resonance conditions for the wavelength,
λ λ= 0, and the amplitude of B1 may be formulated for a given
selector field B0, [2,3]. The present project has been motivated by
the concurrent development of the neutron decay instrument PERC
which relies on a pulsed polarised cold neutron beamwith defined
spectral properties [4,5]. Letting a polarised neutron beam pass
our resonator, we obtain at its exit a neutron beam which has
inverted polarisation for neutrons with wavelength distributed
around the resonance wavelength λ0. When the neutron beam
passes additionally through a broadband spin flipper like a current
sheet that inverts the polarisation of the neutron beam as a whole,
only the monochromatic distribution of resonant neutrons is po-
larised in the initial direction, afterwards. If we place now a po-
larisation analyser in the beam path only these resonantly flipped
neutrons will be transmitted. Therefore a setup consisting of
r B.V. This is an open access article
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polariser, resonator, broadband spinflipper and analyser will act as
a monochromator for polarised neutron beams which may also be
pulsed with an appropriate operation mode of the resonator. A
corresponding experimental setup is shown in Fig. 1.

In recent years we have developed resonators with independent
elements which allow us to tailor the neutron beam with high
flexibility. The principal scheme was introduced in [6], and several
prototypes were designed [3] and constructed [7]. First experiments
were then performed at a dichromatic thermal neutron beam at the
TRIGA reactor of the Atominstitut in Vienna [7,8]. First experiments at
a polychromatic white neutron beamwere performed recently with
very cold neutrons (VCN) at the instrument PF2/VCN at ILL. These
slow neutrons are ideal for tests with relaxed conditions on re-
sonator field strength and resonator timing.
2. Experiments

At ILL, VCN are extracted from the vertical cold neutron source
via a bent vertical neutron guide and enter a cabin dedicated for
VCN experiments. At the entrance to the experimental setup a disc
chopper is placed. It consists of an aluminum disc covered with a
Gd layer that absorbs VCN with perfect efficiency. The chopper is
typically operated with 10 Hz repetition rate. Neutrons pass the
disc through an open window. After the chopper the neutrons
enter a 2.2 m large aluminum box where the neutron optical
components are mounted. Immediately after the exit window the
neutron detector is placed.
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Fig. 1. Experimental setup for the neutron resonator at the VCN beam line at ILL.
Neutron pass from the curved neutron guide through a disc chopper opening into
an aluminum box which may be flooded with helium. Inside the box are located a
polarising supermirror, the multi-element resonator, a broadband current-sheet
spin flipper, and an analysing supermirror. Outside the box the position-sensitive
neutron detector is placed close to the exit window. At the analyser the exiting
neutron beam is divided into a main beam and a monitor beam used for reference
purposes.

Table 1
Technical specifications of the BIDIM26 detector used in the VCN experiment [9].

Detecting element Multi Wire Proportional
Chamber (MWPC)

Position measurement Individual wires readout
Active area ×26 26 cm2

Position resolution ×2 2 mm2

Window thickness 4 mm
Conversion gap thickness 3 cm
Gas mixture 500 mbar 3He þ 1.5 bar CF4
Global count rate ∼ ×2 10 /s5
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The surfaces of the supermirror polarisers are aligned at an
angle of about °9 with respect to the incoming neutron beam. The
footprint of a beam of width w impinging on a surface under an
angle θ has a length θΔ =l w/sin . For =w 15 mm and θ = °9 , we
obtain Δ =l 96 mm, larger than the 75 mm diameter of the su-
permirror. Therefore we can use the portion of the beam which
does not hit the analysing supermirror for monitoring purposes.
Such a monitor beam offers some distinct advantages: it is derived
from the same incident flux as the main beam, has the same path
length through gas atmosphere and resonator sheets as the main
beam, it is reflected from the polariser and guarantees therefore
normalisation on the same initial polarisation, it is independent on
manipulation of beam polarisation throughout the setup because
it bypasses the analyser.
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Fig. 2. Time- and position-resolved detector data Nijl with Δ = Δ =x y 1 mm
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Experiments were carried out as integral measurements or
time-of-flight spectra which give us access to the spectral beha-
viour. They are produced either by the rotating disc chopper or the
pulsed neutron resonator or a combination of both. The TOF start
signal is generated by either by the chopper or by the resonator, in
case the chopper is at rest in open position. In recording the
neutron intensity for the various settings, the VCN detector is a
key component of the experimental setup. Its specifications are
given in Table 1 according to [9]. The detector itself can be oper-
ated in different modes owing to a versatile data acquisition
electronics attached to it. In the most general case, each detector
element consists of a spatial pixel at coordinate ( )y z,i j and of size

Δ × Δy z2 2 and a time channel tl of width Δt2 . The neutron counts
in this element = ( )N N y z t, ,ijlm m i j l in a single time frame m (cor-
responding to one revolution of the chopper) are given by
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Position resolved detector data for two different time channels
± Δt tl are shown in Fig. 2. The data represent the incoming neu-

tron spectrum passing the disc chopper when its rotates with
10 Hz repetition rate. The counts correspond to about
M¼18,000 time frames. From these neutron counts we may derive
position integrated time-of-flight spectra
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Two such intensity distributions are shown in Fig. 3.
3. Discussion

Fig. 3 a illustrates a particular feature about VCN which appear
both as directed beam and multi-directional gas at the same time.
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and Δ = μt 50 s; (a) =t 32.05 msl (l¼321) and (b) =t 40.05 msl (l¼401).
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Fig. 3. Time integrated 2D intensity maps ( )N 1, 1000ij over 1000 time channels, where two of them are shown in Fig. 2. In (a) the full detector area is shown and the intensity
scale highlights the background events, in (b) the regions of interest (ROI) with the main beam on the right side and the monitor beam on the left side are seen.
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Fig. 4. Neutron TOF spectrum ( )N i i j j, , ,l 1 2 1 2 of the incident beam, =l 11 , =l 10002
(100 ms): area integrated in (a) over the full detector, = =i j 11 1 , = =i j 1282 2 ;
(b) over the ROI ( × )20 58 mm2 for the main beam, =i 881 , =i 972 , =j 671 , =j 952 ;
(c) over the monitor beam ROI ( × )8 58 mm2 , =i 421 , =i 452 , =j 671 , =j 952 ;
(d) over the full detector minus the two ROIs shown in (b) and (c). The two vertical
lines mark the position of the two time slices (see Fig. 2) from which the corre-
sponding data points are calculated.
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Fig. 5. Neutron TOF spectra taken in 1800 s measurement time: (a) main ROI of the
incident beam, this curve corresponds to curve (b) in Fig. 4, (b) ROI of the main
beam where the neutron resonator is switched on, (c) ROI of the main beam when
the current-sheet is turned on, (c1) intensity after 5400 s measurement time, (c2)
rescaled to 1800 s measurement time, (d) main ROI of the beam when both re-
sonator and current-sheet are switched on, (e) monitor ROIs, (e1) for (a)–(d) with
1800 s measurement time, these curves correspond to curve (c) in Fig. 4, (e2) for
curve (c1) with 5400 s measurement time, these data are used to normalise the
(c1) data.
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We see clearly the regions corresponding to the main and monitor
beam, respectively. In between and around these regions a neu-
tron background is distributed almost randomly. In Fig. 3 the total
counts measured in 1800 s amount to 203,706 or 113.2 per second.
The region of interest for the main beam contains 138,654 counts,
or 68%, the monitor ROI 36,413 counts, or 18%, and the background
amounts to 28,639 counts, or 14%. This last percentage is indeed
appreciable, and position-resolved detection allows us to elim-
inate this background unambiguously. The ROIs used are specified
in the caption of Fig. 4.

Use of the monitor beam allows us to take variations in po-
larisation, fluctuations of the neutron source and variable ab-
sorption owing to different environmental conditions into ac-
count. Intensity gain or loss can be quantified by a single integral
number, namely the number of neutrons reaching the detector
per second in the monitor beam ROI. A common normalisation
Please cite this article as: E. Jericha, et al., Nuclear Instruments & M
nima.2016.04.103i
accounts for different measuring times, or number of time frames,
employed in measurements which are to be compared. This is il-
lustrated in Fig. 5. Here, the time-of-flight spectra for four different
measurements are summarised: (a) the incident spectrum; (b) the
spectrum where the resonator is switched on and the resonant
neutrons are spin-flipped and therefore cannot pass the analyser
into the detector – this can be seen as intensity minimum at the
position of the resonant neutrons; (c) the spectrum where the
broadband flipper is switched on and practically all neutrons are
spin-flipped – in an ideal situation no neutron intensity should be
recorded in the detector. Here, the detected intensity is an in-
dicator for the non-ideal polarisation of the neutron beam and
labelled as background. (c1) shows the actual measurement of
5400 s measuring time which was extended owing to lower
ethods in Physics Research A (2016), http://dx.doi.org/10.1016/j.
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counting statistics with these settings while (c2) was scaled to the
common measuring time of 1800 s. (d) the spectrum where both
the resonator and the current-sheet spin-flipper are switched on –

only the resonant neutrons have the ‘right’ polarisation at the
analyser and would pass the analyser in the ideal case. As an in-
dicator of the non-ideal polarisation the resonant neutron dis-
tribution sits of top of the background (c).

Our monitor beam allows us to assess the stability of the
neutron source and the experimental setup. For the data shown in
Fig. 5 we find an average monitor count rate of 36,284(78) per
1800 s or 20.158(43)/s. The monitor count rates for our four
measurements are 20.23(11)/s for (a), 20.11(11)/s for (b), 20.168
(61)/s for (c), and 20.10(11)/s for (d). From these values we find
that the neutron source as well as the experimental setup were
extremely stable during the measurements (a)–(d). This is also
expressed by the fact that the spectra (a) and (b) lie on top of each
other, except for the resonant dip, from which we can conclude
that the resonator indeed influences the neutrons in a narrow
spectral range only, or curves (c2) and (d), from which we can
conclude that the resonator is operating properly and that the
distribution of resonant neutron sits on the same background that
is present when the resonator is switched off. The determination
of this polarisation background underlines the value of using the
position-sensitive detector to discriminate against the background
events taking place outside our regions of interest. In measure-
ment (c) 59.2% of the events take place in the monitor ROI, 10.4% in
the main beam ROI, and 30.4% occur in the rest of the detector
area. Without the possibility to define regions of interest the data
quality of this key quantity would be significantly impaired.
Please cite this article as: E. Jericha, et al., Nuclear Instruments & M
nima.2016.04.103i
Acknowledgement

We gratefully acknowledge that the project has been supported
by Deutsche Forschungsgemeinschaft (SPP 1491, Project JE 595/2–
1, PREPERC) and the Austrian Fonds zur Förderung der wis-
senschaftlichen Forschung (Project no. I 528-N20, MONOPOL).
References

[1] G. Drabkin, V. Trunov, V. Runov, Static magnetic field analysis of a polarized
neutron spectrum, Sov. Phys. JETP 27 (2) (1968) 194–196.

[2] M. Agamalyan, G. Drabkin, V. Sbitnev, Spatial spin resonance of polarized
neutrons – a tunable slow neutron filter, Phys. Rep. 168 (5) (1988) 265–303,
http://dx.doi.org/10.1016/0370-1573(88)90081-6.

[3] G. Badurek, C. Gösselsberger, E. Jericha, Design of a pulsed spatial neutron
magnetic spin resonator, Phys. B 406 (12) (2011) 2458–2462, http://dx.doi.org/
10.1016/j.physb.2010.09.023.

[4] D. Dubbers, H. Abele, S. Baeßler, B. Märkisch, M. Schumann, T. Soldner,
O. Zimmer, A clean, bright, and versatile source of neutron decay products,
Nucl. Instrum. Methods Phys. Res. A 596 (2) (2008) 238–247, http://dx.doi.org/
10.1016/j.nima.2008.07.157.

[5] C. Gösselsberger, H. Abele, G. Badurek, E. Jericha, S. Nowak, G. Wautischer,
A. Welzl, Design of a novel pulsed spin resonator for the beta-decay experiment
perc, Phys. Proc. 17 (2011) 62–68, http://dx.doi.org/10.1016/j.phpro.2011.06.018.

[6] G. Badurek, E. Jericha, Upon the versatility of spatial neutron magnetic spin
resonance, Phys. B 335 (1–4) (2003) 215–218, http://dx.doi.org/10.1016/
S0921-4526(03)00240-0.

[7] C. Gösselsberger, H. Abele, G. Badurek, E. Jericha, W. Mach, S. Nowak, T. Re-
chberger, Neutron beam tailoring by means of a novel pulsed spatial magnetic
spin resonator, J. Phys.: Conf. Ser. 340 (2012) 012028–1–8, http://dx.doi.org/10.
1088/1742-6596/340/1/012028.

[8] C. Gösselsberger, M. Bacak, T. Gerstmayr, S. Gumpenberger, A. Hawlik,
B. Hinterleitner, E. Jericha, S. Nowak, A. Welzl, G. Badurek, Wavelength-selected
neutron pulses formed by a spatial magnetic neutron spin resonator, Phys. Proc.
42 (2013) 106–115, http://dx.doi.org/10.1016/j.phpro.2013.03.182.

[9] G. Manzin, Bidim80 and Bidim26 for UCN, Technical Specifications, Technical
Report, ILL, 2011.
ethods in Physics Research A (2016), http://dx.doi.org/10.1016/j.

http://refhub.elsevier.com/S0168-9002(16)30339-4/sbref1
http://refhub.elsevier.com/S0168-9002(16)30339-4/sbref1
http://refhub.elsevier.com/S0168-9002(16)30339-4/sbref1
http://dx.doi.org/10.1016/0370-1573(88)90081-6
http://dx.doi.org/10.1016/0370-1573(88)90081-6
http://dx.doi.org/10.1016/0370-1573(88)90081-6
http://dx.doi.org/10.1016/j.physb.2010.09.023
http://dx.doi.org/10.1016/j.physb.2010.09.023
http://dx.doi.org/10.1016/j.physb.2010.09.023
http://dx.doi.org/10.1016/j.physb.2010.09.023
http://dx.doi.org/10.1016/j.nima.2008.07.157
http://dx.doi.org/10.1016/j.nima.2008.07.157
http://dx.doi.org/10.1016/j.nima.2008.07.157
http://dx.doi.org/10.1016/j.nima.2008.07.157
http://dx.doi.org/10.1016/j.phpro.2011.06.018
http://dx.doi.org/10.1016/j.phpro.2011.06.018
http://dx.doi.org/10.1016/j.phpro.2011.06.018
http://dx.doi.org/10.1016/S0921-4526(03)00240-0
http://dx.doi.org/10.1016/S0921-4526(03)00240-0
http://dx.doi.org/10.1016/S0921-4526(03)00240-0
http://dx.doi.org/10.1016/S0921-4526(03)00240-0
dx.doi.org/10.1088/1742-6596/340/1/012028
dx.doi.org/10.1088/1742-6596/340/1/012028
http://dx.doi.org/10.1016/j.phpro.2013.03.182
http://dx.doi.org/10.1016/j.phpro.2013.03.182
http://dx.doi.org/10.1016/j.phpro.2013.03.182
http://dx.doi.org/10.1016/j.nima.2016.04.103
http://dx.doi.org/10.1016/j.nima.2016.04.103
http://dx.doi.org/10.1016/j.nima.2016.04.103
http://dx.doi.org/10.1016/j.nima.2016.04.103

	Neutron detection in the frame of spatial magnetic spin resonance
	Introduction
	Experiments
	Discussion
	Acknowledgement
	References




