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SUMMARY

Unconventional secretion of exosome vesicles from
multivesicular endosomes (MVEs) occurs across a
broad set of systems and is reported to be upregu-
lated in cancer, where it promotes aggressive
behavior. However, regulatory control of exosome
secretion is poorly understood. Using cancer cells,
we identified specialized invasive actin structures
called invadopodia as specific and critical docking
and secretion sites for CD63- and Rab27a-positive
MVEs. Thus, inhibition of invadopodia formation
greatly reduced exosome secretion into conditioned
media. Functionally, addition of purified exosomes
or inhibition of exosome biogenesis or secretion
greatly affected multiple invadopodia life cycle
steps, including invadopodia formation, stabiliza-
tion, and exocytosis of proteinases, indicating a
key role for exosome cargoes in promoting invasive
activity and providing in situ signaling feedback.
Exosome secretion also controlled cellular inva-
sion through three-dimensional matrix. These data
identify a synergistic interaction between invado-
podia biogenesis and exosome secretion and reveal
a fundamental role for exosomes in promoting
cancer cell invasiveness.
INTRODUCTION

Exosomes are small extracellular vesicles that carry functional

protein and RNA cargoes and influence cell behavior (Théry,

2011). In cancer, exosomes are thought to promote tumor pro-

gression and metastasis (Bobrie et al., 2012; Peinado et al.,

2012; Yang and Robbins, 2011). Although numerous proteomics

studies have identified exosome cargoes, little is known about

how exosomes are secreted from cells. Recent studies have

identified critical docking factors for multivesicular endosomes
Cell Re
(MVEs), including Rab27a, Rab27b (Ostrowski et al., 2010),

Rab35, and TBC1D10A-C (Hsu et al., 2010). Nonetheless, how

exosome-docking and secretion sites are specified at the

plasma membrane is unknown.

Invadopodia are actin-rich subcellular structures formed by

invasive cancer cells that protrude into and degrade extracellular

matrix (ECM). Similar structures are used by normal cells to cross

tissue barriers and resorb bone (Murphy andCourtneidge, 2011).

Recent studies have shown that ECM-degrading proteinases are

secreted preferentially at invadopodia (Artym et al., 2006; Clark

and Weaver, 2008; Hoshino et al., 2012b; Steffen et al., 2008).

Although originally it was assumed that invadopodia proteinases

were transported directly from biosynthetic pathways, the late

endosomal/lysosomal (LE/Lys) v-SNARE VAMP7 was found to

be necessary for transport of the critical metalloproteinase

MT1-MMP to invadopodia (Steffen et al., 2008). These findings

raised the possibility that cargo destined for invadopodia may

be routed to the plasma membrane via a specialized endolyso-

somal compartment, such as exosome-containing MVEs.
RESULTS

MVEs Dynamically Interact with Invadopodia
To determine whether MVEs localize to invadopodia, we per-

formed electron and light microscopy experiments. For electron

microscopy preparations, invasive SCC61 head and neck squa-

mous cell carcinoma (HNSCC) cells were cultured overnight on

Transwell filter inserts coated with crosslinked gelatin to allow

invadopodia formation. Examination of thin sections of these

preparations revealed clear examples of LE organelles adjacent

to invadopodia-like protrusions, including MVE and LE/Lys

hybrid organelles that contain MVEs (Figure 1A). To substantiate

the possibility that MVEs localize to invadopodia, we also per-

formed light microscopy. For immunofluorescent localizations

in fixed cells, SCC61 and SCC25-H1047R invadopodia-forming

HNSCC cells (Hoshino et al., 2012a) were cultured on invadopo-

dia substrates consisting of fluorescent fibronectin bound to

crosslinked gelatin on top of glass coverslips. Invadopodia are

evident as actin-rich puncta that colocalize with dark areas of
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Figure 1. MVEs Are Recruited to Invadopodia Sites

(A) SCC61 cells were cultured on crosslinked gelatin-coated Transwell filters. Arrows point to invadopodia. Arrowheads point to MVEs and MVE-containing

autophagolysosomes docked near invadopodia. N, nucleus; T, Transwell filter. Scale bar, 500 nm.

(B) Confocal images show cells expressing GFP-CD63 (green) cultured on Alexa 633 fibronectin (FN)-coated gelatin (blue) and stained with rhodamine phalloidin

(red) to detect actin filaments. Dark spots in the FN images indicate degradation. Scale bars, 10 mm.

(C–H) SCC25-H1047R cells stably expressing F-Tractin (red) were transfected with GFP-CD63 (C, E, and G) or GFP-Rab27a (D, F, and H) (green) and cultured for

24 hr on FN-coated gelatin plates for live confocal microscopy (C andD) or on FN-coated plates for live TIRFmicroscopy (E–H). Frame rates are 1/0.97 s (confocal)

or 1/2.8 s (TIRF).

(legend continued on next page)
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fluorescent matrix degradation. Visualization of immunostained

cells revealed that the MVE and exosome marker CD63 localize

at or adjacent to actin-rich invadopodia at ECM degradation

sites (Figure 1B).

To visualize the dynamic relationship between invadopodia

and MVEs, we performed live imaging of cells expressing the

exosomal markers CD63 or Rab27a with the invadopodia actin

marker tdTomato-F-Tractin (F-Tractin) (Branch et al., 2012;

Hoshino et al., 2012a). In live confocal movies, GFP-CD63-

and GFP-Rab27a-positive tubulovesicular structures dynami-

cally surrounded and contacted F-Tractin-positive invadopodia

puncta (Figures 1C and 1D; Movie S1). The dynamic interaction

between exosome markers and invadopodia was also observed

in TIRF movies of the basal plasma membrane (Figures 1E and

1F; Movie S2). We also frequently observed strong nontransient

colocalization of exosome markers with invadopodia puncta in

the TIRF field (�50% of cells, Figures 1G and 1H; Movie S3).

Quantitation of the dynamic interactions from confocal movies

revealed that the vast majority of invadopodia interact with

CD63-positive vesicles and tubules (Figure 1I), suggesting that

invadopodia serve as specific docking sites for MVEs. Both the

dynamic and stable interactions were reduced in cells express-

ing specific shRNAs targeting the exosome-docking factor

Rab27a (Figures 1I and 1J).

Exosome Secretion Controls Invadopodia Biogenesis
and Activity
The defining feature of invadopodia is that they mediate ECM

degradation. MT1-MMP and other matrix-degrading protein-

ases have been identified on both exosomes and shed micro-

vesicles (Hakulinen et al., 2008; Muralidharan-Chari et al.,

2009); however, whether their secretion in those forms relates

to invadopodia is unknown. To determine if invadopodia pro-

teinases are associated with exosomes in our system, we

isolated exosomes from the conditioned media of SCC61

and SCC25-H1047R cells by differential centrifugation. These

cells secrete negligible amounts of microvesicles and abun-

dant exosomes, as validated by electron microscopy and

western blot analysis of exosome pellets (Figures 2A, 2B,

S1C, and S1D). Along with the canonical exosome markers

CD63 and TSG101, we found that our exosome preparations

were positive for the critical invadopodia proteinase MT1-

MMP along with other plasma membrane markers, including

transferrin receptor (TfR) and EGFR (Figures 2A and S1C).

SCC61 exosomes also carried MMP2 (Figure S1C), which we

previously localized to invadopodia in those cells (Clark and

Weaver, 2008). As expected, the negative control Golgi marker

GM130 was not present in exosome preparations (Figures 2A

and S1C).
(C–F) Sequential frames show transient and tubular interactions of GFP-CD63-

rowheads). (G and H) TIRF movies show stable colocalization of GFP-CD63 and G

F) and stable (G and H) interactions between exosome markers and invadopodia

(I and J) Percent invadopodia per cell with transient (I) or stable (J) interactions wi

cells are presented. Data are plotted as box and whiskers where the median is rep

show the 5th�95th percentile. ***p < 0.001 (n R 10 cells from ten movies from th

See also Movies S1, S2, and S3.

Cell Re
To determine whether exosome secretion affects invadopodia

biogenesis or activity, we tested the effect of Rab27a knock-

down (KD) in SCC61 and SCC25-H1047R HNSCC cells (Fig-

ure S1A). As hypothesized, Rab27a KD greatly decreased both

exosome secretion (Figures 2C and S1E, quantitated by

NanoSight Nanoparticle Tracking Analysis) and invadopodia-

associated matrix degradation (Figures 2D, 2E, S1F, and S1G).

There was also a decrease in the number of invadopodia per

cell, defined by colocalization of actin puncta with ECM degra-

dation (Figures 2F and S2H). We also knocked down Synapto-

tagmin-7 (Syt7) (Figure S1B), which controls fusion of lysosomes

with the plasma membrane and, likewise, found a decrease in

exosome secretion and invadopodia numbers and activity (Fig-

ures 2E, and 2F, and S1E–S1H). For unclear reasons, there

was a greater impact of Syt7 KD on invadopodia activity than

on exosome secretion in SCC25-H1047R cells, although the

effect was similar in SCC61 cells.

Invadopodia form and mature in stages including assembly,

proteinase recruitment, ECM degradation, and disassembly

(Artym et al., 2006; Murphy and Courtneidge, 2011). To deter-

mine how exosome secretion controls the invadopodia life cycle,

we performed live imaging of control and Rab27a-KD cells

expressing the invadopodia marker F-Tractin. We found that

the loss of Rab27a led to a decrease in both the rate of invado-

podia formation, defined as the number of new F-Tractin-posi-

tive invadopodia puncta that formed over time, and in the lifetime

of invadopodia that did form (Figures 2G–2I). For verification that

exosomes can induce invadopodia formation, purified exo-

somes were added to control cells, and live imaging was per-

formed. Interestingly, in the first hour after exosome treatment,

there was no noticeable increase in invadopodia formation. By

contrast, treatment with soluble EGF rapidly induces invado-

podia formation (Hoshino et al., 2012a). However, 1 hr after exo-

some treatment, there was a noticeable increase in the number

of new invadopodia formed (Figure 2J; Movie S4). This increase

in invadopodia formation occurred regardless of whether growth

factors and serum were present in the media. Furthermore,

exogenous exosomes also extended invadopodia lifetimes (Fig-

ure 2K). These activities were not contained in the microvesicle

fraction (Figures S1I and S1J).

To test whether exosomes can also promote invadopodia

maturation, as defined by acquisition of extracellular protein-

ases, we performed live imaging of cells expressing F-Tractin

together with the invadopodia proteinase MT1-MMP fused to

the superecliptic GFP, pHLuorin. Due to the pH sensitivity of

pHLuorin, extracellular MT1-MMP-pHLuorin exhibits greatly

enhanced fluorescence and is easily visualized at invadopodia

(Branch et al., 2012; Hoshino et al., 2012b). Using this tool, we

found that the percentage of invadopodia that were MT1-MMP
or GFP-Rab27a-positive vesicular structures (arrows) with invadopodia (ar-

FP-Rab27a with invadopodia. Kymographs show examples of transient (E and

. Scale bars, 20 mm (C and D) or 10 mm (E–H).

th GFP-CD63-positive endosomes in control (shLacZ) and Rab27a-KD (shR27)

resented with a line, the box represents the 25th�75th percentile, and error bars

ree or more independent experiments).
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positive was greatly diminished in Rab27a-KD cells compared to

control (Figures 2L and 2M). Thus, a major effect of exosome

secretion is to facilitate exocytosis of the key matrix-degrading

proteinase MT1-MMP at invadopodia.

Formation of exosomes occurs by intraluminal vesiculation in

early endosomes (Hanson and Cashikar, 2012). Two mecha-

nisms of exosome formation have been described, regulated

respectively by the endosomal-sorting complex required for

transport (ESCRT) machinery (Hanson and Cashikar, 2012) and

by ceramide synthesis (Trajkovic et al., 2008). To determine the

role of exosome biogenesis pathways in invadopodia activity,

we inhibited each pathway. To inhibit ESCRT-mediated exo-

some biogenesis, we knocked down Hrs, a member of the

ESCRT-0 complex (Tamai et al., 2010) (Figure S2A). As ex-

pected, Hrs-KD cells secreted significantly fewer exosomes

per cell (Figures 3A and S2B). Similar to Rab27a and Syt7 KD,

KD of Hrs also led to large decreases in invadopodia-associated

matrix degradation and in the number of invadopodia per cell

(Figures 3B–3D and S2C–S2E). We also inhibited ceramide

synthesis with the neutral sphingomyelinase-targeting drug

GW4869. Consistent with previous findings by Trajkovic et al.

(2008), inhibition of ceramide synthesis led to a large decrease

in exosome secretion (Figures 3A and S2B). When tested in inva-

dopodia assays, there was a similarly large decrease in invado-

podia activity and numbers (Figures 3B–3D and S2C–S2E).

These data provide further evidence that exosomes themselves

critically control invadopodia biogenesis and function. Further-

more, both the ESCRT and ceramide pathways contribute to

invadopodia function.

Because ESCRT and ceramide pathways are thought to

generate exosomes with different cargos (Trajkovic et al.,

2008), we analyzed exosomes purified from control and Hrs-

KD or GW4869-treated cells for the presence of MT1-MMP or

the ESCRT protein TSG101. Surprisingly, we found no difference

in the cargo content of the exosomes that were generated. When

comparing exosomes collected from an equal number of cells,
Figure 2. Exosome Secretion Promotes Invadopodia Formation and M

(A) Western blot analysis of proteins in SCC25-H1047R total cell lysates (TCL) an

(B) Negatively stained EM image shows purified exosomes (indicated by arrowh

(C) NanoSight quantification of exosome numbers purified from cell culture supe

(D) Images show SCC25-H1047R control (shLacZ) and Rab27a KD (shR27-1) cel

(green) and F-actin (red). Scale bar, 20 mm. n > 53 cells per cell line from three in

(E) Quantification of invadopodia-mediated ECM degradation (percent [%] cell a

(F) Quantification of invadopodia number per cell is shown. Data are plotted as b

(G) shLacZ and shR27-1 cells expressing F-Tractin were plated on FN-coated gel

invadopodia. Arrows point to newly formed invadopodia. Scale bar, 20 mm. n > 3

(H) Rate of invadopodia formation from movies is shown.

(I) Invadopodia lifetime, quantitated as length of time invadopodia persist after for

similar time bins in shLacZ control cells.

(J and K) SCC25-H1047R shLacZ cells expressing F-Tractin were cultured on F

exosomes derived from SCC25-H1047R cells stably expressing GFP-CD63. Afte

formation is shown. (K) Invadopodia lifetime is presented (n > 13 cells per conditio

comparisons between pink and blue bars in graph.

(L) TIRF images show shLacZ and shR27-1 cells stably expressing F-Tractin (r

Arrowheads indicate actin only, and arrows show MT1-MMP-positive actin pu

experiments.

(M) Quantification of percent (%) MT1-MMP-positive invadopodia is shown.

Mean ± SEM in (H), (J), and (M).*p < 0.05, **p < 0.01, and ***p < 0.001.

See also Figure S1.

Cell Re
Hrs-KD and GW4869 treatment led to a similar decrease in

MT1-MMP and TSG101 positivity of exosomes, and there was

no further decrease by combining the two treatments (Figures

3E and 3F). Likewise, when equal numbers of exosomes were

loaded onto western blots, there was no discernable difference

in the MT1-MMP or TSG101 content of exosomes isolated

from control, Hrs-KD, GW4869-treated or dual-inhibited cells

(Figures 3E and 3F). Finally, the combination of Hrs KD and

GW4869 had no greater effect on exosome secretion than either

treatment alone (Figure 3A), suggesting that in our cells, ESCRT

and ceramide synthesis function in the same pathway.

Invadopodia Are Key Secretion Sites for Exosomes
Aggressive cancer cells are known to secrete large numbers of

exosomes (YangandRobbins, 2011).Our findings that invadopo-

dia are MVE-docking sites suggest that the ability of cells to form

invadopodia could be a determining factor in the release of exo-

somes into the extracellular environment. To test this hypothesis,

we inhibited two canonical regulators of invadopodia formation:

N-WASp and Tks5 (Murphy and Courtneidge, 2011). N-WASp

is critical for actin polymerization at invadopodia sites, whereas

Tks5 serves as a signaling scaffold protein (Murphy and Court-

neidge, 2011). N-WASp was inhibited with the specific drug

Wiskostatin, whereas Tks5 protein abundance was diminished

with shRNA (Figure S3A). As expected, inhibition of N-WASp or

Tks5 led todecreased invadopodia numbers and activity (Figures

4A, 4B, and S3B–S3D). Consistent with our hypothesis, we found

a respective 70% and 80%decrease in the number of exosomes

secreted per cell in N-WASp- and Tks5-inhibited cells compared

with controls (Figure 4C; similar decreases shown in Figure S3E).

Although we cannot rule out invadopodia-independent roles of

Tks5 andN-WASp, these data strongly suggest that invadopodia

contribute significantly to exosome secretion.

To further test the role of invadopodia in exosome secretion,

we determined whether induction of invadopodia could enhance

exosome secretion. We and others recently reported that
aturation

d exosomes (Exo.) is shown.

eads). Scale bar, 100 nm.

rnatants from three independent experiments is presented. Mean ± SEM.

ls cultured on FN (blue)-coated gelatin plates and immunostained for cortactin

dependent experiments.

rea) is presented.

ox and whiskers.

atin for live imaging (one frame per 90 s for 60 min). Arrowheads point to stable

0 cells per cell line from five independent experiments.

mation, is presented as binned data. Asterisks show statistical comparisons to

N-coated gelatin plates with or without growth factors before adding 2 3 106

r 1 hr, live movies (Movie S4) were obtained as in (G). (J) Rate of invadopodia

n from three independent experiments). Pink and blue lines indicate statistical

ed, ‘‘Actin’’) and transfected with MT1-MMP-pHluorin (green, ‘‘MT1-MMP’’).

ncta. Scale bar, 10 mm. n > 10 cells per condition from three independent
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activation of phosphatidylinositol 3-kinase (PI3K) greatly

enhances invadopodia formation by cancer cells (Hoshino

et al., 2012a; Yamaguchi et al., 2011). We therefore utilized

SCC25 HNSCC cells stably engineered to express either an

empty vector (SCC25-Control) or the active H1047R mutant of

the catalytic subunit of PI3K (SCC25-H1047R). We previously

showed that expression of H1047R in SCC25 cells induces inva-

dopodia formation (Hoshino et al., 2012a), and this cell line was

used as a model throughout this manuscript along with the

HNSCC cell line SCC61. Quantitation of the concentration of

exosomes secreted from an equal number of cells into condi-

tioned media revealed a 6.5-fold increase in exosome release

from SCC25-H1047R-expressing cells compared to control

SCC25 cells (Figure 4D). These data indicate that invadopodia

are key docking sites for MVEs and control exosome secretion.

Exosomes Mediate 3D Proteolytic Invasion
In tissues, invadopodia are thought to take the form of three-

dimensional (3D) invasive protrusions and mediate proteolysis-

dependent invasion (Gligorijevic et al., 2012; Yu et al., 2012).

To determine whether exosome markers were present at actin-

rich invasive protrusions in 3D cultures, we performed confocal

live imaging of F-Tractin-, GFP-CD63-expressing MDA-MB-

231 breast cancer cells embedded in Matrigel. MDA-MB-231

cells were chosen because they form numerous and long protru-

sions in 3D culture that are ideal for imaging (Yu et al., 2012).

Indeed, we found that MDA-MB-231 cells elaborated long pro-

trusions containing both actin and the exosome marker CD63

(Figure 4E). Culturing cells in DQ-collagen IV/Matrigel mixtures

to observe matrix degradation revealed DQ-collagen cleavage

in association with CD63/actin-positive protrusions (Figure S4C).

To determine whether exosome secretion would affect 3D pro-

teolytic invasion, we performed an inverted Matrigel invasion

assay (Yu et al., 2012). Invasion in this assay depends on

ECM-degrading proteases, as demonstrated by inhibition with

the broad-spectrum proteinase inhibitor GM6001 (Figures 4F

and S4B). Using this assay, we find that invasive migration

indeed depends on the exosome-docking factor Rab27a

(Ostrowski et al., 2010) (Figures 4F and S4). In addition, similar

to our results with HNSCC cells, KD of Rab27a and Hrs greatly

reduces invadopodia activity in MDA-MB-231 cells (Figure 4G).

DISCUSSION

In summary, we have demonstrated that MVEs dynamically

associate with invadopodia and invadopodia-like 3D protru-
Figure 3. Exosome Biogenesis Controls Invadopodia Activity

(A) Quantification of exosome numbers is shown (n = 3 independent experiment

(B) Images show SCC25-H1047R control (shLacZ), Hrs KD (shHrs-1), and DMSO

20 mm. n > 51 cells per condition from three independent experiments.

(C) Invadopodia-associated ECM degradation is shown.

(D) Invadopodia number per cell is shown. Data are plotted as box and whiskers

(E) Western blot analysis of exosomes with gel loading based on the same numbe

shown. Cell conditions (control, Hrs-KD, GW treatment, or both) are as indicated

(F) Quantification of (E) is shown, with mean ± SEM.

Control shLacZ data for (A), (C), and (D) are the same as Figures 2C, 2E, and 2F

See also Figure S2.

Cell Re
sions. Furthermore, exosome secretion is critical for invadopodia

formation and function. Invadopodia maturation and ECM

degradation are likely dependent on the delivery of MT1-MMP

and potentially other proteinases via exosomes. However, we

also found that purified exosomes can induce invadopodia

formation. Thus, our data identify a major positive feedback

loop in which secretion of exosomes at invadopodiamay provide

further stimulation to either induce de novo formation or stabili-

zation of invadopodia.

Induction of invadopodia formation may be a consequence of

cell stimulation by the presence of growth factors and/or

signaling molecules known to be present on exosomes (Mathi-

vanan et al., 2010). However, it is also possible that exosomal

delivery of proteinases, membranes, or additional cargo may

contribute to the biogenesis process by stabilizing small nascent

invadopodia (see model in Figure S4D). This latter possibility is

supported by our finding that exosomes induce invadopodia

formation even in the presence of growth factors and serum

(Figure 2J). Given the concentration of proteinase and signaling

cargoes in exosomes (Théry, 2011), our data provide an

appealing mechanism for poorly understood positive feedback

loops that are known to control invadopodia (Branch et al.,

2012; Murphy and Courtneidge, 2011; Steffen et al., 2008).

Consistent with invadopodia being critical docking sites for

exosomes, we found that the presence of invadopodia was a

determining factor for exosome secretion. Thus, inhibition or

induction of invadopodia formation respectively decreased or

increased the concentration of exosomes released into the

medium. Although we cannot rule out the existence of other

cellular-docking sites for exosomes, our data indicate that the

molecular makeup of invadopodia greatly facilitates MVE

docking and/or secretion.

A critical future direction will be to identify direct molecular

interactions between invadopodia molecules and MVE-docking

factors. A likely candidate is membrane-bound invadopodia

signaling molecules like phosphoinositides that could link

Rab27a-binding factors to the plasma membrane (Gálvez-San-

tisteban et al., 2012). In addition, adhesion-associated mole-

cules are known to be critical for vesicle capture at invadopodia

(Branch et al., 2012) and are good candidates to link to MVE-

docking factors. It also seems likely that polarized delivery of

MVEs to invadopodia is an important component of the secretion

process. Our findings are reminiscent of a recent study showing

that exosome secretion by T cells takes place at the immune

synapse (Mittelbrunn et al., 2011). Given molecular similarities

between invadopodia and the immune synapse, including
s).

- and GW4869 (GW)-treated cells cultured on invadopodia plates. Scale bar,

.

r of cells (upper panels) or with equal exosome numbers (bottom two panels) is

(n = 3 independent experiments).

. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Figure 4. Invadopodia and Exosomes Have a Reciprocal Relationship to Control Exosome Secretion and 3D Invasion

(A and B) Invadopodia-associated ECM degradation (A) and invadopodia number per cell (B) in Tks5-KD (shTks5) or Wiskostatin (Wisk)-treated SCC25-H1047R

cells compared to shLacZ or DMSO controls are shown. Data are plotted as box and whiskers (n > 54 cells per cell line from three independent experiments).

(C and D) Exosome numbers under invadopodia inhibition (C, shTks5 or Wisk) or induction (D, H1047R compared to control) conditions are shown (n = 3

independent experiments). Mean ± SEM.

(E) MDA-MB-231 cells stably expressing GFP-CD63were transfected with F-Tractin, embedded inMatrigel, and cultured for 24 hr. Arrowheads indicate punctate

accumulations of CD63 in protrusions. Frames are every 21 s. Scale bar, 10 mm.

(legend continued on next page)
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dependence on branched actin, microtubules, integrins, and

nonreceptor tyrosine kinase signaling, it seems likely that there

is a fundamental molecular combination that specifies targeting

and docking sites for MVEs. In cancer, enhanced signaling lead-

ing to invadopodia formation may thus lead to upregulation of

exosome-targeting sites with consequent increased secretion,

matrix degradation, and overall aggressive behavior.

EXPERIMENTAL PROCEDURES

Detailed procedures and reagent information are in the Supplemental Experi-

mental Procedures. SPSS PASW Statistics 18 and GraphPad software pack-

ages were used for statistical analyses. Data were analyzed for normality using

the Kolmogorov-Smirnov test. Nonparametric data (invadopodia data) were

analyzed with Kruskal-Wallis one-way ANOVA, followed by a Tamhane post

hoc test and are represented by medians and box and whiskers plots. Data

with a normal distribution (exosomes, western blot data) were analyzed either

using a one-way ANOVA followed by a Bonferroni post hoc test or a Student’s

t test and are represented by mean ± SE.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and four movies and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2013.10.050.
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