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INTRODUCTION

Let 4,, be the unit ball of C” and let y be a hyperbolic automorphism of
4,. In this work we study the class of holomorphic mappings fe
Hol(4,, 4,,), from 4, into itself, which commute with y (with respect to the
usual composition of mappings).

In the one-dimensional case, it is well known (see [6]) that if
feHol(4, 4) commutes with a hyperbolic automorphism y of 4, then f'is
either the identity map or it is a hyperbolic automorphism of 4 with the
same fixed points of y (for a more recent exposition of this and related
results, see, e.g., [1]). Still in the one-dimensional case Behan and Shields
[3, 11] proved that, except for the case of two hyperbolic automorphisms
of 4, two non-trivial commuting holomorphic maps belonging to
Hol(4, 4) have the same fixed point in 4 or the same “Wolff point” in 04.

If the dimension n of the space is strictly greater than one, then the
problem of characterizing the holomorphic maps which commute with a
given hyperbolic automorphism of 4, is still open and in this paper we give
some contribution at this regard.

Suppose that fe Hol(4,, 4,) commutes with a given hyperbolic auto-
morphism y of 4,,.
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We first prove that the two fixed points p, and p, (€04,) of y are “fixed
points” for f as well (Corollary 1.6). Since we can suppose, up to conjuga-
tion in Aut 4,, that the fixed points of y are e; and —e;, where
e;=(1,0,..,0), then the finiteness of

po e LI/

zoe 11—z

follows (as well as the finiteness of the same lim inf at —e;). This implies,
via the Julia—Wolff-Carathéodory theorem, that, among others, the func-
tions

(1) (I=fi(2)/(1 =zy),
(il) Qe (SN —z1)'2,
(iii) <dfey, ey /(1—z)"2

defined in Theorem 1.5 have restricted K-limit at e, (see Definition 1.4).

At this point we assume a “regularity condition” on f, that is, we assume
that the K-limit (and not only the restricted K-limit) of function (i) exists
at e;. With this hypothesis we prove the main result of the paper, ie., that
/1 is a function depending only on one complex variable, and we can find
an explicit formula for f; (Theorem 2.2 and Theorem 2.4). We then show
that the assumption of analogous “regularity conditions” on (ii) at e, does
not make any sense.

Finally, after having given (under conjugation in Aut 4,) a special form
to the hyperbolic automorphism y of 4,, we show that the existence of the
K-limit of function (iii), for z— ¢;, brings to the same conclusions on f as
in Theorem 2.4.

For a statement of the Wolff theorem, for a definition of the “Wolff
point,” and for other preliminaries and notations we refer the reader to,

eg., [10].

1. THE GENERAL CASE

Let us denote by SU(n, 1) the special unitary group with respect to the
standard Hermitian form of signature (n, 1), ie.,

SUn, 1)={geSL(n+1,C): g*Jg=J},

where J=(% °), and I, is the nxn identity matrix. Let us write any
geSU(n, 1), as customary, in the form of a complex (n+1)x(n+1)
matrix (& 5), with D e C and 4, B, C matrices of type nxn, nx 1 and 1 xn,
respectively.
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It is well known that there exists a surjective homomorphism ?: SU(n, 1)
— Aut 4, mapping g=(2 8)eSU(n, 1) to ¥, e Aut 4, defined by

Y, (z)=(Az+ B)(Cz + D)~}

for all ze 4,,. The kernel of ¥ is given by the center of SU(n, 1), i.e., by the
subgroup

{ezink/(n+l) I,,1,k=0, .., n}

(for a proof see, e.g., [5, 10]).
The proof of the following theorem can be found, e.g., in [1].

THEOREM 1.1. Each element y of the group Aut 4, can be extended
holomorphically to an open neighborhood of 4, and, if y#id, , then either
y has at least one fixed point in A, or it has no fixed points in A, and it has
one or two fixed points in 04,,.

DerFNITION 1.1. In the case in which y has some fixed point in 4,,, then
it is called elliptic; if y has no fixed points in 4, and only one fixed point
in 04,, then it is called parabolic; if y has no fixed points in 4, and two
fixed points in 04, then it is called hyperbolic.

As we already noticed in the Introduction, in the case n =1, the set of
all holomorphic maps of the unit disc 4 of C into itself which commute
with a given hyperbolic automorphism was studied in 1941 by M. H. Heins
who proved the following

THEOREM 1.2. Let y be a hyperbolic automorphism of A and let
feHol(4, A4) be such that foy=y-<f. Then either f =id 4 or f is a hyperbolic
automorphism of A with the same fixed points of y.

A proof of this theorem can be found in [6]: the proof relies upon the
existence result for the derivative of f at its Wolff point.

From now on y will be a hyperbolic element of Aut 4,. Since Aut 4, acts
doubly transitively on 04,,, we can find a suitable element ¢ in Aut 4, such
that the fixed points of pyp ~' in 04, are e, and —e,, where ¢; denotes the
Jj-th element of the standard basis of C”, j=1, .., n. If y is a hyperbolic ele-
ment in Aut 4, such that its fixed points in 04, are ¢, and —e,, then the
elements of SU(n, 1) which represent y have the form

ePosht, 0 e“inht,
0 4, 0 ,
e“sinht, 0 e“cosht,

where 7, e R\{0}, 4, e U(n—1), and det 4, = e~
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In fact ¢, and —e; are the fixed points of y in 04, if, and only if,
e;+e,., and e; —e, ., are the isotropic eigenvectors in C**! of any of the
matrices in ¥ ~'(y). In what follows, we will choose any element g of the
n+ 1 elements of ¥ ~!(y). All that we will say is independent of the choice
made. By conjugating this chosen element g with a suitable element in
SU(n—1)<=SU(n, 1) we can suppose that 4, is a diagonal matrix. This
implies that if z=(z, .., z,) €4,, then

(cosh tyz, +sinh t,, €%z, ..., e"z,)

= : 1.1
72) sinh 74z, 4+ cosh ¢, (1.1)

If y is any hyperbolic automorphism of 4,, then the search for all the solu-
tions fe Hol(4,, 4,) of equation foy=1yof can, clearly, be made up to
conjugation by elements of Aut 4,. Therefore we can suppose that y has
the form (1.1). Our first results concern the form of the first component of
/. when restricted to the unit disc 4 x {0} = 4,,. The fact that f and y com-
mute implies the following

ProrosITION 1.3, Let ye Aut 4, be as in (1.1) and let f =(f1, ..., f,) €
Hol(4,,, 4,). If foy=1y-<f, then there exists t, € R such that

_cosh#,z; +sinh 7,

fl(le 0: sees O) (12)

" sinh¢,z,+cosh iz,
Proof. Let us consider the holomorphic maps f and 7 from 4 into 4
defined byf(C) = 11(4,0, ..., 0) and 5({)=y4(¢, 0, ..., 0). It is easy to see that
the map 7 is a holomorphic automorphism of 4 and that its fixed points
are 1 and —1. Since y,(z) depends only on z; and since y;(zy,0, .., 0)=0
for all 2< j<n, then j and f commute.
By Theorem 1.2, there exists 7, € R such that for all { € 4,

~ cosh ¢;{+sinh ¢
A== :
sinh ¢, {+cosh #,

and the proposition is proved. |

The explicit form of f we have found allows us to prove that

liminfw<+oo and liminfw<+oo. (L.3)
c>1 11— t-—1 1=

In fact, if £, =0, then the lim inf is equal to 1; if #; # 0, then we can perform
a direct computation, taking the limit on the real segment (—1, 1).

Let now ||| denote the norm associated to the standard Hermitian
product < -, - > on C". We will use inequalities (1.3) to study the function f.
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With the aim of applying the Julia—Wolff-Carathéodory theorem for n> 1,
we will prove

ProrosiTiON 1.4. Let feHol(4,, 4,) be such that

cosh t,z, +sinh ¢,

Sz, 0,0, 0) = sinh #,z, +cosh ¢,
Then
1— 1—
imint =W o g fmine O
z—> e, 1— HZH z—> —e 1— HZH
Proof. Obviously we have
[l VAC1 I S VA CD
1—|z] 1—|z||
Then we get
1— 1— 0,..,0 1—|fi
tim inf L iy g LN 0 O e IOl
z—>e] 1— HZH z1—>1 1_|Zl| z1—>1 1_|Zl|

The finiteness of the same lim inf at —e,; can be proved analogously. ||

To state the Julia—Wolff-Carathéodory theorem we will recall some
notations concerning curves in 4, (see, e.g., [10]). Let xed4,,; a x-curve
is a curve o: [a, b) — 4, such that lim,_, ,-a(t) =x. We denote by o, the
projection of ¢ into the complex line Cx through 0 and x, ie., we set

a.(t)=<a(1), x) x.
DerFINITION 1.2.  Let o be a x-curve; we say that o is special if

i Jo@ —aDI* _
i—o- 1= (0)]?

DeriNiTION 1.3, Let o be a special x-curve; then o is said to be restricted
if there exists 4 >0 such that

Jo(0) x|
ErATTRE

The Kordnyi regions take the place of the Stolz regions in the definition of
the “non-tangential limits” in dimension greater than 1.
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The Koranyi region K(x, M) of vertex x €04, and amplitude M >0 is
given by (see, e.g., [10])

K(x,M)={zeA,,:|1_<Z’x>|<M}.
1—|z|

The Koranyi region K(x, M) is empty if M <1 and, for any x in the
boundary of 4,, the regions K(x, M) “fill” 4, as M approaches + co.

DerFINITION 1.4. Let f: 4, —» C be a function. We shall say that f has
K-limit J. at x € 04,, (possibly 1 = o0) if f(z) — 1 as z - x within K(x, M) for
any M > 1. We shall say that f has restricted K-limit 1 at x if fla(t)) —> A as
t — b~ for any restricted x-curve o. We can now state precisely the follow-
ing classical result (see, e.g., [ 10, 1]).

THEOREM 1.5 (Julia—Wolff-Carathéodory). Let fe Hol(4,, 4,) be such
that, for x € o4,

1iminfo(z)H=c< + 0.
zZ—>Xx I—HZ”

Then f has K-limit y €04, at x and the following functions are bounded on
any Koranyi region:

1) (1 ={f2), D)1 =Lz x),
(i) O, (f(2)/1 =<z x))"2,
(iii)  {dfoxt, yYN1 =z x0)",

where Q,(z)=z—<z, y)y is the orthogonal projection on the orthogonal
complement of Cy and x= is any vector in C" orthogonal to x. Moreover the
functions (i1) and (ii1) have restricted K-limit O at x and the function (1) has
restricted K-limit ¢ at x.

By Proposition 1.4, the Julia—Wolff-Carathéodory theorem yields the
following result, which guarantees that the fixed points of y are “fixed
points” for f.

COROLLARY 1.6. Let y be a hyperbolic automorphism of 4,, let
D1, P2 €04, be the fixed points of v in A,, and let feHol(4,,4,). If
fey=yef, then K—lim,_, , f(z)=p, and K—lim, _, ,, f(z)= p,.

Proof. Let gpeAut4, be such that ¢(e)=p,, ¢(—e)=p,, and
7=¢ loyogp has the form (1.1). Set f=¢ ~1ofop. Then f commutes with
7. Since ¢ sends Koranyi regions with vertex at p, (p,) in Koranyi regions
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with vertex at e; (—e;), then we can restrict ourselves to the case in which
y has the form (1.1).
By Proposition 1.3 there exists ¢, € R such that

_ cosh 7,z; +sinh 7
~sinh#,z; +cosh 7,

fi1(z1,0,..,0)

Proposition 1.4 together with Theorem 1.5 implies that f admits K-limit y
at e,. The above form of f; yields that fi(z,, 0, ..., 0) approaches to 1 when
z, approaches to 1. Hence f(z4, 0, ..., 0) > ¢; when z; — 1 (because f maps
4, into itself) and therefore y = ¢,. The same argument applied to the point
—e; implies that K—1lim,_, _, f(z)= —e;. |

We will now obtain the final results of this section, which completely
describe the behaviour of f on the disc 4 x {0}.

PropoSITION 1.7. Let y be the hyperbolic automorphism of A, given by
(1.1) and let f e Hol(4,,, 4,) be such that foy=vyof. Then f,(z,,0,---,0)=
v =f(21,0,..,0)=0 for all z, € 4.

Proof. Fix z; €4, set z=(z,,0, ..., 0), and define

cosh 7z, +sinh ¢
o(t)=( ——F———,0,..,0 ]
sinh 7z, + cosh ¢

The curve o is a restricted e;-curve when ¢— +oc0. In fact 0 =0, and
therefore o is trivially special; the fact that o is restricted follows from an
easy computation.

We consider now the function (ii) in Theorem 1.5. By Propositions 1.3
and 1.4 we obtain that

lim 1U2(0()), .. fu(a()]
1m

i—+o0  (I=]oy ()"

=0, (1.4)

since 0 =0, and o is restricted.
By the definition of g, (1.4) is equivalent to the fact that

cosh tzl—i-sinht)l/z:o. (15)

sinh 7z, + cosh ¢

lim [ (f5(a(2)), ... f,(a(2)))]] <1—

t— + oo

Now, the curve o was chosen in such a way that it contains all the points
y™(z) for me N: in fact a(mt,) =7™(z), as it can be seen by the definition
of ¢ and the form of y (see (1.1)). Hence, the fact that f and y commute
implies that

(fa(a(mty)), ..., fu(a(miy)))
= AT (f5(2), s fu(2))(sinh mtoz, + cosh miy) "
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Since 4, € U(n— 1), the last equation implies that

1(f2(a(mto)), ., fula(mty)))]
= [[(f2(2)s oo [(2))|[|sinh mitqz, + cosh mitq| ~". (1.6)

By considering the argument of the limit in (1.5) at the point ¢ =m¢, and
by calling in (1.6), we obtain that

cosh mtyz, + sinh mt,

b N

m— +oo [SiNh mtoz1 + cosh mt, |

—1/2
> =0(1.7)

Squaring the argument of the limit in (1.7) and multiplying it by

& Y

which is strictly less than 1, we obtain that

sinh mtyz, 4+ cosh mt,

cosh mtyz, + sinh mt,

sinh mtyz, + cosh mt,

cosh mtyz, + sinh mt,

1(f2(2), s Sul2))II? <1
|2

m— +o |sinh mtyz, + cosh mt,

—1
> =0.

| sinh mtyz; + cosh mt,

(1.8)
This equality is equivalent to
mEn-;—loo 1(f5(2), wr £o(2)]I? (|sinh mtyz, + cosh mt,|?
— |cosh mtyz, +sinh mt4|?) ! =0.
Straightforward computations yield now that
M (=) e S (L= [ D)7 =0,
and hence f,(z;,0,..,0)=--- =f,(2;,0,..,0)=0 for all z; €4 and the

proposition is proved. ||

Before passing to the general case, we want to study the situation in
which two holomorphic automorphisms of 4,,, one of which is hyperbolic,
commute. The result that we find generalizes to dimension n>1, a well
known result on commuting automorphisms (see [6, and 2]).

ProPOSITION 1.8. Let y be a hyperbolic automorphism of 4,,, and let f be
an automorphism of A,,. If y and f commute, then either f is hyperbolic and it
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has the same fixed points of y or it is elliptic and its fixed points set has
positive dimension and contains the fixed point set of .

Proof. Let I, and /, e SU(n, 1) be such that ¥, =y and ¥,=f. As
before, the statement of the proposition is invariant by inner conjugation
in Aut 4,. Therefore, by conjugating both /, and /, by a same element in
SU(n,1) we can suppose that /;=(Y 9), where U is a diagonal
(n—1)x(n—1) unitary matrix and where V=¢?(sp? sinhi) " with 0.
(Here we choose the fixed points of y to be e, and —e,, only for technical
reasons.)

The form of /, will now be

; A B
(5 )
with A4, B, C, D, respectively, (n—1)x(n—1), (n—1)x2,2x(n—1), 2x2
complex matrices. The fact that f and y commute is equivalent to
Iy 1, =™+, ], for a suitable me {0, ..., n}.

This last equation implies in particular that UB = eYe?m/n+1)
B(cosht sinhiy Qetting B=(B,, B,) for By, B, vectors of C"~! and letting

sinh ¢ cosh¢/- ! .
U, = e~ Pe=2mn/n+ D[] we obtain

U, 0\/B, cosh ¢t/ sinhtl\ /B,
< 0 U1> <B2> B <sinh tI cosh ZI> <B2>'
Thus (3!) belongs to Ker M, where M = (V'-S0 “smh ).

Since U, is a diagonal unitary matrix, say U, =diag[e™, ..., e-1], an
easy inductive procedure shows that det M = ((e” —cosht)*>—
sinh?¢) ... ((e®-' —cosh t)?—sinh?¢) #0. Hence B,=B,=0, whence
AeUmn—1) and De U(1,1). In the remaining one-dimensional case a
direct inspection proves that D =™(05PT simht) [f 720, then f is hyper-
bolic and its fixed point set is equal to the fixed point set of p, otherwise
fis elliptic and its fixed point set has positive dimension and contains both

the fixed points of y. ||

2. WHAT “REGULARITY” CAN ADD

Let feHol(4,, 4,) be a map which commutes with the holomorphic
automorphism y defined by (1.1). We will pass now to the investigation of
the behaviour of f outside the disc 4 x {0}, in the case in which f is a
holomorphic self map of 4,. We will consider the case in which the map
f has a “sort of regularity” at the boundary and will deduce some conse-
quences on the form of f.
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Notice that, in the one-dimensional case, if 7 is the Wolff point of
f:4— 4, then

K— limLf(Z)=df(‘L', <1,

zot T—Z

where d,(z, ) denotes the dilatation coefficient of f at 7 (see, e.g., [1]). In
the multidimensional case this is no more true because in this case the
statement of the Julia—Wolff-Carathéodory theorem involves the restricted
K-limit instead of the K-limit.

Given any z € 4,, we want to introduce curves which contain all points
of the form {y™(z)} for meN. By taking the limit along these curves we
will be able to understand the behaviour of f at any point ze 4,,. To do
this, fix ze 4,, and define the curve g: [0, + o0) — 4,, by

(1) = (cosh tz, +sinh ¢, /17, ... ez ) 1)
sinh ¢z, + cosh ¢ ’ '

First of all notice that a(mt,) =y™(z) for all meN.
Since we want to use these curves to compute K-limits, we have to prove
that, for a fixed ze 4,,, o lies in a suitable Koranyi region with vertex at e;.

ProprosITION 2.1, There exists M >1 such that o(t)e K(e,, M) for all
t=0.

Proof. Consider the ratio |1 —a4(2)|/(1 — |lo(2)]). It is evident that it is
bounded on [0, + o) iff |1 —a,(2)|/(1 — |a(¢)]|?) is. If we compute this last
ratio, we obtain

L= _ 1=z
L—lle(@)I* 1-Ilz]?

(cosh t —sinh ¢) |cosh ¢ + sinh 7z, |

1—
= ’l_;'lz |cosh ¢ + sinh ¢z, |
1— i -
=21 ot cosh 14 e~ sinh |2, 1) < =210 (1 412,y = .
Tzl e

because cosh ¢t < e’ and sinh t <e’ for all t=0. |

If feHol(4,, 4,,) commutes with the hyperbolic automorphism y given
by (1.1), then, by Propositions 1.3 and 1.4, Theorem 1.5 and Corollary 1.6,
both the restricted K-limit of (1 — fi(z))/(1 —z,;) at e; and the restricted
K-limit of (14 fi(z))/(1 +z,) at —e; do exist. If we now suppose that (not
only the restricted K-limit of (1 — f;(z))/(1 —z,) exists and is finite at e,
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but also) the K-limit of (1 — f1(z))/(1 —z;) exists and is finite at e¢,, we can
prove the following

THEOREM 2.2. Let y be the hyperbolic automorphism of A, given by (1.1)
and let f e Hol(4,,, 4,,) be such that

(a) f commutes with 7,
(b) there exists K—1lim, _,,((1 —f(z))/(1—=z,))=ceC.

Then there exists t, € R such that, for all z=(z,, .., z,)€4,,

cosh t,z, + sinh ¢,

fi(z)=

sinh #,z, +cosh 7,

In particular, f; does not depend on z,, ..., z,,.

Proof. Taking y or y~! we can always suppose that e, is the Wolff

point of y (that is, we can suppose that 7,>0 in (1.1)). By Proposition 1.3,
there exists 7; € R such that

F20.0, .0y~ SoSh t1Z +sinh 4

sinh f;z; +cosh ¢;

Corollary 1.6 gives that the K-limit of f at e, is equal to e¢; and this implies
that the function (1 + f;(z))/(1 + z,) has K-limit 1 at ¢;. Then condition (b)
yields that

1—fi(z) 14z,

K—1i : —c
e 1=z, 1+f() ¢

Fix ze 4, and define ¢ as in (2.1). Proposition 2.1 implies that

1—fi(o(r)) 1+40,(1)

lim . =c.

-+ 1—a(t) 14 fi(a(2))

Consider this last limit restricted to the sequence {mt,} for meN. Since
o(mty) =y™(z), we have the equality

1-fila(mty)) T1+o,(mty) _1-fi(y"(z) 14+77(2)

1—a,(mty) 1+ fi(a(mty)) 1—y7(z) 1+ f£,(0™(z))

Using the fact that f and y commute we obtain

1—filo(mto)) 1+ay(mtg) 1=y7(f(z)) 1+77(2)
L—a(mty) 1+ filalmty))  1=y7(z) 1+77(/(2)
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A direct computation, performed taking into account the form of y, gives

L=0((2) 14+97G) _1-fi(2) l+z
=@ T+ -z 1+ AE)

Therefore

1—fi(z) 14z lim — fila(mty)) 1+ 0,(mt,) —

11—z, '1+f1(z):mﬁ+w 1—a,(mty) 1+ fila(mty))

and hence we obtain that fi(z) does not depend on z,, .., z, and the
theorem is proved. |

Notice that, for any feHol(4,,4,) such that f(z)=(cosht,z;+
sinh #,)/(sinh ¢, z; + cosh ¢, ), then the K-limit of (1 — f(z /(l —z,) at e,
exists. In fact, as f; depends only on z,, the K-limit at e, becomes a K-limit
in one-variable at 1 and in this case we can apply the fact that the function
extends holomorphically to an open neighborhood of the closed disc 4 in
C to obtain the existence of the K-limit at 1.

We will now get rid of the particular form (1.1) of the hyperbolic
automorphism y of 4,, to give a more general statement of Theorem 2.2.
Let y be a hyperbolic automorphism of 4, and let p,, p, €04, be its fixed
points. Let ¢ € Aut 4, be such that ¢(e;) = p; and ¢(—e;) = p,. We can
choose ¢ so that ¢ ~loyoe has the form (1.1). Let feHol(4,, 4,) and
define f= @ 'ofop and y=¢ 'oyop. Obviously y commutes with f iff y
commutes with f. The following lemma holds

Lemma 2.3. Let y, f, @, f, ¥ be as above and suppose that f commutes
with y. Then the two following facts are equivalent:

1-<{f2), 1)

(1) K— lim ————————= exists and belongs to C
zop 1 =Lz, p1)

K— lim 1 =/12)

(11) z—e] 1—21

exists and belongs to C.

Moreover, if the two limits exist, then they are equal.

Proof. Let us denote by v the standard Hermitian form of signature
(n, 1) on C"*! and, if ae C", let us denote by a* the vector in C**! given
by (¢). Obviously,

1 =< f(z), pry _v(f*(z2), pD) _
l_<Zap1> V(Z*apik) 1_Zl V(Z*aeik) .
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Let y=(¢ 5)€SU(n, 1) be such that ¥, =¢~". Using the definition of f
and the fact that ¢ maps Koranyi regions with vertex at ¢, in Koranyi
regions with vertex at p; we obtain that

K— limimzK_ lim 1_<§"71f((ﬂ(2))»€1>'

z—e] — I @(z) > p1 1—<Z,€1>

If we set ¢(z) ={, then the above limit is equal to

PR e (SN0 SR (U 19 151 RO

(om 1=Lo7(0), e t-m V(@70 ef)

A direct inspection shows that, being ¥, =¢ ',

@~ O)* =x(SLOHNCf)+D) and (¢~ 1(0)* =x({*)(CL+D).

Then the K-limit in (2.2) is equal to

- VSOMNCSD + D), ef)

—1
A AT (CL+ D), eb)
cc+D WD), e
—K— lim ——— . K— lim ~4&=L 21
O + o V(). eD)

Corollary 1.6 implies that K—lim,_, , f(z)= p;; then

Cl(+D

K=lim e o+p- "
Hence
. 1=fi(z) vix(f(0)*),
K= lim 50— K~ lim =00 >,e) ‘

Using the fact that y € SU(n, 1), we obtain that

i YOO e) e WSO 2 )
K_CILH;‘ v((C*), ef) -* Ch—'n;l V(¥ 7 (ed)

Now, since ‘Pl=go’1 and ¢(e;)=p,, we obtain that ¥ i(e;)=p,. If

x~'=(& B, then a direct inspection proves that y~'(ef)=p}(Cie; +
D)). Therefore we get
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K i LNE) e WO p) Crer+ D,
z— e l_Zl {—p1 V(é’*’pik) C1€1+D1

Y * *

kg "O* D)

tom V(K pH

By definition, v({*, pf)=—1+<{ pyy  and  v(f(O* p)=—1+
{f(C), pyy. If follows that

1=, P>
K— lim ————"%~
(me 1=LG pry
does exist if and only if
K— lim =/

z—e] 1—21

does exist and that, if they exist, then they are equal. ||

As a consequence of the above lemma we can state Theorem 2.2 in an
“invariant version.”

THEOREM 2.4. Let y be a hyperbolic automorphism of A, and let py, p,
be the fixed points of y in 04,,. Let f e Hol(4,, 4,) be such that

(a) f commutes with ¥,
(b) there exists K—1lim, _, , ((1 =< f(z), p1>)/(1 =<z, p;>))=ceC.

Then there exists t; € R and @ € Aut 4,, such that

cosh ¢,z + sinh ¢,

Cop~tofop(z), er)

~sinh#,z; +cosh,

In particular, {@ " 'ofop(z),e,> does not depend on z,, ..., z,.

By assuming a “certain regularity” on a map f € Hol(4,,, 4,,) which com-
mutes with a hyperbolic automorphism of 4,, we have obtained a very
precise and surprising information on the map f itself. In particular we
have obtained that one of the components of f'is always, up to conjugation
in Aut 4, a function of one complex variable. This “regularity condition”
we have assumed is the existence of K-limits (instead of the existence of
restricted K-limits) for function (i) in Theorem 1.5.
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Now we will prove that “assuming regularity” on function (ii) in
Theorem 1.5 is meaningless: namely we will prove that for y itself (which
obviously commutes with y) it is not true that

K— lim Q,,(y(2))/(1 —z;)7"?=0

(here Q,, is as usual the projection on the orthogonal complement of Ce,).
In fact we have

1Qe(p(2NI* 1=z, |7

=(|zo|*+ --- +|z,|?) |sinh tyz, + cosh ¢y =2 |1 —z,| "L
Since |sinh #yz; + cosh #,| < cosh o+ |z, | sinh 7, < cosh ¢, + sinh 7, = ", then
10 (N2 T —zi [T = ez, 2 4 -+ + |z, [T =z, | 71 (24)

Take a,z,€(0,1) and set z,=a./1—z2. To prove that the point
(zy,2,5,0,..,0) belongs to K(e,,2(l—a*)~"), we evaluate |l—z,]
(1 —|z||)~ L. Since z, and a are real, we find

1=z, [(1=z) 7' <2(1 =z )(1 = [|z[?)
=21 -z /(1= (zi+a*(1—=z) "
=2(1—z)(1=23)"" (1—a?) "

=2(1+z) ' (1—-a®)'<2(1 —a*"L.

Therefore, fixed ae (0, 1), the points of the form (z;,a./1—2z2,0,..,0)
belong to K(e;,2(1 —a?)~!) for all z; €(0,1). If we now compute the
limit of e~2*(|z,|*+ --- +|z,|*) [l —z,| ™! on the points of the form
(z1,a/1—23,0,..,0), with z; > 1, we obtain

20021 —z2)(1 —z,) "' = aPe 291 + z,),

whose limit for z; — 1 is equal to 2a% =2 #0. Comparing this result with
inequality (2.4), we contradict the fact that the K-limit at e, of the function
0.,(y(z2)/(1 —z;)~ " is equal to 0.

We will now conclude this paper by proving that a statement similar to
the one in Theorem 2.2 holds true also in the case in which we have the
existence of the K-limit (and not only of the restricted K-limit) for the func-
tion {df.,ei,e,»/(1—z,)"* when z—e, (here ei is any vector in C”
orthogonal to e;). To be more precise we can state the following
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THEOREM 2.5. Let y be as in (1.1) and let f e Hol(4,,, 4,) be such that
foy=yof. If et denotes any vector in C" orthogonal to e, and if

<dfzell’el> _

K— lim =0,

z—e] (1 —21)1/2
then f| does not depend on z,, ..., z, and therefore

_ cosh#,z; +sinh ¢,

fi(2)

" sinh¢,z, +cosh ¢,

for a suitable t, e R.
Proof. Taking y or y~' we can always suppose that e; is the Wollff
point of y (that is, we can suppose that z,>0 in (1.1)).

If we fix ze 4,, and define ¢ as in (2.1), then we have

Sfla(mty)) = f(y"(2)) =y"(f(2)).
Therefore

__cosh mi, f(z) + sinh mi,
~ sinh mt, f,(z) + cosh mt,’

S1(y"(2))

and by differentiating both members of the last equality with respect to z;
(for j>2) we obtain

9 el o :
m — h h -2
0z, 7 sinh mtyz; +coshmt, 0z; (2) (sinh mto f(2) + cosh mio) ™
that is,
of e~ "%™(sinh mtyz, + cosh mt,) Of;
il (y"(z) =— = 3 il (2). (2.3)
0z, (sinh mt, f1(z) + cosh mt,)* 0z,

The fact that the K-limit of {df,ei,e,>/(1—z,)"* at e, is equal to 0
implies obviously that

K—lim ({df ey, e;»)* (1 —z;) 7' =0.
z—e]

By Proposition 2.1, the curve ¢ is contained in a suitable Koranyi region,
and then we can compute the limit of ({df,e;,e;»)*(1—z,)~" on the
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sequence {a(mt,)} and obtain 0. Fix now je {2, .., n} and choose ei" =e;.
Then

lim (af‘< m(z))) (1—y7(z))~1 =0,

m— + oo aZ

Formula (2.3) implies that

i
mlr:l»w (sinh mty f1(z) +cosh mty)* (cosh mty — sinh mty)(1 —z;)

e~ 2%m(sinh mt,z, 4 cosh mt,)* <6f1 >2
—(z) | =0.
0z,

Taking the modulus we get

e™" |sinh mt,z, + cosh mto 8f1
im
m— +oo |sinh mt, f1(z) + cosh mty|* |1 —z,|

Now, since the limit (for m — + o0) of the function

€™ |sinh mtyz, + cosh mt,|?

|sinh mt, f1(z) + cosh mi,|*
is equal to |14 z,]% | f1(z) +1] =%, we have
a 2
im | 2| -z =0
m— + o0 aZj

and therefore (0f}/0z;)(z) =0, for all j>2. Taking into account the results
of Proposition 1.3, we obtain the assertion. ||
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