On Holomorphic Maps Which Commute with Hyperbolic Automorphisms*

Chiara de Fabritiis

Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
E-mail: FABRITII@DM.UNIBO.IT

and

Graziano Gentili

Dipartimento di Matematica “U. Dini,” Viale Morgagni 67/A, 50134 Firenze, Italy
E-mail: GENTILI@CESIT1.UNIFI.IT

Received February 19, 1995; accepted December 14, 1998

INTRODUCTION

Let A_n be the unit ball of \mathbb{C}^n and let γ be a hyperbolic automorphism of A_n. In this work we study the class of holomorphic mappings $f \in \text{Hol}(A_n, A_n)$, from A_n into itself, which commute with γ (with respect to the usual composition of mappings).

In the one-dimensional case, it is well known (see [6]) that if $f \in \text{Hol}(A, A)$ commutes with a hyperbolic automorphism γ of A, then f is either the identity map or it is a hyperbolic automorphism of A with the same fixed points of γ (for a more recent exposition of this and related results, see, e.g., [1]). Still in the one-dimensional case Behan and Shields [3, 11] proved that, except for the case of two hyperbolic automorphisms of A, two non-trivial commuting holomorphic maps belonging to $\text{Hol}(A, A)$ have the same fixed point in A or the same “Wolff point” in ∂A.

If the dimension n of the space is strictly greater than one, then the problem of characterizing the holomorphic maps which commute with a given hyperbolic automorphism of A_n is still open and in this paper we give some contribution at this regard.

Suppose that $f \in \text{Hol}(A_n, A_n)$ commutes with a given hyperbolic automorphism γ of A_n.

* Partially supported by M.U.R.S.T., fondi 40%.
We first prove that the two fixed points \(p_1 \) and \(p_2 \) (\(\gamma \neq 2 \)) of \(\gamma \) are "fixed points" for \(f \) as well (Corollary 1.6). Since we can suppose, up to conjugation in \(\text{Aut} \ A_n \), that the fixed points of \(\gamma \) are \(e_1 \) and \(-e_1 \), where \(e_1 = (1, 0, \ldots, 0) \), then the finiteness of

\[
\lim \inf_{x \to e_1} \frac{1 - \|f(z)\|}{1 - |z|}
\]

follows (as well as the finiteness of the same \(\lim \inf \) at \(-e_1 \)). This implies, via the Julia-Wolff-Carathéodory theorem, that, among others, the functions

(i) \((1 - f_1(z))/(1 - z_1) \),

(ii) \(Q_{e_1}(f(z))/(1 - z_1)^{1/2} \),

(iii) \(\langle dfz, e_1^t, e_1 \rangle/(1 - z_1)^{1/2} \),

defined in Theorem 1.5 have restricted \(K \)-limit at \(e_1 \) (see Definition 1.4).

At this point we assume a "regularity condition" on \(f \), that is, we assume that the \(K \)-limit (and not only the restricted \(K \)-limit) of function (i) exists at \(e_1 \). With this hypothesis we prove the main result of the paper, i.e., that \(f_1 \) is a function depending only on one complex variable, and we can find an explicit formula for \(f_1 \) (Theorem 2.2 and Theorem 2.4). We then show that the assumption of analogous "regularity conditions" on (ii) at \(e_1 \) does not make any sense.

Finally, after having given (under conjugation in \(\text{Aut} \ A_n \)) a special form to the hyperbolic automorphism \(\gamma \) of \(A_n \), we show that the existence of the \(K \)-limit of function (iii), for \(z \to e_1 \), brings to the same conclusions on \(f \) as in Theorem 2.4.

For a statement of the Wolff theorem, for a definition of the "Wolff point," and for other preliminaries and notations we refer the reader to, e.g., [10].

1. THE GENERAL CASE

Let us denote by \(SU(n, 1) \) the special unitary group with respect to the standard Hermitian form of signature \((n, 1) \), i.e.,

\[
SU(n, 1) = \{ g \in SL(n + 1, \mathbb{C}) : g^*Jg = J \},
\]

where \(J = (I_n^t \ 0) \), and \(I_n \) is the \(n \times n \) identity matrix. Let us write any \(g \in SU(n, 1) \), as customary, in the form of a complex \((n + 1) \times (n + 1) \) matrix \((A \ B) \), with \(D \in \mathbb{C} \) and \(A, B, C \) matrices of type \(n \times n, n \times 1 \) and \(1 \times n \), respectively.
It is well known that there exists a surjective homomorphism \(\Psi : SU(n, 1) \to \text{Aut}_n \) mapping \(g = (A, B) \in SU(n, 1) \) to \(\Psi_g \in \text{Aut}_n \) defined by

\[
\Psi_g(z) = (Az + B)(Cz + D)^{-1},
\]

for all \(z \in A_n \). The kernel of \(\Psi \) is given by the center of \(SU(n, 1) \), i.e., by the subgroup

\[
\{ e^{2\pi i k (n+1)} I_{n+1}, k = 0, ..., n \}
\]

(for a proof see, e.g., [5, 10]).

The proof of the following theorem can be found, e.g., in [1].

Theorem 1. Each element \(\gamma \) of the group \(\text{Aut}_n \) can be extended holomorphically to an open neighborhood of \(\partial A_n \) and, if \(\gamma \neq \text{id}_{A_n} \), then either \(\gamma \) has at least one fixed point in \(A_n \), or it has no fixed points in \(A_n \) and it has one or two fixed points in \(\partial A_n \).

Definition 1.1. In the case in which \(\gamma \) has some fixed point in \(A_n \), then it is called *elliptic*; if \(\gamma \) has no fixed points in \(A_n \) and only one fixed point in \(\partial A_n \), then it is called *parabolic*; if \(\gamma \) has no fixed points in \(A_n \) and two fixed points in \(\partial A_n \), then it is called *hyperbolic*.

As we already noticed in the Introduction, in the case \(n = 1 \), the set of all holomorphic maps of the unit disc \(\Delta \) of \(\mathbb{C} \) into itself which commute with a given hyperbolic automorphism was studied in 1941 by M. H. Heins who proved the following

Theorem 1.2. Let \(\gamma \) be a hyperbolic automorphism of \(\Delta \) and let \(f \in \text{Hol}(\Delta, \Delta) \) be such that \(f \cdot \gamma = \gamma \cdot f \). Then either \(f = \text{id}_\Delta \) or \(f \) is a hyperbolic automorphism of \(\Delta \) with the same fixed points of \(\gamma \).

A proof of this theorem can be found in [6]: the proof relies upon the existence result for the derivative of \(f \) at its Wolff point.

From now on \(\gamma \) will be a hyperbolic element of \(\text{Aut}_n \). Since \(\text{Aut}_n \) acts doubly transitively on \(\partial A_n \), we can find a suitable element \(\varphi \) in \(\text{Aut}_n \) such that the fixed points of \(\varphi \gamma \varphi^{-1} \) in \(\partial A_n \) are \(e_1 \) and \(-e_1 \), where \(e_j \) denotes the \(j \)-th element of the standard basis of \(\mathbb{C}^n \), \(j = 1, ..., n \). If \(\gamma \) is a hyperbolic element in \(\text{Aut}_n \) such that its fixed points in \(\partial A_n \) are \(e_1 \) and \(-e_1 \), then the elements of \(SU(n, 1) \) which represent \(\gamma \) have the form

\[
\begin{pmatrix}
e^{\mu} \cosh t_0 & e^{\mu} \sinh t_0 \\
0 & A_1 \\
e^{\mu} \sinh t_0 & e^{\mu} \cosh t_0
\end{pmatrix},
\]

where \(t_0 \in \mathbb{R} \setminus \{0\} \), \(A_1 \in U(n-1) \), and \(\det A_1 = e^{-2\mu} \).
In fact e_1 and $-e_1$ are the fixed points of γ in ∂A_n if, and only if, $e_1 + e_{n+1}$ and $-e_1 - e_{n+1}$ are the isotropic eigenvectors in \mathbb{C}^{n+1} of any of the matrices in $\Psi^{-1}(\gamma)$. In what follows, we will choose any element g of the $n+1$ elements of $\Psi^{-1}(\gamma)$. All that we will say is independent of the choice made. By conjugating this chosen element g with a suitable element in $SU(n-1) \subset SU(n,1)$ we can suppose that A_1 is a diagonal matrix. This implies that if $z = (z_1, ..., z_n) \in A_n$, then

$$\gamma(z) = \frac{\cosh t_0 z_1 + \sinh t_0, e^{i\theta} z_2, ..., e^{i\theta} z_n}{\sinh t_0 z_1 + \cosh t_0}$$

(1.1)

If γ is any hyperbolic automorphism of A_n, then the search for all the solutions $f \in \text{Hol}(A_n, A_n)$ of equation $f \circ \gamma = \gamma \circ f$ can, clearly, be made up to conjugation by elements of Aut A_n. Therefore we can suppose that γ has the form (1.1). Our first results concern the form of the first component of f, when restricted to the unit disc $D \times \{0\} \subset A_n$. The fact that f and γ commute implies the following

Proposition 1.3. Let $\gamma \in \text{Aut} A_n$ be as in (1.1) and let $f = (f_1, ..., f_n) \in \text{Hol}(A_n, A_n)$. If $f \circ \gamma = \gamma \circ f$, then there exists $t_1 \in \mathbb{R}$ such that

$$f_1(z_1, 0, ..., 0) = \frac{\cosh t_1 z_1 + \sinh t_1}{\sinh t_1 z_1 + \cosh t_1}$$

(1.2)

Proof. Let us consider the holomorphic maps \tilde{f} and $\tilde{\gamma}$ from A into A defined by $\tilde{f}(\zeta) = f_1(\zeta, 0, ..., 0)$ and $\tilde{\gamma}(\zeta) = \gamma_1(\zeta, 0, ..., 0)$. It is easy to see that the map $\tilde{\gamma}$ is a holomorphic automorphism of A and that its fixed points are 1 and -1. Since $\gamma_j(z)$ depends only on z_1 and since $\gamma_j(z_1, 0, ..., 0) = 0$ for all $2 \leq j \leq n$, then $\tilde{\gamma}$ and \tilde{f} commute.

By Theorem 1.2, there exists $t_1 \in \mathbb{R}$ such that for all $\zeta \in A$,

$$\tilde{\gamma}(\zeta) = \frac{\cosh t_1 \zeta + \sinh t_1}{\sinh t_1 \zeta + \cosh t_1}$$

and the proposition is proved. \blacksquare

The explicit form of \tilde{f} we have found allows us to prove that

$$\liminf_{\zeta \to 1} \frac{1 - |\tilde{\gamma}(\zeta)|}{1 - |\zeta|} < +\infty$$

and

$$\liminf_{\zeta \to -1} \frac{1 - |\tilde{\gamma}(\zeta)|}{1 - |\zeta|} < +\infty.$$

(1.3)

In fact, if $t_1 = 0$, then the limit is equal to 1; if $t_1 \neq 0$, then we can perform a direct computation, taking the limit on the real segment $(-1, 1)$.

Let now $\|\cdot\|$ denote the norm associated to the standard Hermitian product $\langle \cdot, \cdot \rangle$ on \mathbb{C}^n. We will use inequalities (1.3) to study the function f.

122 DE FABRITIIS AND GENTILI
With the aim of applying the Julia–Wolff–Carathéodory theorem for \(n > 1 \), we will prove

Proposition 1.4. Let \(f \in \text{Hol}(\mathbb{D}_n, \mathbb{D}_n) \) be such that

\[
f_1(z_1, 0, ..., 0) = \frac{\cosh t_1 z_1 + \sinh t_1}{\sinh t_1 z_1 + \cosh t_1}.
\]

Then

\[
\liminf_{z \to e_1} \frac{1 - \|f(z)\|}{1 - \|z\|} < +\infty \quad \text{and} \quad \liminf_{z \to -e_1} \frac{1 - \|f(z)\|}{1 - \|z\|} < +\infty.
\]

Proof. Obviously we have

\[
\frac{1 - \|f(z)\|}{1 - \|z\|} \leq \frac{1 - \|f(z_1)\|}{1 - \|z_1\|}.
\]

Then we get

\[
\liminf_{z \to e_1} \frac{1 - \|f_1(z)\|}{1 - \|z\|} = \liminf_{z_1 \to 1} \frac{1 - \|f_1(z_1)\|}{1 - \|z_1\|} = \liminf_{z_1 \to 1} \frac{1 - \|f_1(z_1)\|}{1 - \|z_1\|} < +\infty.
\]

The finiteness of the same \(\liminf \) at \(-e_1\) can be proved analogously.

To state the Julia–Wolff–Carathéodory theorem we will recall some notations concerning curves in \(\mathbb{D}_n \) (see, e.g., [10]). Let \(x \in \mathbb{D}_n \); a \(x \)-curve is a curve \(\gamma: [a, b] \to \mathbb{D}_n \) such that \(\lim_{t \to b^{-}} \gamma(t) = x \). We denote by \(\gamma_x \) the projection of \(\gamma \) into the complex line \(\mathbb{C} \times \{x\} \) through 0 and \(x \), i.e., we set \(\gamma_x(t) = \langle \gamma(t), x \rangle \).

Definition 1.2. Let \(\gamma \) be a \(x \)-curve; we say that \(\gamma \) is special if

\[
\lim_{t \to b^{-}} \frac{\|\gamma(t) - \gamma_x(t)\|^2}{1 - \|\gamma_x(t)\|^2} = 0.
\]

Definition 1.3. Let \(\gamma \) be a special \(x \)-curve; then \(\gamma \) is said to be restricted if there exists \(A > 0 \) such that

\[
\frac{\|\sigma_x(t) - x\|}{1 - \|\sigma_x(t)\|} \leq A \quad \forall t \in [a, b).
\]

The Korányi regions take the place of the Stolz regions in the definition of the “non-tangential limits” in dimension greater than 1.
The Korányi region $K(x, M)$ of vertex $x \in \partial A_n$ and amplitude $M > 0$ is given by (see, e.g., [10])

$$K(x, M) = \left\{ z \in A_n : \frac{|\langle z, x \rangle|}{1 - \|z\|} < M \right\}.$$

The Korányi region $K(x, M)$ is empty if $M \leq 1$ and, for any x in the boundary of A_n, the regions $K(x, M)$ “fill” A_n as M approaches $+\infty$.

Definition 1.4. Let $f : A_n \to \mathbb{C}$ be a function. We shall say that f has K-limit γ at $x \# 2n$ (possibly $\gamma = \infty$) if $f(z) \to \gamma$ as $z \to x$ within $K(x, M)$ for any $M > 1$. We shall say that f has restricted K-limit γ at x if $f(\sigma(t)) \to \gamma$ as $t \to b^-$ for any restricted x-curve σ. We can now state precisely the following classical result (see, e.g., [10, 1]).

Theorem 1.5 (Julia–Wolff–Carathéodory). Let $f \in \text{Hol}(A_n, A_n)$ be such that, for $x \# 2n$,

$$\liminf_{z \to x} \frac{1 - \|f(z)\|}{1 - \|z\|} = c < +\infty.$$

Then f has K-limit $\gamma \in \partial A_n$ at x and the following functions are bounded on any Korányi region:

(i) $(1 - \langle f(z), x \rangle)/(1 - \langle z, x \rangle)$,

(ii) $Q_\gamma(f(z))/(1 - \langle z, x \rangle)^{1/2}$,

(iii) $\langle df_z(x), y \rangle/(1 - \langle z, x \rangle)^{1/2}$,

where $Q_\gamma(z) = z - \langle z, y \rangle y$ is the orthogonal projection on the orthogonal complement of C_γ and x^\perp is any vector in C^\perp orthogonal to x. Moreover the functions (ii) and (iii) have restricted K-limit 0 at x and the function (i) has restricted K-limit c at x.

By Proposition 1.4, the Julia–Wolff–Carathéodory theorem yields the following result, which guarantees that the fixed points of γ are “fixed points” for f.

Corollary 1.6. Let γ be a hyperbolic automorphism of A_n, let $p_1, p_2 \in \partial A_n$ be the fixed points of γ in A_n, and let $f \in \text{Hol}(A_n, A_n)$. If $f \circ \gamma = \gamma \circ f$, then $K - \lim_{z \to p_1} f(z) = p_1$ and $K - \lim_{z \to p_2} f(z) = p_2$.

Proof. Let $\varphi \in \text{Aut} A_n$ be such that $\varphi(e_1) = p_1$, $\varphi(-e_1) = p_2$, and $\tilde{\gamma} = \varphi^{-1} \circ \gamma \circ \varphi$ has the form (1.1). Set $\tilde{f} = \varphi^{-1} \circ f \circ \varphi$. Then \tilde{f} commutes with $\tilde{\gamma}$. Since φ sends Korányi regions with vertex at p_1 (p_2) in Korányi regions...
with vertex at $e_1 (-e_1)$, then we can restrict ourselves to the case in which γ has the form (1.1).

By Proposition 1.3 there exists $t_1 \in \mathbb{R}$ such that

$$f_1(z_1, 0, \ldots, 0) = \frac{\cosh t_1 z_1 + \sinh t_1}{\sinh t_1 z_1 + \cosh t_1}.$$

Proposition 1.4 together with Theorem 1.5 implies that f admits K-limit y at e_1. The above form of f_1 yields that $f_1(z_1, 0, \ldots, 0)$ approaches 1 when z_1 approaches to 1. Hence $f(z_1, 0, \ldots, 0) \to e_1$ when $z_1 \to 1$ (because f maps Δ_n into itself) and therefore $y = e_1$. The same argument applied to the point $-e_1$ implies that $K \lim_{z \to -e_1} f(z) = -e_1$.

We will now obtain the final results of this section, which completely describe the behaviour of f on the disc $\Delta \times \{0\}$.

Proposition 1.7. Let γ be the hyperbolic automorphism of Δ_n given by (1.1) and let $f \in \text{Hol}(\Delta_n, \Delta_n)$ be such that $f \circ \gamma = \gamma \circ f$. Then $f_2(z_1, 0, \ldots, 0) = \cdots = f_n(z_1, 0, \ldots, 0) = 0$ for all $z_1 \in \Delta$.

Proof. Fix $z_1 \in \Delta$, set $z = (z_1, 0, \ldots, 0)$, and define

$$\sigma(t) = \left(\frac{\cosh t z_1 + \sinh t}{\sinh t z_1 + \cosh t}, 0, \ldots, 0 \right).$$

The curve σ is a restricted e_1-curve when $t \to +\infty$. In fact $\sigma = \sigma_e$ and therefore σ is trivially special; the fact that σ is restricted follows from an easy computation.

We consider now the function (ii) in Theorem 1.5. By Propositions 1.3 and 1.4 we obtain that

$$\lim_{t \to +\infty} \frac{\|f_2(\sigma(t)), \ldots, f_n(\sigma(t))\|}{(1 - |\sigma(t)|)^{1/2}} = 0, \quad (1.4)$$

since $\sigma = \sigma_e$ and σ is restricted.

By the definition of σ, (1.4) is equivalent to the fact that

$$\lim_{t \to +\infty} \|f_2(\sigma(t)), \ldots, f_n(\sigma(t))\| \left(1 - \frac{\cosh t z_1 + \sinh t}{\sinh t z_1 + \cosh t} \right)^{-1/2} = 0. \quad (1.5)$$

Now, the curve σ was chosen in such a way that it contains all the points $\gamma_m(z)$ for $m \in \mathbb{N}$ in fact $\sigma(\gamma_m) = \gamma_m(z)$, as it can be seen by the definition of σ and the form of γ (see (1.1)). Hence, the fact that f and γ commute implies that

$$(f_2(\sigma(\gamma_m)), \ldots, f_n(\sigma(\gamma_m)))$$

$$= A^m_1(f_2(z), \ldots, f_n(z)) (\sinh \gamma_m z_1 + \cosh \gamma_m)^{-1}.$$
Since $A_1 \in U(n-1)$, the last equation implies that
\begin{align*}
\|(f_2(\sigma(mt_0)), \ldots, f_n(\sigma(mt_0)))\| = \|(f_2(z), \ldots, f_n(z))\||\sinh mt_0 z_1 + \cosh mt_0|^{-1}.
\end{align*}
(1.6)

By considering the argument of the limit in (1.5) at the point $t = mt_0$ and by calling in (1.6), we obtain that
\begin{align*}
\lim_{m \to +\infty} \frac{\|(f_2(z), \ldots, f_n(z))\|}{|\sinh mt_0 z_1 + \cosh mt_0|} \left(1 - \frac{\cosh mt_0 z_1 + \sinh mt_0}{\sinh mt_0 z_1 + \cosh mt_0}\right)^{-1/2} = 0.
\end{align*}
(1.7)

Squaring the argument of the limit in (1.7) and multiplying it by
\begin{align*}
\left(1 + \frac{\cosh mt_0 z_1 + \sinh mt_0}{\sinh mt_0 z_1 + \cosh mt_0}\right)^{-1},
\end{align*}
which is strictly less than 1, we obtain that
\begin{align*}
\lim_{m \to +\infty} \frac{\|(f_2(z), \ldots, f_n(z))\|^2}{|\sinh mt_0 z_1 + \cosh mt_0|^2} \left(1 - \frac{\cosh mt_0 z_1 + \sinh mt_0}{\sinh mt_0 z_1 + \cosh mt_0}\right)^{-1} = 0.
\end{align*}
(1.8)

This equality is equivalent to
\begin{align*}
\lim_{m \to +\infty} \frac{\|(f_2(z), \ldots, f_n(z))\|^2 (|\sinh mt_0 z_1 + \cosh mt_0|^2 - |\cosh mt_0 z_1 + \sinh mt_0|^2)^{-1} = 0.
\end{align*}

Straightforward computations yield now that
\begin{align*}
\lim_{m \to +\infty} \frac{\|(f_2(z), \ldots, f_n(z))\|^2 (1 - |z_1|^2)^{-1} = 0,
\end{align*}
and hence $f_2(z_1, 0, \ldots, 0) = \cdots = f_n(z_1, 0, \ldots, 0) = 0$ for all $z_1 \in A$ and the proposition is proved. \[\square\]

Before passing to the general case, we want to study the situation in which two holomorphic automorphisms of A_n, one of which is hyperbolic, commute. The result that we find generalizes to dimension $n > 1$, a well-known result on commuting automorphisms (see [6, and 2]).

Proposition 1.8. Let γ be a hyperbolic automorphism of A_n, and let f be an automorphism of A_n. If γ and f commute, then either f is hyperbolic and it
has the same fixed points of γ or it is elliptic and its fixed points set has positive dimension and contains the fixed point set of γ.

Proof. Let l_1 and $l_2 \in SU(n, 1)$ be such that $\Psi_{l_1} = \gamma$ and $\Psi_{l_2} = f$. As before, the statement of the proposition is invariant by inner conjugation in $\text{Aut} \ A_n$. Therefore, by conjugating both l_1 and l_2 by a same element in $SU(n, 1)$ we can suppose that $l_1 = (U \ 0 \ \bar{0})$, where U is a diagonal $(n-1) \times (n-1)$ unitary matrix and where $V = e^{\theta (\sinh \tau \cosh \tau)}$, with $\tau \neq 0$. (Here we choose the fixed points of γ to be e_n and $-e_n$ only for technical reasons.)

The form of l_2 will now be

$$l_2 = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

with A, B, C, D, respectively, $(n-1) \times (n-1)$, $(n-1) \times 2$, $2 \times (n-1)$, 2×2 complex matrices. The fact that f and γ commute is equivalent to

$$l_1 l_2 = e^{2im\pi/(n+1)} l_2 l_1$$

for a suitable $m \in \{0, ..., n\}$.

This last equation implies in particular that $UB = e^{i\theta} e^{-2im\pi/(n+1)} B$. Setting $B = (B_1, B_2)$ for B_1, B_2 vectors of \mathbb{C}^{n-1} and letting $U_1 = e^{-i\theta} e^{-2im\pi/(n+1)} U$, we obtain

$$\begin{pmatrix} U_1 & 0 \\ 0 & U_1 \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} = \begin{pmatrix} \cosh t I & \sinh t I \\ \sinh t I & \cosh t I \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}.$$

Thus (B_1, B_2) belongs to $\text{Ker} M$, where $M = \begin{pmatrix} U_1 & -\cosh t I \\ -\sinh t I & -\cosh t I \end{pmatrix}$. Since U_1 is a diagonal unitary matrix, say $U_1 = \text{diag}[e^{i\theta_1}, ..., e^{i\theta_n}]$, an easy inductive procedure shows that $\det M = ((e^{i\theta_1} - \cosh t)^2 - \sinh^2 t) \cdots ((e^{i\theta_{n-1}} - \cosh t)^2 - \sinh^2 t) \neq 0$. Hence $B_1 = B_2 = 0$, whence $A \in U(n-1)$ and $D \in U(1, 1)$. In the remaining one-dimensional case a direct inspection proves that $D = e^{i\theta (\sinh \tau \cosh \tau)}$. If $\tau \neq 0$, then f is hyperbolic and its fixed point set is equal to the fixed point set of γ, otherwise f is elliptic and its fixed point set has positive dimension and contains both the fixed points of γ.

2. WHAT “REGULARITY” CAN ADD

Let $f \in \text{Hol}(A_n, A_n)$ be a map which commutes with the holomorphic automorphism γ defined by (1.1). We will pass now to the investigation of the behaviour of f outside the disc $A \times \{0\}$, in the case in which f is a holomorphic self map of A_n. We will consider the case in which the map f has a “sort of regularity” at the boundary and will deduce some consequences on the form of f.

Notice that, in the one-dimensional case, if τ is the Wolff point of $f: \mathbb{D} \to \mathbb{D}$, then

$$K \lim_{z \to \tau} \frac{\tau - f(z)}{\tau - z} = d_f(\tau, \tau) \leq 1,$$

where $d_f(\tau, \tau)$ denotes the dilatation coefficient of f at τ (see, e.g., [1]). In the multidimensional case this is no more true because in this case the statement of the Julia–Wolff–Carathéodory theorem involves the restricted K-limit instead of the K-limit.

Given any $z \in \mathbb{D}_n$, we want to introduce curves which contain all points of the form $\gamma_m(z)$ for $m \in \mathbb{N}$. By taking the limit along these curves we will be able to understand the behaviour of f at any point $z \in \mathbb{D}_n$. To do this, fix $z \in \mathbb{D}_n$ and define the curve $\sigma: [0, +\infty) \to \mathbb{D}_n$ by

$$\sigma(t) = \left(\cosh tz_1 + \sinh t, e^{i\theta_2/n}z_2, \ldots, e^{i\theta_n/n}z_n \right),$$

First of all notice that $\sigma(mt_0) = \gamma^m(z)$ for all $m \in \mathbb{N}$.

Since we want to use these curves to compute K-limits, we have to prove that, for a fixed $z \in \mathbb{D}_n$, σ lies in a suitable Korányi region with vertex at e_1.

Proposition 2.1. There exists $M > 1$ such that $\sigma(t) \in K(e_1, M)$ for all $t \geq 0$.

Proof. Consider the ratio $|1 - \sigma(t)|/(1 - \|\sigma(t)\|)$. It is evident that it is bounded on $[0, +\infty)$ if $|1 - \sigma(t)|/(1 - \|\sigma(t)\|^2)$ is. If we compute this last ratio, we obtain

$$\frac{|1 - \sigma(t)|}{1 - \|\sigma(t)\|^2} = \frac{|1 - z_1|}{1 - \|z\|^2} (\cosh t - \sinh t) |\cosh t + \sinh tz_1|$$

$$= e^{-t} \frac{|1 - z_1|}{1 - \|z\|^2} (\cosh t + \sinh tz_1)$$

$$\frac{1 - |z_1|}{1 - \|z\|^2} (e^{-t} \cosh t + e^{-t} \sinh t |z_1|) \leq \frac{1 - |z_1|}{1 - \|z\|^2} (1 + |z_1|) = M,$$

because $\cosh t \leq e^t$ and $\sinh t \leq e^t$ for all $t \geq 0$.

If $f \in \text{Hol}(\mathbb{D}_n, \mathbb{D}_n)$ commutes with the hyperbolic automorphism γ given by (1.1), then, by Propositions 1.3 and 1.4, Theorem 1.5 and Corollary 1.6, both the restricted K-limit of $(1 - f(z))/(1 - z)$ at e_1 and the restricted K-limit of $(1 + f(z))/(1 + z)$ at $-e_1$ do exist. If we now suppose that (not only the restricted K-limit of $(1 - f(z))/(1 - z_1)$ exists and is finite at e_1, then...
but also the K-limit of $(1 - f(z))/(1 - z)$ exists and is finite at e_1, we can prove the following

Theorem 2.2. Let γ be the hyperbolic automorphism of \mathbb{A}_n given by (1.1) and let $f \in \text{Hol}(\mathbb{A}_n, \mathbb{A}_n)$ be such that

(a) f commutes with γ,

(b) there exists $K = \lim_{z \to e_1} (1 - f(z))/(1 - z) = c \in \mathbb{C}$.

Then there exists $t \in \mathbb{R}$ such that, for all $z = (z_1, \ldots, z_n) \in \mathbb{A}_n$,

$$f(z) = \frac{\cosh t z_1 + \sinh t}{\sinh t z_1 + \cosh t}.$$

In particular, f_1 does not depend on z_2, \ldots, z_n.

Proof. Taking γ or γ^{-1} we can always suppose that e_1 is the Wolff point of γ (that is, we can suppose that $t_0 > 0$ in (1.1)). By Proposition 1.3, there exists $t \in \mathbb{R}$ such that

$$f_1(z_1, 0, \ldots, 0) = \frac{\cosh t z_1 + \sinh t}{\sinh t z_1 + \cosh t}.$$

Corollary 1.6 gives that the K-limit of f at e_1 is equal to e_1 and this implies that the function $(1 + f_1(z))/(1 + z)$ has K-limit 1 at e_1. Then condition (b) yields that

$$K = \lim_{z \to e_1} \frac{1 - f(z)}{1 - z} \cdot \frac{1 + z_1}{1 + f_1(z)} = c.$$

Fix $z \in \mathbb{A}_n$ and define σ as in (2.1). Proposition 2.1 implies that

$$\lim_{t \to +\infty} \frac{1 - f_1(\sigma(t))}{1 - \sigma(t)} \cdot \frac{1 + \sigma_1(t)}{1 + f_1(\sigma(t))} = c.$$

Consider this last limit restricted to the sequence $\{mt_0\}$ for $m \in \mathbb{N}$. Since $\sigma(mt_0) = \gamma^m(z)$, we have the equality

$$\frac{1 - f_1(\sigma(mt_0))}{1 - \sigma_1(mt_0)} \cdot \frac{1 + \sigma_1(mt_0)}{1 + f_1(\sigma(mt_0))} = \frac{1 - f_1(\gamma^m(z))}{1 - \gamma_1^m(z)} \cdot \frac{1 + \gamma_1^m(z)}{1 + f_1(\gamma^m(z))}.$$

Using the fact that f and γ commute we obtain

$$\frac{1 - f_1(\sigma(mt_0))}{1 - \sigma_1(mt_0)} \cdot \frac{1 + \sigma_1(mt_0)}{1 + f_1(\sigma(mt_0))} = \frac{1 - \gamma_1^m(f(z))}{1 - \gamma_1^m(z)} \cdot \frac{1 + \gamma_1^m(z)}{1 + f_1(\gamma^m(z))}.$$
A direct computation, performed taking into account the form of \(\gamma \), gives

\[
\frac{1 - \gamma^m(f(z))}{1 + \gamma^m(f(z))} = \frac{1 - f(z)}{1 + f(z)}.
\]

Therefore

\[
\frac{1 - f(z)}{1 + f(z)} = \lim_{m \to +\infty} \frac{1 - f_1(s(m t_0))}{1 + f_1(s(m t_0))} = c,
\]

and hence we obtain that \(f_1(z) \) does not depend on \(z_2, \ldots, z_n \) and the theorem is proved.

Notice that, for any \(f \in \text{Hol}(A_n, A_n) \) such that \(f_1(z) = \frac{\cosh t_1 z_1}{\sinh t_1} \), then the \(K \)-limit of \((1 - f(z)) / (1 - z_1) \) at \(e_1 \) exists. In fact, as \(f_1 \) depends only on \(z_1 \), the \(K \)-limit at \(e_1 \) becomes a \(K \)-limit in one-variable at 1 and in this case we can apply the fact that the function extends holomorphically to an open neighborhood of the closed disc \(A \) in \(C \) to obtain the existence of the \(K \)-limit at 1.

We will now get rid of the particular form (1.1) of the hyperbolic automorphism \(\gamma \) of \(A_n \) to give a more general statement of Theorem 2.2.

Let \(\gamma \) be a hyperbolic automorphism of \(A_n \) and let \(p_1, p_2 \in \partial A_n \) be its fixed points. Let \(\varphi \in \text{Aut} A_n \) be such that \(\varphi(e_1) = p_1 \) and \(\varphi(-e_1) = p_2 \). We can choose \(\varphi \) so that \(\varphi^{-1} \gamma \varphi \) has the form (1.1). Let \(f \in \text{Hol}(A_n, A_n) \) and define \(\tilde{f} = \varphi^{-1} f \varphi \) and \(\tilde{\gamma} = \varphi^{-1} \gamma \varphi \). Obviously \(\tilde{\gamma} \) commutes with \(\tilde{f} \) iff \(\gamma \) commutes with \(f \). The following lemma holds.

Lemma 2.3. Let \(\gamma, f, \varphi, \tilde{f}, \tilde{\gamma} \) be as above and suppose that \(f \) commutes with \(\gamma \). Then the two following facts are equivalent:

(i) \(K \)-limit \(\lim_{z \to \partial A_n} \frac{1 - \langle f(z), p_1 \rangle}{1 - \langle z, p_1 \rangle} \) exists and belongs to \(C \).

(ii) \(K \)-limit \(\lim_{z \to e_1} \frac{1 - f_1(z)}{1 - z_1} \) exists and belongs to \(C \).

Moreover, if the two limits exist, then they are equal.

Proof. Let us denote by \(\nu \) the standard Hermitian form of signature \((n, 1)\) on \(C^{n+1} \) and, if \(a \in C^n \), let us denote by \(a^* \) the vector in \(C^{n+1} \) given by \(\langle f, a \rangle \). Obviously,

\[
\frac{1 - \langle f(z), p_1 \rangle}{1 - \langle z, p_1 \rangle} = \frac{\nu(f^*(z), p_1^*)}{\nu(z^*, p_1^*)} \quad \text{and} \quad \frac{1 - f_1(z)}{1 - z_1} = \frac{\langle f^*(z), e_1^* \rangle}{\langle z^*, e_1^* \rangle}.
\]
Let $\chi = (\xi, \eta) \in SU(n, 1)$ be such that $\Psi_\chi = \varphi^{-1}$. Using the definition of \hat{f} and the fact that φ maps Korányi regions with vertex at e_1 in Korányi regions with vertex at p_1 we obtain that

$$K - \lim_{z \rightarrow e_1} \frac{1 - \hat{f}(z)}{1 - z_1} = K - \lim_{\varphi(z) \rightarrow p_1} \frac{1 - 1 \langle \varphi^{-1} f(\varphi(z), e_1) \rangle}{1 - 1 \langle z, e_1 \rangle}.$$

If we set $\varphi(z) = \zeta$, then the above limit is equal to

$$K - \lim_{\zeta \rightarrow p_1} \frac{1 - 1 \langle \varphi^{-1} f(\zeta), e_1 \rangle}{1 - 1 \langle \zeta, e_1 \rangle} = K - \lim_{\zeta \rightarrow p_1} \frac{v((\varphi^{-1} f(\zeta))^*, e_1^\#)}{v((\varphi^{-1} f(\zeta))^*, e_1^\#)}. \quad (2.2)$$

A direct inspection shows that, being $\Psi_\chi = \varphi^{-1}$,

$$\varphi^{-1} f(\zeta) = \frac{\chi(\zeta^*)}{(C\chi(\zeta) + D)} \quad \text{and} \quad \varphi^{-1} (\zeta^*) = \frac{\chi(\zeta^*)}{(C\chi + D)}.$$

Then the K-limit in (2.2) is equal to

$$K - \lim_{\zeta \rightarrow p_1} \frac{v(\chi(\zeta^*), e_1^\#)}{v(\chi(\zeta^*)/(C\chi + D), e_1^\#)} = K - \lim_{\zeta \rightarrow p_1} \frac{C\chi + D}{C\chi(\zeta) + D} \cdot \lim_{\zeta \rightarrow p_1} \frac{v(\varphi^{-1} f(\zeta)^*, e_1^\#)}{v(\varphi^{-1} f(\zeta)^*, e_1^\#)}.$$

Corollary 1.6 implies that $K - \lim_{z \rightarrow p_1} f(z) = p_1$; then

$$K - \lim_{\zeta \rightarrow p_1} \frac{C\chi + D}{C\chi(\zeta) + D} = 1.$$

Hence

$$K - \lim_{z \rightarrow e_1} \frac{1 - \hat{f}(z)}{1 - z_1} = K - \lim_{\zeta \rightarrow p_1} \frac{v(\chi(\zeta^*), e_1^\#)}{v(\chi(\zeta^*)/(C\chi + D), e_1^\#)}.$$

Using the fact that $\chi \in SU(n, 1)$, we obtain that

$$K - \lim_{\zeta \rightarrow p_1} \frac{v(\chi(\zeta^*), e_1^\#)}{v(\chi(\zeta^*)/(C\chi + D), e_1^\#)} = K - \lim_{\zeta \rightarrow p_1} \frac{v(\chi(\zeta^*), \varphi^{-1}(e_1^\#))}{v(\chi(\zeta^*)/(C\chi + D), \varphi^{-1}(e_1^\#))}.$$

Now, since $\Psi_\chi = \varphi^{-1}$ and $\varphi(e_1) = p_1$, we obtain that $\Psi_\chi^{-1}(e_1) = p_1$. If $\chi^{-1}(\xi, \eta) = (\xi', \eta')$, then a direct inspection proves that $\chi^{-1} e_1 = p_1 (C_1 e_1 + D_1)$. Therefore we get
By definition, \(v(\zeta^*, p_1^*) = -1 + \langle \zeta, p_1 \rangle \) and \(v(f(\zeta)^*, p_1) = -1 + \langle f(\zeta), p_1 \rangle \). If follows that

\[
K - \lim_{\zeta \to \zeta_1} \frac{1 - f(\zeta)}{1 - z_1}
\]
does exist if and only if

\[
K - \lim_{z_1 \to z_1} \frac{1 - f(z)}{1 - z_1}
\]
does exist and that, if they exist, then they are equal. }

As a consequence of the above lemma we can state Theorem 2.2 in an “invariant version.”

Theorem 2.4. Let \(\gamma \) be a hyperbolic automorphism of \(A_n \) and let \(p, p_2 \) be the fixed points of \(\gamma \) in \(\partial A_n \). Let \(\varphi \in \text{Hol}(A_n, A_n) \) be such that

1. \(\varphi \) commutes with \(\gamma \);
2. there exists \(K - \lim_{z \to z_1} ((1 - \langle f(z), p_1 \rangle)/(1 - \langle z, p_1 \rangle)) = c \in \mathbb{C} \).

Then there exists \(t_1 \in \mathbb{R} \) and \(\varphi \in \text{Aut} A_n \) such that

\[
\langle \varphi^{-1} f \varphi(z), e_1 \rangle = \frac{\cosh t_1 z_1 + \sinh t_1}{\sinh t_1 z_1 + \cosh t_1}
\]

In particular, \(\langle \varphi^{-1} f \varphi(z), e_1 \rangle \) does not depend on \(z_2, \ldots, z_n \).

By assuming a “certain regularity” on a map \(f \in \text{Hol}(A_n, A_n) \) which commutes with a hyperbolic automorphism of \(A_n \), we have obtained a very precise and surprising information on the map \(f \) itself. In particular we have obtained that one of the components of \(f \) is always, up to conjugation in \(\text{Aut} A_n \), a function of one complex variable. This “regularity condition” we have assumed is the existence of \(K \)-limits (instead of the existence of restricted \(K \)-limits) for function (i) in Theorem 1.5.
Now we will prove that “assuming regularity” on function (ii) in Theorem 1.5 is meaningless: namely we will prove that for \(z \) itself (which obviously commutes with \(\gamma \)) it is not true that

\[
K - \lim_{z \to \gamma(z)} Q_\gamma(z)/(1 - z_1)^{-1/2} = 0
\]

(here \(Q_\gamma \) is as usual the projection on the orthogonal complement of \(C \).

In fact we have

\[
\|Q_\gamma(z)\|^2 |1 - z_1|^{-1} = (|z_1|^2 + \cdots + |z_n|^2) |\sinh t_0 z_1 + \cosh t_0|^{-2} |1 - z_1|^{-1}.
\]

Since \(|\sinh t_0 z_1 + \cosh t_0| \leq \cosh t_0 + |z_1| \sinh t_0 \leq \cosh t_0 + \sinh t_0 = e^0 \), then

\[
\|Q_\gamma(z)\|^2 |1 - z_1|^{-1} \geq e^{-2\sigma} (|z_1|^2 + \cdots + |z_n|^2) |1 - z_1|^{-1}. \tag{2.4}
\]

Take \(a, z_1 \in (0, 1) \) and set \(z_2 = a \sqrt{1 - z_1^2} \). To prove that the point \((z_1, z_2, 0, \ldots, 0)\) belongs to \(K(e_1, 2(1 - a^2))^{-1} \), we evaluate \(|1 - z_1/(1 - |z|)|^{-1}\) on the points of the form \((z_1, a \sqrt{1 - z_1^2}, 0, \ldots, 0)\), with \(z_1 \to 1 \), we obtain

\[
e^{-2\sigma} a^2 (1 - z_1^2)/(1 - z_1) = a^2 e^{-2\sigma} (1 + z_1),
\]

whose limit for \(z_1 \to 1 \) is equal to \(2a^2 e^{-2\sigma} \neq 0 \). Comparing this result with inequality (2.4), we contradict the fact that the \(K \)-limit at \(e_1 \) of the function \(Q_\gamma(z) \) is equal to 0.

We will now conclude this paper by proving that a statement similar to the one in Theorem 2.2 holds true also in the case in which we have the existence of the \(K \)-limit (and not only of the restricted \(K \)-limit) for the function \(df \) when \(z \to e_1 \) (here \(e_i \) is any vector in \(C^s \) orthogonal to \(e_i \)). To be more precise we can state the following
THEOREM 2.5. Let γ be as in (1.1) and let $f \in \text{Hol}(A_n, A_n)$ be such that $f \circ \gamma = \gamma \circ f$. If e_1^\perp denotes any vector in C^n orthogonal to e_1 and if

$$K - \lim_{z \to e_1} \frac{\langle df_z e_1^\perp, e_1 \rangle}{(1-z_1)^{1/2}} = 0,$$

then f_1 does not depend on z_2, \ldots, z_n and therefore

$$f_1(z) = \frac{\cosh t_1 z_1 + \sinh t_1}{\sinh t_1 z_1 - \cosh t_1},$$

for a suitable $t_1 \in \mathbb{R}$.

Proof. Taking γ or γ^{-1} we can always suppose that e_1 is the Wolff point of γ (that is, we can suppose that $t_0 > 0$ in (1.1)).

If we fix $z \in A_n$ and define σ as in (2.1), then we have

$$f(\sigma(mt_0)) = f(\gamma^m(z)) = \gamma^m(f(z)).$$

Therefore

$$f_1(\gamma^m(z)) = \frac{\cosh mt_0 f_1(z) + \sinh mt_0}{\sinh mt_0 f_1(z) + \cosh mt_0},$$

and by differentiating both members of the last equality with respect to z_j (for $j \geq 2$) we obtain

$$\frac{\partial f_1}{\partial z_j}(\gamma^m(z)) \frac{e^{\theta m}}{\sinh mt_0 z_1 + \cosh mt_0} = \frac{\partial f_1}{\partial z_j}(z) \frac{(\sinh mt_0 f_1(z) + \cosh mt_0)^{-2}}{2 \sinh mt_0 f_1(z) + \cosh mt_0},$$

that is,

$$\frac{\partial f_1}{\partial z_j}(\gamma^m(z)) = \frac{e^{-\theta m}(\sinh mt_0 z_1 + \cosh mt_0)}{(\sinh mt_0 f_1(z) + \cosh mt_0)^2} \frac{\partial f_1}{\partial z_j}(z). \quad (2.3)$$

The fact that the K-limit of $\langle df_z e_1^\perp, e_1 \rangle/((1-z_1)^{1/2}$ at e_1 is equal to 0 implies obviously that

$$K - \lim_{z \to e_1} \frac{\langle df_z e_1^\perp, e_1 \rangle}{(1-z_1)^{1/2}} = 0.$$

By Proposition 2.1, the curve σ is contained in a suitable Korányi region, and then we can compute the limit of $\langle df_z e_1^\perp, e_1 \rangle^2 (1-z_1)^{-1}$ on the
sequence \(\{ \sigma(mt_0) \} \) and obtain 0. Fix now \(j \in \{ 2, \ldots, n \} \) and choose \(\epsilon_j = \epsilon_j^2 = 0. \) Then

\[
\lim_{m \to +\infty} \left(\frac{\partial f_j}{\partial z_j}(\gamma_m(z)) \right)^2 (1 - \gamma_m(z))^{-1} = 0.
\]

Formula (2.3) implies that

\[
\lim_{m \to +\infty} \frac{e^{-2m\epsilon_j/\epsilon_j}}{(\sinh mt_0 f_1(z) + \cosh mt_0)^3 (\cosh mt_0 - \sinh mt_0 |1 - z_1|)} \left(\frac{\partial f_j}{\partial z_j}(z) \right)^2 = 0.
\]

Taking the modulus we get

\[
\lim_{m \to +\infty} \frac{e^{m\epsilon_j/\epsilon_j} |\sinh mt_0 z_1 + \cosh mt_0|}{|\sinh mt_0 f_1(z) + \cosh mt_0|} \left| \frac{\partial f_j}{\partial z_j}(z) \right|^2 = 0.
\]

Now, since the limit (for \(m \to +\infty \)) of the function

\[
\frac{e^{m\epsilon_j/\epsilon_j} |\sinh mt_0 z_1 + \cosh mt_0|}{|\sinh mt_0 f_1(z) + \cosh mt_0|}
\]

is equal to \(|1 + z_1|^{1/3} |f_1(z) + 1|^{-4} \), we have

\[
\lim_{m \to +\infty} \left| \frac{\partial f_j}{\partial z_j}(z) \right|^2 |1 - z_1|^{-1} = 0
\]

and therefore \((\partial f_j/\partial z_j)(z) = 0 \), for all \(j \geq 2 \). Taking into account the results of Proposition 1.3, we obtain the assertion.

REFERENCES