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INTRODUCTION

Let 2n be the unit ball of Cn and let # be a hyperbolic automorphism of
2n . In this work we study the class of holomorphic mappings f #
Hol(2n , 2n), from 2n into itself, which commute with # (with respect to the
usual composition of mappings).

In the one-dimensional case, it is well known (see [6]) that if
f # Hol(2, 2) commutes with a hyperbolic automorphism # of 2, then f is
either the identity map or it is a hyperbolic automorphism of 2 with the
same fixed points of # (for a more recent exposition of this and related
results, see, e.g., [1]). Still in the one-dimensional case Behan and Shields
[3, 11] proved that, except for the case of two hyperbolic automorphisms
of 2, two non-trivial commuting holomorphic maps belonging to
Hol(2, 2) have the same fixed point in 2 or the same ``Wolff point'' in �2.

If the dimension n of the space is strictly greater than one, then the
problem of characterizing the holomorphic maps which commute with a
given hyperbolic automorphism of 2n is still open and in this paper we give
some contribution at this regard.

Suppose that f # Hol(2n , 2n) commutes with a given hyperbolic auto-
morphism # of 2n .
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We first prove that the two fixed points p1 and p2 ( # �2n) of # are ``fixed
points'' for f as well (Corollary 1.6). Since we can suppose, up to conjuga-
tion in Aut 2n , that the fixed points of # are e1 and &e1 , where
e1=(1, 0, ..., 0), then the finiteness of

lim inf
z � e1

1&& f (z)&
1&&z&

follows (as well as the finiteness of the same lim inf at &e1). This implies,
via the Julia�Wolff�Carathe� odory theorem, that, among others, the func-
tions

(i) (1& f1(z))�(1&z1),

(ii) Qe1
( f (z))�(1&z1)1�2,

(iii) (dfze=
1 , e1)�(1&z1)1�2,

defined in Theorem 1.5 have restricted K-limit at e1 (see Definition 1.4).
At this point we assume a ``regularity condition'' on f, that is, we assume

that the K-limit (and not only the restricted K-limit) of function (i) exists
at e1 . With this hypothesis we prove the main result of the paper, i.e., that
f1 is a function depending only on one complex variable, and we can find
an explicit formula for f1 (Theorem 2.2 and Theorem 2.4). We then show
that the assumption of analogous ``regularity conditions'' on (ii) at e1 does
not make any sense.

Finally, after having given (under conjugation in Aut 2n) a special form
to the hyperbolic automorphism # of 2n , we show that the existence of the
K-limit of function (iii), for z � e1 , brings to the same conclusions on f as
in Theorem 2.4.

For a statement of the Wolff theorem, for a definition of the ``Wolff
point,'' and for other preliminaries and notations we refer the reader to,
e.g., [10].

1. THE GENERAL CASE

Let us denote by SU(n, 1) the special unitary group with respect to the
standard Hermitian form of signature (n, 1), i.e.,

SU(n, 1)=[g # SL(n+1, C) : g*Jg=J],

where J=( In
0

0
&1), and In is the n_n identity matrix. Let us write any

g # SU(n, 1), as customary, in the form of a complex (n+1)_(n+1)
matrix ( A

C
B
D), with D # C and A, B, C matrices of type n_n, n_1 and 1_n,

respectively.
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It is well known that there exists a surjective homomorphism 9: SU(n, 1)
� Aut 2n mapping g=( A

C
B
D) # SU(n, 1) to 9g # Aut 2n defined by

9g(z)=(Az+B)(Cz+D)&1,

for all z # 2n . The kernel of 9 is given by the center of SU(n, 1), i.e., by the
subgroup

[e2i?k�(n+1) In+1 , k=0, ..., n]

(for a proof see, e.g., [5, 10]).
The proof of the following theorem can be found, e.g., in [1].

Theorem 1.1. Each element # of the group Aut 2n can be extended
holomorphically to an open neighborhood of 2� n and, if #{id2n , then either
# has at least one fixed point in 2n , or it has no fixed points in 2n and it has
one or two fixed points in �2n .

Definition 1.1. In the case in which # has some fixed point in 2n , then
it is called elliptic; if # has no fixed points in 2n and only one fixed point
in �2n , then it is called parabolic; if # has no fixed points in 2n and two
fixed points in �2n , then it is called hyperbolic.

As we already noticed in the Introduction, in the case n=1, the set of
all holomorphic maps of the unit disc 2 of C into itself which commute
with a given hyperbolic automorphism was studied in 1941 by M. H. Heins
who proved the following

Theorem 1.2. Let # be a hyperbolic automorphism of 2 and let
f # Hol(2, 2) be such that f b #=# b f. Then either f =id2 or f is a hyperbolic
automorphism of 2 with the same fixed points of #.

A proof of this theorem can be found in [6]: the proof relies upon the
existence result for the derivative of f at its Wolff point.

From now on # will be a hyperbolic element of Aut 2n . Since Aut 2n acts
doubly transitively on �2n , we can find a suitable element . in Aut 2n such
that the fixed points of .#.&1 in �2n are e1 and &e1 , where ej denotes the
j-th element of the standard basis of Cn, j=1, ..., n. If # is a hyperbolic ele-
ment in Aut 2n such that its fixed points in �2n are e1 and &e1 , then the
elements of SU(n, 1) which represent # have the form

ei%cosh t0 0 ei%sinh t0

\ 0 A1 0 + ,

ei%sinh t0 0 ei%cosh t0

where t0 # R"[0], A1 # U(n&1), and det A1=e&2i%.
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In fact e1 and &e1 are the fixed points of # in �2n if, and only if,
e1+en+1 and e1&en+1 are the isotropic eigenvectors in Cn+1 of any of the
matrices in 9 &1(#). In what follows, we will choose any element g of the
n+1 elements of 9 &1(#). All that we will say is independent of the choice
made. By conjugating this chosen element g with a suitable element in
SU(n&1)/SU(n, 1) we can suppose that A1 is a diagonal matrix. This
implies that if z=(z1 , ..., zn) # 2n , then

#(z)=
(cosh t0z1+sinh t0 , e i%2z2 , ..., e i%nzn)

sinh t0 z1+cosh t0

. (1.1)

If # is any hyperbolic automorphism of 2n , then the search for all the solu-
tions f # Hol(2n , 2n) of equation f b #=# b f can, clearly, be made up to
conjugation by elements of Aut 2n . Therefore we can suppose that # has
the form (1.1). Our first results concern the form of the first component of
f, when restricted to the unit disc 2_[0]/2n . The fact that f and # com-
mute implies the following

Proposition 1.3. Let # # Aut 2n be as in (1.1) and let f =( f1 , ..., fn) #
Hol(2n , 2n). If f b #=# b f, then there exists t1 # R such that

f1(z1 , 0, ..., 0)=
cosh t1 z1+sinh t1

sinh t1 z1+cosh t1

. (1.2)

Proof. Let us consider the holomorphic maps f� and #~ from 2 into 2
defined by f� (`)= f1(`, 0, ..., 0) and #~ (`)=#1(`, 0, ..., 0). It is easy to see that
the map #~ is a holomorphic automorphism of 2 and that its fixed points
are 1 and &1. Since #1(z) depends only on z1 and since #j (z1 , 0, ..., 0)=0
for all 2� j�n, then #~ and f� commute.

By Theorem 1.2, there exists t1 # R such that for all ` # 2,

f� (`)=
cosh t1`+sinh t1

sinh t1 `+cosh t1

and the proposition is proved. K

The explicit form of f� we have found allows us to prove that

lim inf
` � 1

1&| f� (`)|
1&|`|

<+� and lim inf
` � &1

1&| f� (`)|
1&|`|

<+�. (1.3)

In fact, if t1=0, then the lim inf is equal to 1; if t1 {0, then we can perform
a direct computation, taking the limit on the real segment (&1, 1).

Let now & }& denote the norm associated to the standard Hermitian
product ( } , } ) on Cn. We will use inequalities (1.3) to study the function f.
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With the aim of applying the Julia�Wolff�Carathe� odory theorem for n>1,
we will prove

Proposition 1.4. Let f # Hol(2n , 2n) be such that

f1(z1 , 0, ..., 0)=
cosh t1 z1+sinh t1

sinh t1 z1+cosh t1

.

Then

lim inf
z � e1

1&& f (z)&
1&&z&

<+� and lim inf
z � &e1

1&& f (z)&
1&&z&

<+�.

Proof. Obviously we have

1&& f (z)&
1&&z&

�
1&| f1(z)|

1&&z&
.

Then we get

lim inf
z � e1

1&| f1(z)|
1&&z&

�lim inf
z1 � 1

1&| f1(z1 , 0, ..., 0)|
1&|z1 |

=lim inf
z1 � 1

1&| f� (z1)|
1&|z1 |

<+�.

The finiteness of the same lim inf at &e1 can be proved analogously. K

To state the Julia�Wolff�Carathe� odory theorem we will recall some
notations concerning curves in 2n (see, e.g., [10]). Let x # �2n ; a x-curve
is a curve _: [a, b) � 2n such that limt � b& _(t)=x. We denote by _x the
projection of _ into the complex line Cx through 0 and x, i.e., we set
_x(t)=(_(t), x) x.

Definition 1.2. Let _ be a x-curve; we say that _ is special if

lim
t � b&

&_(t)&_x(t)&2

1&&_x(t)&2 =0.

Definition 1.3. Let _ be a special x-curve; then _ is said to be restricted
if there exists A>0 such that

&_x(t)&x&
1&&_x(t)&

�A \t # [a, b).

The Kora� nyi regions take the place of the Stolz regions in the definition of
the ``non-tangential limits'' in dimension greater than 1.
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The Kora� nyi region K(x, M) of vertex x # �2n and amplitude M>0 is
given by (see, e.g., [10])

K(x, M)={z # 2n :
|1&(z, x) |

1&&z&
<M= .

The Kora� nyi region K(x, M) is empty if M�1 and, for any x in the
boundary of 2n , the regions K(x, M) ``fill'' 2n as M approaches +�.

Definition 1.4. Let f: 2n � C be a function. We shall say that f has
K-limit * at x # �2n (possibly *=�) if f (z) � * as z � x within K(x, M) for
any M>1. We shall say that f has restricted K-limit * at x if f(_(t)) � * as
t � b& for any restricted x-curve _. We can now state precisely the follow-
ing classical result (see, e.g., [10, 1]).

Theorem 1.5 (Julia�Wolff�Carathe� odory). Let f # Hol(2n , 2n) be such
that, for x # �2n

lim inf
z � x

1&& f (z)&
1&&z&

=c<+�.

Then f has K-limit y # �2n at x and the following functions are bounded on
any Kora� nyi region:

(i) (1&( f (z), x) )�(1&(z, x) ),

(ii) Qy (f (z))�(1&(z, x) )1�2,

(iii) (dfzx=, y)�(1&(z, x) )1�2,

where Qy(z)=z&(z, y)y is the orthogonal projection on the orthogonal
complement of Cy and x= is any vector in Cn orthogonal to x. Moreover the
functions (ii) and (iii) have restricted K-limit 0 at x and the function (i) has
restricted K-limit c at x.

By Proposition 1.4, the Julia�Wolff�Carathe� odory theorem yields the
following result, which guarantees that the fixed points of # are ``fixed
points'' for f.

Corollary 1.6. Let # be a hyperbolic automorphism of 2n , let
p1 , p2 # �2n be the fixed points of # in 2� n , and let f # Hol(2n , 2n). If
f b #=# b f, then K&limz � p1

f (z)= p1 and K&limz � p2
f (z)= p2 .

Proof. Let . # Aut 2n be such that .(e1)= p1 , .(&e1)= p2 , and
#� =.&1 b # b . has the form (1.1). Set f8 =.&1 b f b .. Then f8 commutes with
#� . Since . sends Kora� nyi regions with vertex at p1 ( p2) in Kora� nyi regions
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with vertex at e1 (&e1), then we can restrict ourselves to the case in which
# has the form (1.1).

By Proposition 1.3 there exists t1 # R such that

f1(z1 , 0, ..., 0)=
cosh t1 z1+sinh t1

sinh t1 z1+cosh t1

.

Proposition 1.4 together with Theorem 1.5 implies that f admits K-limit y
at e1 . The above form of f1 yields that f1(z1 , 0, ..., 0) approaches to 1 when
z1 approaches to 1. Hence f (z1 , 0, ..., 0) � e1 when z1 � 1 (because f maps
2n into itself) and therefore y=e1 . The same argument applied to the point
&e1 implies that K&limz � &e1

f (z)=&e1 . K

We will now obtain the final results of this section, which completely
describe the behaviour of f on the disc 2_[0].

Proposition 1.7. Let # be the hyperbolic automorphism of 2n given by
(1.1) and let f # Hol(2n , 2n) be such that f b #=# b f. Then f2(z1 , 0, } } } , 0)=
} } } = fn(z1 , 0, ..., 0)=0 for all z1 # 2.

Proof. Fix z1 # 2, set z=(z1 , 0, ..., 0), and define

_(t)=\cosh tz1+sinh t
sinh tz1+cosh t

, 0, ..., 0+.

The curve _ is a restricted e1 -curve when t � +�. In fact _=_e1 and
therefore _ is trivially special; the fact that _ is restricted follows from an
easy computation.

We consider now the function (ii) in Theorem 1.5. By Propositions 1.3
and 1.4 we obtain that

lim
t � +�

&( f2 (_(t)) , ..., fn (_(t)))&
(1&|_1(t)| )1�2 =0, (1.4)

since _=_1 and _ is restricted.
By the definition of _, (1.4) is equivalent to the fact that

lim
t � +�

&( f2 (_(t)) , ..., fn (_(t)))& \1& } cosh tz1+sinh t
sinh tz1+cosh t }+

&1�2

=0. (1.5)

Now, the curve _ was chosen in such a way that it contains all the points
#m(z) for m # N: in fact _(mt0)=#m(z), as it can be seen by the definition
of _ and the form of # (see (1.1)). Hence, the fact that f and # commute
implies that

( f2 (_(mt0)) , ..., fn (_(mt0)))

=Am
1 ( f2(z), ..., fn(z))(sinh mt0 z1+cosh mt0)&1.
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Since A1 # U(n&1), the last equation implies that

&( f2 (_(mt0)) , ..., fn (_(mt0)))&

=&( f2(z), ..., fn(z))&|sinh mt0z1+cosh mt0 |&1. (1.6)

By considering the argument of the limit in (1.5) at the point t=mt0 and
by calling in (1.6), we obtain that

lim
m � +�

&( f2(z), ..., fn(z))&
|sinh mt0z1+cosh mt0 | \1& } cosh mt0z1+sinh mt0

sinh mt0z1+cosh mt0 }+
&1�2

=0.(1.7)

Squaring the argument of the limit in (1.7) and multiplying it by

\1+ } cosh mt0z1+sinh mt0

sinh mt0z1+cosh mt0 }+
&1

,

which is strictly less than 1, we obtain that

lim
m � +�

&( f2(z), ..., fn(z))&2

|sinh mt0z1+cosh mt0 |2 \1& } cosh mt0z1+sinh mt0

sinh mt0z1+cosh mt0 }
2+

&1

=0.

(1.8)

This equality is equivalent to

lim
m � +�

&( f2(z), ..., fn(z))&2 ( |sinh mt0 z1+cosh mt0 |2

&|cosh mt0z1+sinh mt0 |2)&1=0.

Straightforward computations yield now that

lim
m � +�

&( f2(z), ..., fn(z))&2 (1&|z1 |2)&1=0,

and hence f2(z1 , 0, ..., 0)= } } } = fn(z1 , 0, ..., 0)=0 for all z1 # 2 and the
proposition is proved. K

Before passing to the general case, we want to study the situation in
which two holomorphic automorphisms of 2n , one of which is hyperbolic,
commute. The result that we find generalizes to dimension n>1, a well
known result on commuting automorphisms (see [6, and 2]).

Proposition 1.8. Let # be a hyperbolic automorphism of 2n , and let f be
an automorphism of 2n . If # and f commute, then either f is hyperbolic and it
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has the same fixed points of # or it is elliptic and its fixed points set has
positive dimension and contains the fixed point set of #.

Proof. Let l1 and l2 # SU(n, 1) be such that 9l1=# and 9l2= f. As
before, the statement of the proposition is invariant by inner conjugation
in Aut 2n . Therefore, by conjugating both l1 and l2 by a same element in
SU(n, 1) we can suppose that l1=( U

0
0
V), where U is a diagonal

(n&1)_(n&1) unitary matrix and where V=ei%( cosh t
sinh t

sinh t
cosh t), with t{0.

(Here we choose the fixed points of # to be en and &en only for technical
reasons.)

The form of l2 will now be

l2=\A
C

B
D+ ,

with A, B, C, D, respectively, (n&1)_(n&1), (n&1)_2, 2_(n&1), 2_2
complex matrices. The fact that f and # commute is equivalent to
l1 l2=e2im?�(n+1)l2 l1 for a suitable m # [0, ..., n].

This last equation implies in particular that UB=ei%e2im?�(n+1)

B( cosh t
sinh t

sinh t
cosh t). Setting B=(B1 , B2) for B1 , B2 vectors of Cn&1 and letting

U1=e&i%e&2mi?�(n+1)U, we obtain

\U1

0
0

U1+ \
B1

B2+=\cosh tI
sinh tI

sinh tI
cosh tI+ \

B1

B2+ .

Thus ( B1

B2
) belongs to Ker M, where M=( U1&cosh tI

&sinh tI
&sinh tI

&cosh tI+U1
).

Since U1 is a diagonal unitary matrix, say U1=diag[ei%1, ..., ei%n&1], an
easy inductive procedure shows that det M=((ei%1&cosh t)2&
sinh2 t) } } } ((ei%n&1&cosh t)2&sinh2 t){0. Hence B1=B2=0, whence
A # U(n&1) and D # U(1, 1). In the remaining one-dimensional case a
direct inspection proves that D=ei:( cosh {

sinh {
sinh {
cosh {). If {=% 0, then f is hyper-

bolic and its fixed point set is equal to the fixed point set of #, otherwise
f is elliptic and its fixed point set has positive dimension and contains both
the fixed points of #. K

2. WHAT ``REGULARITY'' CAN ADD

Let f # Hol(2n , 2n) be a map which commutes with the holomorphic
automorphism # defined by (1.1). We will pass now to the investigation of
the behaviour of f outside the disc 2_[0], in the case in which f is a
holomorphic self map of 2n . We will consider the case in which the map
f has a ``sort of regularity'' at the boundary and will deduce some conse-
quences on the form of f.
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Notice that, in the one-dimensional case, if { is the Wolff point of
f: 2 � 2, then

K& lim
z � {

{& f (z)
{&z

=df ({, {)�1,

where df ({, {) denotes the dilatation coefficient of f at { (see, e.g., [1]). In
the multidimensional case this is no more true because in this case the
statement of the Julia�Wolff�Carathe� odory theorem involves the restricted
K-limit instead of the K-limit.

Given any z # 2n , we want to introduce curves which contain all points
of the form [#m(z)] for m # N. By taking the limit along these curves we
will be able to understand the behaviour of f at any point z # 2n . To do
this, fix z # 2n and define the curve _: [0, +�) � 2n by

_(t)=
(cosh tz1+sinh t, ei%2t�t0z2 , ..., ei%nt�t0zn)

sinh tz1+cosh t
. (2.1)

First of all notice that _(mt0)=#m(z) for all m # N.
Since we want to use these curves to compute K-limits, we have to prove

that, for a fixed z # 2n , _ lies in a suitable Kora� nyi region with vertex at e1 .

Proposition 2.1. There exists M>1 such that _(t) # K(e1 , M) for all
t�0.

Proof. Consider the ratio |1&_1(t)|�(1&&_(t)&). It is evident that it is
bounded on [0, +�) iff |1&_1(t)|�(1&&_(t)&2) is. If we compute this last
ratio, we obtain

|1&_1(t)|
1&&_(t)&2=

|1&z1 |
1&&z&2 (cosh t&sinh t) |cosh t+sinh tz1 |

=e&t |1&z1 |
1&&z&2 |cosh t+sinh tz1 |

|1&z1 |
1&&z&2 (e&t cosh t+e&t sinh t |z1 | )�

|1&z1 |
1&&z&2 (1+|z1 | )=M,

because cosh t�et and sinh t�et for all t�0. K

If f # Hol(2n , 2n) commutes with the hyperbolic automorphism # given
by (1.1), then, by Propositions 1.3 and 1.4, Theorem 1.5 and Corollary 1.6,
both the restricted K-limit of (1& f1(z))�(1&z1) at e1 and the restricted
K-limit of (1+ f1(z))�(1+z1) at &e1 do exist. If we now suppose that (not
only the restricted K-limit of (1& f1(z))�(1&z1) exists and is finite at e1 ,
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but also) the K-limit of (1& f1(z))�(1&z1) exists and is finite at e1 , we can
prove the following

Theorem 2.2. Let # be the hyperbolic automorphism of 2n given by (1.1)
and let f # Hol(2n , 2n) be such that

(a) f commutes with #,

(b) there exists K&limz � e1
((1& f1(z))�(1&z1 ))=c # C.

Then there exists t1 # R such that, for all z=(z1 , ..., zn) # 2n ,

f1(z)=
cosh t1 z1+sinh t1

sinh t1z1+cosh t1

.

In particular, f1 does not depend on z2 , ..., zn .

Proof. Taking # or #&1 we can always suppose that e1 is the Wolff
point of # (that is, we can suppose that t0>0 in (1.1)). By Proposition 1.3,
there exists t1 # R such that

f1(z1 , 0, ..., 0)=
cosh t1 z1+sinh t1

sinh t1 z1+cosh t1

.

Corollary 1.6 gives that the K-limit of f at e1 is equal to e1 and this implies
that the function (1+ f1(z))�(1+z1) has K-limit 1 at e1 . Then condition (b)
yields that

K& lim
z � e1

1& f1(z)
1&z1

}
1+z1

1+ f1(z)
=c.

Fix z # 2n and define _ as in (2.1). Proposition 2.1 implies that

lim
t � +�

1& f1(_(t))
1&_1(t)

}
1+_1(t)

1+ f1(_(t))
=c.

Consider this last limit restricted to the sequence [mt0] for m # N. Since
_(mt0)=#m(z), we have the equality

1& f1(_(mt0))
1&_1(mt0)

}
1+_1(mt0)

1+ f1(_(mt0))
=

1& f1(#m(z))
1&#m

1 (z)
}

1+#m
1 (z)

1+ f1(#m(z))
.

Using the fact that f and # commute we obtain

1& f1(_(mt0))
1&_1(mt0)

}
1+_1(mt0)

1+ f1(_(mt0))
=

1&#m
1 ( f (z))

1&#m
1 (z)

}
1+#m

1 (z)
1+#m

1 ( f (z))
.
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A direct computation, performed taking into account the form of #, gives

1&#m
1 ( f (z))

1&#m
1 (z)

}
1+#m

1 (z)
1+#m

1 ( f (z))
=

1& f1(z)
1&z1

}
1+z1

1+ f1(z)
.

Therefore

1& f1(z)
1&z1

}
1+z1

1+ f1(z)
= lim

m � +�

1& f1(_(mt0))
1&_1(mt0)

}
1+_1(mt0)

1+ f1(_(mt0))
=c,

and hence we obtain that f1(z) does not depend on z2 , ..., zn and the
theorem is proved. K

Notice that, for any f # Hol(2n , 2n) such that f1(z)=(cosh t1z1+
sinh t1 )�(sinh t1 z1+cosh t1 ), then the K-limit of (1& f1(z))�(1&z1) at e1

exists. In fact, as f1 depends only on z1 , the K-limit at e1 becomes a K-limit
in one-variable at 1 and in this case we can apply the fact that the function
extends holomorphically to an open neighborhood of the closed disc 2 in
C to obtain the existence of the K-limit at 1.

We will now get rid of the particular form (1.1) of the hyperbolic
automorphism # of 2n , to give a more general statement of Theorem 2.2.
Let # be a hyperbolic automorphism of 2n and let p1 , p2 # �2n be its fixed
points. Let . # Aut 2n be such that .(e1)= p1 and .(&e1)= p2 . We can
choose . so that .&1 b # b . has the form (1.1). Let f # Hol(2n , 2n) and
define f8 =.&1 b f b . and #� =.&1 b # b .. Obviously #� commutes with f8 iff #
commutes with f. The following lemma holds

Lemma 2.3. Let #, f, ., f8 , #� be as above and suppose that f commutes
with #. Then the two following facts are equivalent:

(i) K& lim
z � p1

1&( f (z), p1)
1&(z, p1)

exists and belongs to C

(ii) K& lim
z � e1

1& f8 1(z)
1&z1

exists and belongs to C.

Moreover, if the two limits exist, then they are equal.

Proof. Let us denote by & the standard Hermitian form of signature
(n, 1) on Cn+1 and, if a # Cn, let us denote by a* the vector in Cn+1 given
by ( a

1). Obviously,

1&( f (z), p1)
1&(z, p1)

=
&( f *(z), p*1)

&(z*, p*1)
and

1& f1(z)
1&z1

=
&( f *(z), e*1)

&(z*, e*1)
.

130 DE FABRITIIS AND GENTILI



Let /=( A
C

B
D) # SU(n, 1) be such that 9/=.&1. Using the definition of f8

and the fact that . maps Kora� nyi regions with vertex at e1 in Kora� nyi
regions with vertex at p1 we obtain that

K& lim
z � e1

1& f8 1(z)
1&z1

=K& lim
.(z) � p1

1&(.&1f (.(z)), e1)
1&(z, e1)

.

If we set .(z)=`, then the above limit is equal to

K& lim
` � p1

1&(.&1f (`), e1)
1&(.&1(`), e1)

=K& lim
` � p1

&((.&1f (`))*, e*1)
&((.&1(`))*, e*1)

. (2.2)

A direct inspection shows that, being 9/=.&1,

(.&1f (`))*=/( f (`)*)�(Cf (`)+D) and (.&1(`))*=/(`*)�(C`+D).

Then the K-limit in (2.2) is equal to

K& lim
` � p1

&(/( f (`)*)�(Cf (`)+D), e*1)
&(/(`*)�(C`+D), e*1)

=K& lim
` � p1

C`+D
Cf (`)+D

} K& lim
` � p1

&(/( f (`)*), e*1)
&(/(`*), e*1)

.

Corollary 1.6 implies that K&limz � p1 f (z)= p1 ; then

K& lim
` � p1

C`+D
Cf (`)+D

=1.

Hence

K& lim
z � e1

1& f1(z)
1&z1

=K& lim
` � p1

&(/( f (`)*), e*1)
&(/(`*), e*1)

.

Using the fact that / # SU(n, 1), we obtain that

K& lim
` � p1

&(/( f (`)*), e*1)
&(/(`*), e*1)

=K& lim
` � p1

&( f (`)*, /&1(e*1))
&(`*, /&1(e*1))

.

Now, since 9/=.&1 and .(e1)= p1 , we obtain that 9/&1(e1)= p1 . If
/&1=( A1

C1

B1

D1
), then a direct inspection proves that /&1(e*1)= p*1 (C1e1+

D1). Therefore we get
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K& lim
z � e1

1& f8 1(z)
1&z1

=K& lim
` � p1

&( f (`)*, p*1)
&(`*, p*1)

}
C1e1+D1

C1 e1+D1

=K& lim
` � p1

&( f (`)*, p*1)
&(`*, p*1)

.

By definition, &(`*, p*1)=&1+(`, p1) and &( f (`)*, p1)=&1+
( f (`), p1). If follows that

K& lim
` � e1

1&( f (`), p1)
1&(`, p1)

does exist if and only if

K& lim
z � e1

1& f1(z)
1&z1

does exist and that, if they exist, then they are equal. K

As a consequence of the above lemma we can state Theorem 2.2 in an
``invariant version.''

Theorem 2.4. Let # be a hyperbolic automorphism of 2n and let p1 , p2

be the fixed points of # in �2n . Let f # Hol(2n , 2n) be such that

(a) f commutes with #,

(b) there exists K&limz � p1
((1&( f (z), p1) )�(1&(z, p1) ))=c # C.

Then there exists t1 # R and . # Aut 2n such that

(.&1 b f b .(z), e1) =
cosh t1z1+sinh t1

sinh t1 z1+cosh t1

.

In particular, (.&1 b f b .(z), e1) does not depend on z2 , ..., zn .

By assuming a ``certain regularity'' on a map f # Hol(2n , 2n) which com-
mutes with a hyperbolic automorphism of 2n , we have obtained a very
precise and surprising information on the map f itself. In particular we
have obtained that one of the components of f is always, up to conjugation
in Aut 2n , a function of one complex variable. This ``regularity condition''
we have assumed is the existence of K-limits (instead of the existence of
restricted K-limits) for function (i) in Theorem 1.5.
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Now we will prove that ``assuming regularity'' on function (ii) in
Theorem 1.5 is meaningless: namely we will prove that for # itself (which
obviously commutes with #) it is not true that

K& lim
z � e1

Qe1
(#(z))�(1&z1)&1�2=0

(here Qe1
is as usual the projection on the orthogonal complement of Ce1).

In fact we have

&Qe1
(#(z))&2 |1&z1 |&1

=(|z2 |2+ } } } +|zn |2) |sinh t0z1+cosh t0 |&2 |1&z1 |&1.

Since |sinh t0z1+cosh t0 |�cosh t0+|z1 | sinh t0�cosh t0+sinh t0=et0, then

&Qe1
(#(z))&2 |1&z1 |&1�e&2t0( |z2 |2+ } } } +|zn |2) |1&z1 |&1. (2.4)

Take a, z1 # (0, 1) and set z2=a- 1&z2
1 . To prove that the point

(z1 , z2 , 0, ..., 0) belongs to K(e1 , 2(1&a2)&1), we evaluate |1&z1 |
(1&&z&)&1. Since z1 and a are real, we find

|1&z1 |(1&&z&)&1�2(1&z1)(1&&z&2)&1

=2|1&z1 |(1&(z2
1+a2(1&z2

1)))&1

=2(1&z1)(1&z2
1)&1 (1&a2)&1

=2(1+z1)&1 (1&a2)&1�2(1&a2)&1.

Therefore, fixed a # (0, 1), the points of the form (z1 , a- 1&z2
1 , 0, ..., 0)

belong to K(e1 , 2(1&a2)&1) for all z1 # (0, 1). If we now compute the
limit of e&2t0( |z2 |2+ } } } +|zn |2) |1&z1 |&1 on the points of the form
(z1 , a- 1&z2

1 , 0, ..., 0), with z1 � 1, we obtain

e&2t0a2(1&z2
1)(1&z1)&1=a2e&2t0(1+z1),

whose limit for z1 � 1 is equal to 2a2e&2t0{0. Comparing this result with
inequality (2.4), we contradict the fact that the K-limit at e1 of the function
Qe1

(#(z))�(1&z1)&1�2 is equal to 0.
We will now conclude this paper by proving that a statement similar to

the one in Theorem 2.2 holds true also in the case in which we have the
existence of the K-limit (and not only of the restricted K-limit) for the func-
tion (dfze=

1 , e1)�(1&z1)1�2 when z � e1 (here e=
1 is any vector in Cn

orthogonal to e1). To be more precise we can state the following
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Theorem 2.5. Let # be as in (1.1) and let f # Hol(2n , 2n) be such that
f b #=# b f. If e=

1 denotes any vector in Cn orthogonal to e1 and if

K& lim
z � e1

(dfze=
1 , e1)

(1&z1)1�2 =0,

then f1 does not depend on z2 , ..., zn and therefore

f1(z)=
cosh t1 z1+sinh t1

sinh t1z1+cosh t1

,

for a suitable t1 # R.

Proof. Taking # or #&1 we can always suppose that e1 is the Wolff
point of # (that is, we can suppose that t0>0 in (1.1)).

If we fix z # 2n and define _ as in (2.1), then we have

f (_(mt0))= f (#m(z))=#m( f (z)).

Therefore

f1(#m(z))=
cosh mt0 f1(z)+sinh mt0

sinh mt0 f1(z)+cosh mt0

,

and by differentiating both members of the last equality with respect to zj

(for j�2) we obtain

�f1

�zj
(#m(z))

ei%j m

sinh mt0z1+cosh mt0

=
�f1

�z j
(z) (sinh mt0 f1(z)+cosh mt0)&2,

that is,

�f1

�zj
(#m(z))=

e&i%j m(sinh mt0z1+cosh mt0)
(sinh mt0 f1(z)+cosh mt0)2

�f1

�zj
(z). (2.3)

The fact that the K-limit of (dfze=
1 , e1)�(1&z1)1�2 at e1 is equal to 0

implies obviously that

K& lim
z � e1

((dfze=
1 , e1) )2 (1&z1)&1=0.

By Proposition 2.1, the curve _ is contained in a suitable Kora� nyi region,
and then we can compute the limit of ((dfze=

1 , e1) )2 (1&z1)&1 on the
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sequence [_(mt0)] and obtain 0. Fix now j # [2, ..., n] and choose e=
1 =e j .

Then

lim
m � +� \�f1

�z j
(#m(z))+

2

(1&#m
1 (z))&1=0.

Formula (2.3) implies that

lim
m � +�

e&2i%jm(sinh mt0z1+cosh mt0)3

(sinh mt0 f1(z)+cosh mt0)4 (cosh mt0&sinh mt0)(1&z1) \�f1

�z j
(z)+

2

=0.

Taking the modulus we get

lim
m � +�

emt0 |sinh mt0 z1+cosh mt0 |3

|sinh mt0 f1(z)+cosh mt0 |4 |1&z1 | }
�f1

�zj
(z) }

2

=0.

Now, since the limit (for m � +�) of the function

emt0 |sinh mt0z1+cosh mt0 |3

|sinh mt0 f1(z)+cosh mt0 | 4

is equal to |1+z1 | 3 | f1(z)+1|&4, we have

lim
m � +� } �f1

�z j
(z) }

2

|1&z1 |&1=0

and therefore (�f1��zj )(z)=0, for all j�2. Taking into account the results
of Proposition 1.3, we obtain the assertion. K
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