On Holomorphic Maps Which Commute with Hyperbolic Automorphisms*

Chiara de Fabritiis
Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
E-mail: FABRITII@DM.UNIBO.IT
and
Graziano Gentili

iew metadata, citation and similar papers at core.ac.uk

Received February 19, 1995; accepted December 14, 1998

INTRODUCTION

Let Δ_{n} be the unit ball of \mathbf{C}^{n} and let γ be a hyperbolic automorphism of Δ_{n}. In this work we study the class of holomorphic mappings $f \in$ $\operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$, from Δ_{n} into itself, which commute with γ (with respect to the usual composition of mappings).

In the one-dimensional case, it is well known (see [6]) that if $f \in \operatorname{Hol}(\Delta, \Delta)$ commutes with a hyperbolic automorphism γ of Δ, then f is either the identity map or it is a hyperbolic automorphism of Δ with the same fixed points of γ (for a more recent exposition of this and related results, see, e.g., [1]). Still in the one-dimensional case Behan and Shields [3, 11] proved that, except for the case of two hyperbolic automorphisms of Δ, two non-trivial commuting holomorphic maps belonging to $\operatorname{Hol}(\Delta, \Delta)$ have the same fixed point in Δ or the same "Wolff point" in $\partial \Delta$.

If the dimension n of the space is strictly greater than one, then the problem of characterizing the holomorphic maps which commute with a given hyperbolic automorphism of Δ_{n} is still open and in this paper we give some contribution at this regard.

Suppose that $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ commutes with a given hyperbolic automorphism γ of Δ_{n}.

[^0]We first prove that the two fixed points p_{1} and $p_{2}\left(\in \partial \Delta_{n}\right)$ of γ are "fixed points" for f as well (Corollary 1.6). Since we can suppose, up to conjugation in Aut Δ_{n}, that the fixed points of γ are e_{1} and $-e_{1}$, where $e_{1}=(1,0, \ldots, 0)$, then the finiteness of

$$
\liminf _{z \rightarrow e_{1}} \frac{1-\|f(z)\|}{1-\|z\|}
$$

follows (as well as the finiteness of the same $\lim \inf$ at $-e_{1}$). This implies, via the Julia-Wolff-Carathéodory theorem, that, among others, the functions
(ii) $Q_{e_{1}}(f(z)) /\left(1-z_{1}\right)^{1 / 2}$,
(iii) $\left\langle d f_{z} e_{1}^{\perp}, e_{1}\right\rangle /\left(1-z_{1}\right)^{1 / 2}$,
defined in Theorem 1.5 have restricted K-limit at e_{1} (see Definition 1.4).
At this point we assume a "regularity condition" on f, that is, we assume that the K-limit (and not only the restricted K-limit) of function (i) exists at e_{1}. With this hypothesis we prove the main result of the paper, i.e., that f_{1} is a function depending only on one complex variable, and we can find an explicit formula for f_{1} (Theorem 2.2 and Theorem 2.4). We then show that the assumption of analogous "regularity conditions" on (ii) at e_{1} does not make any sense.

Finally, after having given (under conjugation in Aut Δ_{n}) a special form to the hyperbolic automorphism γ of Δ_{n}, we show that the existence of the K-limit of function (iii), for $z \rightarrow e_{1}$, brings to the same conclusions on f as in Theorem 2.4.

For a statement of the Wolff theorem, for a definition of the "Wolff point," and for other preliminaries and notations we refer the reader to, e.g., [10].

1. THE GENERAL CASE

Let us denote by $\operatorname{SU}(n, 1)$ the special unitary group with respect to the standard Hermitian form of signature ($n, 1$), i.e.,

$$
S U(n, 1)=\left\{g \in S L(n+1, \mathbf{C}): g^{*} J g=J\right\},
$$

where $J=\left(\begin{array}{cc}I_{n} & 0 \\ 0 & -1\end{array}\right)$, and I_{n} is the $n \times n$ identity matrix. Let us write any $g \in S U(n, 1)$, as customary, in the form of a complex $(n+1) \times(n+1)$ matrix $\left(\begin{array}{cc}A & B \\ C & B \\ D\end{array}\right)$, with $D \in \mathbf{C}$ and A, B, C matrices of type $n \times n, n \times 1$ and $1 \times n$, respectively.

It is well known that there exists a surjective homomorphism $\Psi: S U(n, 1)$ \rightarrow Aut Δ_{n} mapping $g=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in S U(n, 1)$ to $\Psi_{g} \in$ Aut Δ_{n} defined by

$$
\Psi_{g}(z)=(A z+B)(C z+D)^{-1}
$$

for all $z \in \Delta_{n}$. The kernel of Ψ is given by the center of $\operatorname{SU}(n, 1)$, i.e., by the subgroup

$$
\left\{e^{2 i \pi k /(n+1)} I_{n+1}, k=0, \ldots, n\right\}
$$

(for a proof see, e.g., $[5,10]$).
The proof of the following theorem can be found, e.g., in [1].
Theorem 1.1. Each element γ of the group Aut Δ_{n} can be extended holomorphically to an open neighborhood of $\bar{\Delta}_{n}$ and, if $\gamma \neq i d_{\Delta_{n}}$, then either γ has at least one fixed point in Δ_{n}, or it has no fixed points in Δ_{n} and it has one or two fixed points in $\partial \Delta_{n}$.

Definition 1.1. In the case in which γ has some fixed point in Δ_{n}, then it is called elliptic; if γ has no fixed points in Δ_{n} and only one fixed point in $\partial \Delta_{n}$, then it is called parabolic; if γ has no fixed points in Δ_{n} and two fixed points in ∂A_{n}, then it is called hyperbolic.

As we already noticed in the Introduction, in the case $n=1$, the set of all holomorphic maps of the unit disc Δ of \mathbf{C} into itself which commute with a given hyperbolic automorphism was studied in 1941 by M. H. Heins who proved the following

Theorem 1.2. Let γ be a hyperbolic automorphism of Δ and let $f \in \operatorname{Hol}(\Delta, \Delta)$ be such that $f \circ \gamma=\gamma \circ f$. Then either $f=\mathrm{id}_{\Delta}$ or f is a hyperbolic automorphism of Δ with the same fixed points of γ.

A proof of this theorem can be found in [6]: the proof relies upon the existence result for the derivative of f at its Wolff point.

From now on γ will be a hyperbolic element of Aut Δ_{n}. Since Aut Δ_{n} acts doubly transitively on $\partial \Delta_{n}$, we can find a suitable element φ in Aut Δ_{n} such that the fixed points of $\varphi \gamma \varphi^{-1}$ in $\partial \Delta_{n}$ are e_{1} and $-e_{1}$, where e_{j} denotes the j-th element of the standard basis of $\mathbf{C}^{n}, j=1, \ldots, n$. If γ is a hyperbolic element in Aut Δ_{n} such that its fixed points in $\partial \Delta_{n}$ are e_{1} and $-e_{1}$, then the elements of $\operatorname{SU}(n, 1)$ which represent γ have the form

$$
\left(\begin{array}{ccc}
e^{i \theta} \cosh t_{0} & 0 & e^{i \theta} \sinh t_{0} \\
0 & A_{1} & 0 \\
e^{i \theta} \sinh t_{0} & 0 & e^{i \theta} \cosh t_{0}
\end{array}\right)
$$

where $t_{0} \in \mathbf{R} \backslash\{0\}, A_{1} \in U(n-1)$, and $\operatorname{det} A_{1}=e^{-2 i \theta}$.

In fact e_{1} and $-e_{1}$ are the fixed points of γ in $\partial \Delta_{n}$ if, and only if, $e_{1}+e_{n+1}$ and $e_{1}-e_{n+1}$ are the isotropic eigenvectors in \mathbf{C}^{n+1} of any of the matrices in $\Psi^{-1}(\gamma)$. In what follows, we will choose any element g of the $n+1$ elements of $\Psi^{-1}(\gamma)$. All that we will say is independent of the choice made. By conjugating this chosen element g with a suitable element in $S U(n-1) \subset S U(n, 1)$ we can suppose that A_{1} is a diagonal matrix. This implies that if $z=\left(z_{1}, \ldots, z_{n}\right) \in \Delta_{n}$, then

$$
\begin{equation*}
\gamma(z)=\frac{\left(\cosh t_{0} z_{1}+\sinh t_{0}, e^{i \theta_{2}} z_{2}, \ldots, e^{i \theta_{n}} z_{n}\right)}{\sinh t_{0} z_{1}+\cosh t_{0}} . \tag{1.1}
\end{equation*}
$$

If γ is any hyperbolic automorphism of Δ_{n}, then the search for all the solutions $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ of equation $f \circ \gamma=\gamma \circ f$ can, clearly, be made up to conjugation by elements of Aut Δ_{n}. Therefore we can suppose that γ has the form (1.1). Our first results concern the form of the first component of f, when restricted to the unit disc $\Delta \times\{0\} \subset \Delta_{n}$. The fact that f and γ commute implies the following

Proposition 1.3. Let $\gamma \in$ Aut Δ_{n} be as in (1.1) and let $f=\left(f_{1}, \ldots, f_{n}\right) \in$ $\operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$. If $f \circ \gamma=\gamma \circ f$, then there exists $t_{1} \in \mathbf{R}$ such that

$$
\begin{equation*}
f_{1}\left(z_{1}, 0, \ldots, 0\right)=\frac{\cosh t_{1} z_{1}+\sinh t_{1}}{\sinh t_{1} z_{1}+\cosh t_{1}} . \tag{1.2}
\end{equation*}
$$

Proof. Let us consider the holomorphic maps \tilde{f} and $\tilde{\gamma}$ from Δ into Δ defined by $\tilde{f}(\zeta)=f_{1}(\zeta, 0, \ldots, 0)$ and $\tilde{\gamma}(\zeta)=\gamma_{1}(\zeta, 0, \ldots, 0)$. It is easy to see that the map $\tilde{\gamma}$ is a holomorphic automorphism of Δ and that its fixed points are 1 and -1 . Since $\gamma_{1}(z)$ depends only on z_{1} and since $\gamma_{j}\left(z_{1}, 0, \ldots, 0\right)=0$ for all $2 \leqslant j \leqslant n$, then $\tilde{\gamma}$ and \tilde{f} commute.

By Theorem 1.2, there exists $t_{1} \in \mathbf{R}$ such that for all $\zeta \in \Delta$,

$$
\tilde{f}(\zeta)=\frac{\cosh t_{1} \zeta+\sinh t_{1}}{\sinh t_{1} \zeta+\cosh t_{1}}
$$

and the proposition is proved.
The explicit form of \tilde{f} we have found allows us to prove that

$$
\begin{equation*}
\liminf _{\zeta \rightarrow 1} \frac{1-|\tilde{f}(\zeta)|}{1-|\zeta|}<+\infty \quad \text { and } \quad \liminf _{\zeta \rightarrow-1} \frac{1-|\tilde{f}(\zeta)|}{1-|\zeta|}<+\infty . \tag{1.3}
\end{equation*}
$$

In fact, if $t_{1}=0$, then the \lim inf is equal to 1 ; if $t_{1} \neq 0$, then we can perform a direct computation, taking the limit on the real segment $(-1,1)$.

Let now $\|\cdot\|$ denote the norm associated to the standard Hermitian product $\langle\cdot, \cdot\rangle$ on \mathbf{C}^{n}. We will use inequalities (1.3) to study the function f.

With the aim of applying the Julia-Wolff-Carathéodory theorem for $n>1$, we will prove

Proposition 1.4. Let $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ be such that

$$
f_{1}\left(z_{1}, 0, \ldots, 0\right)=\frac{\cosh t_{1} z_{1}+\sinh t_{1}}{\sinh t_{1} z_{1}+\cosh t_{1}} .
$$

Then

$$
\liminf _{z \rightarrow e_{1}} \frac{1-\|f(z)\|}{1-\|z\|}<+\infty \quad \text { and } \quad \liminf _{z \rightarrow-e_{1}} \frac{1-\|f(z)\|}{1-\|z\|}<+\infty \text {. }
$$

Proof. Obviously we have

$$
\frac{1-\|f(z)\|}{1-\|z\|} \leqslant \frac{1-\left|f_{1}(z)\right|}{1-\|z\|} .
$$

Then we get

$$
\liminf _{z \rightarrow e_{1}} \frac{1-\left|f_{1}(z)\right|}{1-\|z\|} \leqslant \liminf _{z_{1} \rightarrow 1} \frac{1-\left|f_{1}\left(z_{1}, 0, \ldots, 0\right)\right|}{1-\left|z_{1}\right|}=\liminf _{z_{1} \rightarrow 1} \frac{1-\left|\tilde{f}\left(z_{1}\right)\right|}{1-\left|z_{1}\right|}<+\infty .
$$

The finiteness of the same lim inf at $-e_{1}$ can be proved analogously.
To state the Julia-Wolff-Carathéodory theorem we will recall some notations concerning curves in Δ_{n} (see, e.g., [10]). Let $x \in \partial \Delta_{n}$; a x-curve is a curve $\sigma:[a, b) \rightarrow \Delta_{n}$ such that $\lim _{t \rightarrow b^{-}} \sigma(t)=x$. We denote by σ_{x} the projection of σ into the complex line $\mathbf{C} x$ through 0 and x, i.e., we set $\sigma_{x}(t)=\langle\sigma(t), x\rangle x$.

Definition 1.2. Let σ be a x-curve; we say that σ is special if

$$
\lim _{t \rightarrow b^{-}} \frac{\left\|\sigma(t)-\sigma_{x}(t)\right\|^{2}}{1-\left\|\sigma_{x}(t)\right\|^{2}}=0 .
$$

Definition 1.3. Let σ be a special x-curve; then σ is said to be restricted if there exists $A>0$ such that

$$
\frac{\left\|\sigma_{x}(t)-x\right\|}{1-\left\|\sigma_{x}(t)\right\|} \leqslant A \quad \forall t \in[a, b) .
$$

The Korányi regions take the place of the Stolz regions in the definition of the "non-tangential limits" in dimension greater than 1 .

The Korányi region $K(x, M)$ of vertex $x \in \partial \Delta_{n}$ and amplitude $M>0$ is given by (see, e.g., [10])

$$
K(x, M)=\left\{z \in \Delta_{n}: \frac{|1-\langle z, x\rangle|}{1-\|z\|}<M\right\} .
$$

The Korányi region $K(x, M)$ is empty if $M \leqslant 1$ and, for any x in the boundary of Δ_{n}, the regions $K(x, M)$ "fill" Δ_{n} as M approaches $+\infty$.

Definition 1.4. Let $f: \Delta_{n} \rightarrow \mathbf{C}$ be a function. We shall say that f has K-limit λ at $x \in \partial \Delta_{n}$ (possibly $\lambda=\infty$) if $f(z) \rightarrow \lambda$ as $z \rightarrow x$ within $K(x, M)$ for any $M>1$. We shall say that f has restricted K-limit λ at x if $f(\sigma(t)) \rightarrow \lambda$ as $t \rightarrow b^{-}$for any restricted x-curve σ. We can now state precisely the following classical result (see, e.g., $[10,1]$).

Theorem 1.5 (Julia-Wolff-Carathéodory). Let $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ be such that, for $x \in \partial \Delta_{n}$

$$
\liminf _{z \rightarrow x} \frac{1-\|f(z)\|}{1-\|z\|}=c<+\infty .
$$

Then f has K-limit $y \in \partial \Delta_{n}$ at x and the following functions are bounded on any Korányi region:
(i) $(1-\langle f(z), x\rangle) /(1-\langle z, x\rangle)$,
(ii) $Q_{y}(f(z)) /(1-\langle z, x\rangle)^{1 / 2}$,
(iii) $\left\langle d f_{z} x^{\perp}, y\right\rangle /(1-\langle z, x\rangle)^{1 / 2}$,
where $Q_{y}(z)=z-\langle z, y\rangle y$ is the orthogonal projection on the orthogonal complement of $\mathbf{C} y$ and x^{\perp} is any vector in \mathbf{C}^{n} orthogonal to x. Moreover the functions (ii) and (iii) have restricted K-limit 0 at x and the function (i) has restricted K-limit c at x.

By Proposition 1.4, the Julia-Wolff-Carathéodory theorem yields the following result, which guarantees that the fixed points of γ are "fixed points" for f.

Corollary 1.6. Let γ be a hyperbolic automorphism of Δ_{n}, let $p_{1}, p_{2} \in \partial \Delta_{n}$ be the fixed points of γ in $\bar{\Delta}_{n}$, and let $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$. If $f \circ \gamma=\gamma \circ f$, then $K-\lim _{z \rightarrow p_{1}} f(z)=p_{1}$ and $K-\lim _{z \rightarrow p_{2}} f(z)=p_{2}$.

Proof. Let $\varphi \in$ Aut Δ_{n} be such that $\varphi\left(e_{1}\right)=p_{1}, \varphi\left(-e_{1}\right)=p_{2}$, and $\check{\gamma}=\varphi^{-1} \circ \gamma \circ \varphi$ has the form (1.1). Set $\check{f}=\varphi^{-1} \circ f \circ \varphi$. Then \check{f} commutes with $\check{\gamma}$. Since φ sends Korányi regions with vertex at $p_{1}\left(p_{2}\right)$ in Korányi regions
with vertex at $e_{1}\left(-e_{1}\right)$, then we can restrict ourselves to the case in which γ has the form (1.1).

By Proposition 1.3 there exists $t_{1} \in \mathbf{R}$ such that

$$
f_{1}\left(z_{1}, 0, \ldots, 0\right)=\frac{\cosh t_{1} z_{1}+\sinh t_{1}}{\sinh t_{1} z_{1}+\cosh t_{1}}
$$

Proposition 1.4 together with Theorem 1.5 implies that f admits K-limit y at e_{1}. The above form of f_{1} yields that $f_{1}\left(z_{1}, 0, \ldots, 0\right)$ approaches to 1 when z_{1} approaches to 1 . Hence $f\left(z_{1}, 0, \ldots, 0\right) \rightarrow e_{1}$ when $z_{1} \rightarrow 1$ (because f maps Δ_{n} into itself) and therefore $y=e_{1}$. The same argument applied to the point $-e_{1}$ implies that $K-\lim _{z \rightarrow-e_{1}} f(z)=-e_{1}$.
We will now obtain the final results of this section, which completely describe the behaviour of f on the disc $\Delta \times\{0\}$.

Proposition 1.7. Let γ be the hyperbolic automorphism of Δ_{n} given by (1.1) and let $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ be such that $f \circ \gamma=\gamma \circ f$. Then $f_{2}\left(z_{1}, 0, \cdots, 0\right)=$ $\cdots=f_{n}\left(z_{1}, 0, \ldots, 0\right)=0$ for all $z_{1} \in \Delta$.

Proof. Fix $z_{1} \in \Delta$, set $z=\left(z_{1}, 0, \ldots, 0\right)$, and define

$$
\sigma(t)=\left(\frac{\cosh t z_{1}+\sinh t}{\sinh t z_{1}+\cosh t}, 0, \ldots, 0\right)
$$

The curve σ is a restricted e_{1}-curve when $t \rightarrow+\infty$. In fact $\sigma=\sigma_{e_{1}}$ and therefore σ is trivially special; the fact that σ is restricted follows from an easy computation.

We consider now the function (ii) in Theorem 1.5. By Propositions 1.3 and 1.4 we obtain that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{\left\|\left(f_{2}(\sigma(t)), \ldots, f_{n}(\sigma(t))\right)\right\|}{\left(1-\left|\sigma_{1}(t)\right|\right)^{1 / 2}}=0, \tag{1.4}
\end{equation*}
$$

since $\sigma=\sigma_{1}$ and σ is restricted.
By the definition of $\sigma,(1.4)$ is equivalent to the fact that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left\|\left(f_{2}(\sigma(t)), \ldots, f_{n}(\sigma(t))\right)\right\|\left(1-\left|\frac{\cosh t z_{1}+\sinh t}{\sinh t z_{1}+\cosh t}\right|\right)^{-1 / 2}=0 \tag{1.5}
\end{equation*}
$$

Now, the curve σ was chosen in such a way that it contains all the points $\gamma^{m}(z)$ for $m \in \mathbf{N}$: in fact $\sigma\left(m t_{0}\right)=\gamma^{m}(z)$, as it can be seen by the definition of σ and the form of γ (see (1.1)). Hence, the fact that f and γ commute implies that

$$
\begin{aligned}
& \left(f_{2}\left(\sigma\left(m t_{0}\right)\right), \ldots, f_{n}\left(\sigma\left(m t_{0}\right)\right)\right) \\
& \quad=A_{1}^{m}\left(f_{2}(z), \ldots, f_{n}(z)\right)\left(\sinh m t_{0} z_{1}+\cosh m t_{0}\right)^{-1}
\end{aligned}
$$

Since $A_{1} \in U(n-1)$, the last equation implies that

$$
\begin{align*}
& \left\|\left(f_{2}\left(\sigma\left(m t_{0}\right)\right), \ldots, f_{n}\left(\sigma\left(m t_{0}\right)\right)\right)\right\| \\
& \quad=\left\|\left(f_{2}(z), \ldots, f_{n}(z)\right)\right\|\left|\sinh m t_{0} z_{1}+\cosh m t_{0}\right|^{-1} \tag{1.6}
\end{align*}
$$

By considering the argument of the limit in (1.5) at the point $t=m t_{0}$ and by calling in (1.6), we obtain that

$$
\lim _{m \rightarrow+\infty} \frac{\left\|\left(f_{2}(z), \ldots, f_{n}(z)\right)\right\|}{\left|\sinh m t_{0} z_{1}+\cosh m t_{0}\right|}\left(1-\left|\frac{\cosh m t_{0} z_{1}+\sinh m t_{0}}{\sinh m t_{0} z_{1}+\cosh m t_{0}}\right|\right)^{-1 / 2}=0 . \text { (1.7) }
$$

Squaring the argument of the limit in (1.7) and multiplying it by

$$
\left(1+\left|\frac{\cosh m t_{0} z_{1}+\sinh m t_{0}}{\sinh m t_{0} z_{1}+\cosh m t_{0}}\right|\right)^{-1}
$$

which is strictly less than 1 , we obtain that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \frac{\left\|\left(f_{2}(z), \ldots, f_{n}(z)\right)\right\|^{2}}{\left|\sinh m t_{0} z_{1}+\cosh m t_{0}\right|^{2}}\left(1-\left|\frac{\cosh m t_{0} z_{1}+\sinh m t_{0}}{\sinh m t_{0} z_{1}+\cosh m t_{0}}\right|^{2}\right)^{-1}=0 . \tag{1.8}
\end{equation*}
$$

This equality is equivalent to

$$
\begin{gathered}
\lim _{m \rightarrow+\infty}\left\|\left(f_{2}(z), \ldots, f_{n}(z)\right)\right\|^{2}\left(\left|\sinh m t_{0} z_{1}+\cosh m t_{0}\right|^{2}\right. \\
\left.-\left|\cosh m t_{0} z_{1}+\sinh m t_{0}\right|^{2}\right)^{-1}=0 .
\end{gathered}
$$

Straightforward computations yield now that

$$
\lim _{m \rightarrow+\infty}\left\|\left(f_{2}(z), \ldots, f_{n}(z)\right)\right\|^{2}\left(1-\left|z_{1}\right|^{2}\right)^{-1}=0
$$

and hence $f_{2}\left(z_{1}, 0, \ldots, 0\right)=\cdots=f_{n}\left(z_{1}, 0, \ldots, 0\right)=0$ for all $z_{1} \in \Delta$ and the proposition is proved.

Before passing to the general case, we want to study the situation in which two holomorphic automorphisms of Δ_{n}, one of which is hyperbolic, commute. The result that we find generalizes to dimension $n>1$, a well known result on commuting automorphisms (see [6, and 2]).

Proposition 1.8. Let γ be a hyperbolic automorphism of Δ_{n}, and let f be an automorphism of Δ_{n}. If γ and f commute, then either f is hyperbolic and it
has the same fixed points of γ or it is elliptic and its fixed points set has positive dimension and contains the fixed point set of γ.

Proof. Let l_{1} and $l_{2} \in S U(n, 1)$ be such that $\Psi_{l_{1}}=\gamma$ and $\Psi_{l_{2}}=f$. As before, the statement of the proposition is invariant by inner conjugation in Aut Δ_{n}. Therefore, by conjugating both l_{1} and l_{2} by a same element in $S U(n, 1)$ we can suppose that $l_{1}=\left(\begin{array}{cc}U & 0 \\ 0 & V\end{array}\right)$, where U is a diagonal $(n-1) \times(n-1)$ unitary matrix and where $V=e^{i \theta}\left(\begin{array}{l}\cosh t(\sinh t \\ \sinh t \\ \cosh t\end{array}\right)$, with $t \neq 0$. (Here we choose the fixed points of γ to be e_{n} and $-e_{n}$ only for technical reasons.)

The form of l_{2} will now be

$$
l_{2}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right),
$$

with A, B, C, D, respectively, $(n-1) \times(n-1),(n-1) \times 2,2 \times(n-1), 2 \times 2$ complex matrices. The fact that f and γ commute is equivalent to $l_{1} l_{2}=e^{2 i m \pi /(n+1)} l_{2} l_{1}$ for a suitable $m \in\{0, \ldots, n\}$.

This last equation implies in particular that $U B=e^{i \theta} e^{2 i m \pi /(n+1)}$ $B\left(\begin{array}{l}\text { cosh } t \sinh t \\ \sinh t \\ \sin \\ \text { cosh } t\end{array}\right)$. Setting $B=\left(B_{1}, B_{2}\right)$ for B_{1}, B_{2} vectors of \mathbf{C}^{n-1} and letting $U_{1}=e^{-i \theta} e^{-2 m i \pi /(n+1)} U$, we obtain

$$
\left(\begin{array}{cc}
U_{1} & 0 \\
0 & U_{1}
\end{array}\right)\binom{B_{1}}{B_{2}}=\left(\begin{array}{cc}
\cosh t I & \sinh t I \\
\sinh t I & \cosh t I
\end{array}\right)\binom{B_{1}}{B_{2}} .
$$

Thus $\binom{B_{1}}{B_{2}}$ belongs to Ker M, where $M=\left(\begin{array}{cc}U_{1}-\cosh t I & -\sinh t I \\ -\sinh t I\end{array}\right)$ - $\left.\begin{array}{c}\text { osh } t I+U_{1}\end{array}\right)$.
Since U_{1} is a diagonal unitary matrix, say $U_{1}=\operatorname{diag}\left[e^{i \theta_{1}}, \ldots, e^{i \theta_{n-1}}\right]$, an easy inductive procedure shows that $\operatorname{det} M=\left(\left(e^{i \theta_{1}}-\cosh t\right)^{2}-\right.$ $\left.\sinh ^{2} t\right) \cdots\left(\left(e^{i \theta_{n-1}}-\cosh t\right)^{2}-\sinh ^{2} t\right) \neq 0$. Hence $B_{1}=B_{2}=0$, whence $A \in U(n-1)$ and $D \in U(1,1)$. In the remaining one-dimensional case a
 bolic and its fixed point set is equal to the fixed point set of γ, otherwise f is elliptic and its fixed point set has positive dimension and contains both the fixed points of γ.

2. WHAT "REGULARITY" CAN ADD

Let $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ be a map which commutes with the holomorphic automorphism γ defined by (1.1). We will pass now to the investigation of the behaviour of f outside the disc $\Delta \times\{0\}$, in the case in which f is a holomorphic self map of Δ_{n}. We will consider the case in which the map f has a "sort of regularity" at the boundary and will deduce some consequences on the form of f.

Notice that, in the one-dimensional case, if τ is the Wolff point of $f: \Delta \rightarrow \Delta$, then

$$
K-\lim _{z \rightarrow \tau} \frac{\tau-f(z)}{\tau-z}=d_{f}(\tau, \tau) \leqslant 1,
$$

where $d_{f}(\tau, \tau)$ denotes the dilatation coefficient of f at τ (see, e.g., [1]). In the multidimensional case this is no more true because in this case the statement of the Julia-Wolff-Carathéodory theorem involves the restricted K-limit instead of the K-limit.

Given any $z \in \Delta_{n}$, we want to introduce curves which contain all points of the form $\left\{\gamma^{m}(z)\right\}$ for $m \in \mathbf{N}$. By taking the limit along these curves we will be able to understand the behaviour of f at any point $z \in \Delta_{n}$. To do this, fix $z \in \Delta_{n}$ and define the curve $\sigma:[0,+\infty) \rightarrow \Delta_{n}$ by

$$
\begin{equation*}
\sigma(t)=\frac{\left(\cosh t z_{1}+\sinh t, e^{i \theta_{2} t / 0_{0}} z_{2}, \ldots, e^{i \theta_{n} t / t_{0}} z_{n}\right)}{\sinh t z_{1}+\cosh t} \tag{2.1}
\end{equation*}
$$

First of all notice that $\sigma\left(m t_{0}\right)=\gamma^{m}(z)$ for all $m \in \mathbf{N}$.
Since we want to use these curves to compute K-limits, we have to prove that, for a fixed $z \in \Delta_{n}, \sigma$ lies in a suitable Korányi region with vertex at e_{1}.

Proposition 2.1. There exists $M>1$ such that $\sigma(t) \in K\left(e_{1}, M\right)$ for all $t \geqslant 0$.

Proof. Consider the ratio $\left|1-\sigma_{1}(t)\right| /(1-\|\sigma(t)\|)$. It is evident that it is bounded on $[0,+\infty)$ iff $\left|1-\sigma_{1}(t)\right| /\left(1-\|\sigma(t)\|^{2}\right)$ is. If we compute this last ratio, we obtain

$$
\begin{gathered}
\frac{\left|1-\sigma_{1}(t)\right|}{1-\|\sigma(t)\|^{2}}=\frac{\left|1-z_{1}\right|}{1-\|z\|^{2}}(\cosh t-\sinh t)\left|\cosh t+\sinh t z_{1}\right| \\
=e^{-t} \frac{\left|1-z_{1}\right|}{1-\|z\|^{2}}\left|\cosh t+\sinh t z_{1}\right| \\
\frac{\left|1-z_{1}\right|}{1-\|z\|^{2}}\left(e^{-t} \cosh t+e^{-t} \sinh t\left|z_{1}\right|\right) \leqslant \frac{\left|1-z_{1}\right|}{1-\|z\|^{2}}\left(1+\left|z_{1}\right|\right)=M,
\end{gathered}
$$

because $\cosh t \leqslant e^{t}$ and $\sinh t \leqslant e^{t}$ for all $t \geqslant 0$.
If $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ commutes with the hyperbolic automorphism γ given by (1.1), then, by Propositions 1.3 and 1.4, Theorem 1.5 and Corollary 1.6, both the restricted K-limit of $\left(1-f_{1}(z)\right) /\left(1-z_{1}\right)$ at e_{1} and the restricted K-limit of $\left(1+f_{1}(z)\right) /\left(1+z_{1}\right)$ at $-e_{1}$ do exist. If we now suppose that (not only the restricted K-limit of $\left(1-f_{1}(z)\right) /\left(1-z_{1}\right)$ exists and is finite at e_{1},
but also) the K-limit of $\left(1-f_{1}(z)\right) /\left(1-z_{1}\right)$ exists and is finite at e_{1}, we can prove the following

Theorem 2.2. Let γ be the hyperbolic automorphism of Δ_{n} given by (1.1) and let $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ be such that
(a) f commutes with γ,
(b) there exists $K-\lim _{z \rightarrow e_{1}}\left(\left(1-f_{1}(z)\right) /\left(1-z_{1}\right)\right)=c \in \mathbf{C}$.

Then there exists $t_{1} \in \mathbf{R}$ such that, for all $z=\left(z_{1}, \ldots, z_{n}\right) \in \Delta_{n}$,

$$
f_{1}(z)=\frac{\cosh t_{1} z_{1}+\sinh t_{1}}{\sinh t_{1} z_{1}+\cosh t_{1}} .
$$

In particular, f_{1} does not depend on z_{2}, \ldots, z_{n}.
Proof. Taking γ or γ^{-1} we can always suppose that e_{1} is the Wolff point of γ (that is, we can suppose that $t_{0}>0$ in (1.1)). By Proposition 1.3, there exists $t_{1} \in \mathbf{R}$ such that

$$
f_{1}\left(z_{1}, 0, \ldots, 0\right)=\frac{\cosh t_{1} z_{1}+\sinh t_{1}}{\sinh t_{1} z_{1}+\cosh t_{1}} .
$$

Corollary 1.6 gives that the K-limit of f at e_{1} is equal to e_{1} and this implies that the function $\left(1+f_{1}(z)\right) /\left(1+z_{1}\right)$ has K-limit 1 at e_{1}. Then condition (b) yields that

$$
K-\lim _{z \rightarrow e_{1}} \frac{1-f_{1}(z)}{1-z_{1}} \cdot \frac{1+z_{1}}{1+f_{1}(z)}=c .
$$

Fix $z \in \Delta_{n}$ and define σ as in (2.1). Proposition 2.1 implies that

$$
\lim _{t \rightarrow+\infty} \frac{1-f_{1}(\sigma(t))}{1-\sigma_{1}(t)} \cdot \frac{1+\sigma_{1}(t)}{1+f_{1}(\sigma(t))}=c .
$$

Consider this last limit restricted to the sequence $\left\{m t_{0}\right\}$ for $m \in \mathbf{N}$. Since $\sigma\left(m t_{0}\right)=\gamma^{m}(z)$, we have the equality

$$
\frac{1-f_{1}\left(\sigma\left(m t_{0}\right)\right)}{1-\sigma_{1}\left(m t_{0}\right)} \cdot \frac{1+\sigma_{1}\left(m t_{0}\right)}{1+f_{1}\left(\sigma\left(m t_{0}\right)\right)}=\frac{1-f_{1}\left(\gamma^{m}(z)\right)}{1-\gamma_{1}^{m}(z)} \cdot \frac{1+\gamma_{1}^{m}(z)}{1+f_{1}\left(\gamma^{m}(z)\right)} .
$$

Using the fact that f and γ commute we obtain

$$
\frac{1-f_{1}\left(\sigma\left(m t_{0}\right)\right)}{1-\sigma_{1}\left(m t_{0}\right)} \cdot \frac{1+\sigma_{1}\left(m t_{0}\right)}{1+f_{1}\left(\sigma\left(m t_{0}\right)\right)}=\frac{1-\gamma_{1}^{m}(f(z))}{1-\gamma_{1}^{m}(z)} \cdot \frac{1+\gamma_{1}^{m}(z)}{1+\gamma_{1}^{m}(f(z))} .
$$

A direct computation, performed taking into account the form of γ, gives

$$
\frac{1-\gamma_{1}^{m}(f(z))}{1-\gamma_{1}^{m}(z)} \cdot \frac{1+\gamma_{1}^{m}(z)}{1+\gamma_{1}^{m}(f(z))}=\frac{1-f_{1}(z)}{1-z_{1}} \cdot \frac{1+z_{1}}{1+f_{1}(z)} .
$$

Therefore

$$
\frac{1-f_{1}(z)}{1-z_{1}} \cdot \frac{1+z_{1}}{1+f_{1}(z)}=\lim _{m \rightarrow+\infty} \frac{1-f_{1}\left(\sigma\left(m t_{0}\right)\right)}{1-\sigma_{1}\left(m t_{0}\right)} \cdot \frac{1+\sigma_{1}\left(m t_{0}\right)}{1+f_{1}\left(\sigma\left(m t_{0}\right)\right)}=c,
$$

and hence we obtain that $f_{1}(z)$ does not depend on z_{2}, \ldots, z_{n} and the theorem is proved.

Notice that, for any $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ such that $f_{1}(z)=\left(\cosh t_{1} z_{1}+\right.$ $\left.\sinh t_{1}\right) /\left(\sinh t_{1} z_{1}+\cosh t_{1}\right)$, then the K-limit of $\left(1-f_{1}(z)\right) /\left(1-z_{1}\right)$ at e_{1} exists. In fact, as f_{1} depends only on z_{1}, the K-limit at e_{1} becomes a K-limit in one-variable at 1 and in this case we can apply the fact that the function extends holomorphically to an open neighborhood of the closed disc Δ in \mathbf{C} to obtain the existence of the K-limit at 1 .

We will now get rid of the particular form (1.1) of the hyperbolic automorphism γ of Δ_{n}, to give a more general statement of Theorem 2.2. Let γ be a hyperbolic automorphism of Δ_{n} and let $p_{1}, p_{2} \in \partial \Delta_{n}$ be its fixed points. Let $\varphi \in$ Aut Δ_{n} be such that $\varphi\left(e_{1}\right)=p_{1}$ and $\varphi\left(-e_{1}\right)=p_{2}$. We can choose φ so that $\varphi^{-1} \circ \gamma \circ \varphi$ has the form (1.1). Let $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ and define $\check{f}=\varphi^{-1} \circ f \circ \varphi$ and $\check{\gamma}=\varphi^{-1} \circ \gamma \circ \varphi$. Obviously $\check{\gamma}$ commutes with \check{f} iff γ commutes with f. The following lemma holds

Lemma 2.3. Let $\gamma, f, \varphi, \check{f}, \check{\gamma}$ be as above and suppose that f commutes with γ. Then the two following facts are equivalent:
(i) $K-\lim _{z \rightarrow p_{1}} \frac{1-\left\langle f(z), p_{1}\right\rangle}{1-\left\langle z, p_{1}\right\rangle}$ exists and belongs to \mathbf{C}
(ii) $K-\lim _{z \rightarrow e_{1}} \frac{1-\check{f}_{1}(z)}{1-z_{1}}$ exists and belongs to \mathbf{C}.

Moreover, if the two limits exist, then they are equal.
Proof. Let us denote by v the standard Hermitian form of signature $(n, 1)$ on \mathbf{C}^{n+1} and, if $a \in \mathbf{C}^{n}$, let us denote by a^{*} the vector in \mathbf{C}^{n+1} given by $\binom{a}{1}$. Obviously,

$$
\frac{1-\left\langle f(z), p_{1}\right\rangle}{1-\left\langle z, p_{1}\right\rangle}=\frac{v\left(f^{*}(z), p_{1}^{*}\right)}{v\left(z^{*}, p_{1}^{*}\right)} \quad \text { and } \quad \frac{1-f_{1}(z)}{1-z_{1}}=\frac{v\left(f^{*}(z), e_{1}^{*}\right)}{v\left(z^{*}, e_{1}^{*}\right)}
$$

Let $\chi=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in S U(n, 1)$ be such that $\Psi_{\chi}=\varphi^{-1}$. Using the definition of \check{f} and the fact that φ maps Korányi regions with vertex at e_{1} in Korányi regions with vertex at p_{1} we obtain that

$$
K-\lim _{z \rightarrow e_{1}} \frac{1-\check{f}_{1}(z)}{1-z_{1}}=K-\lim _{\varphi(z) \rightarrow p_{1}} \frac{1-\left\langle\varphi^{-1} f(\varphi(z)), e_{1}\right\rangle}{1-\left\langle z, e_{1}\right\rangle} .
$$

If we set $\varphi(z)=\zeta$, then the above limit is equal to

$$
\begin{equation*}
K-\lim _{\zeta \rightarrow p_{1}} \frac{1-\left\langle\varphi^{-1} f(\zeta), e_{1}\right\rangle}{1-\left\langle\varphi^{-1}(\zeta), e_{1}\right\rangle}=K-\lim _{\zeta \rightarrow p_{1}} \frac{v\left(\left(\varphi^{-1} f(\zeta)\right)^{*}, e_{1}^{*}\right)}{v\left(\left(\varphi^{-1}(\zeta)\right)^{*}, e_{1}^{*}\right)} . \tag{2.2}
\end{equation*}
$$

A direct inspection shows that, being $\Psi_{\chi}=\varphi^{-1}$,

$$
\left(\varphi^{-1} f(\zeta)\right)^{*}=\chi\left(f(\zeta)^{*}\right) /(C f(\zeta)+D) \quad \text { and } \quad\left(\varphi^{-1}(\zeta)\right)^{*}=\chi\left(\zeta^{*}\right) /(C \zeta+D) .
$$

Then the K-limit in (2.2) is equal to

$$
\begin{aligned}
K- & \lim _{\zeta \rightarrow p_{1}} \frac{v\left(\chi\left(f(\zeta)^{*}\right) /(C f(\zeta)+D), e_{1}^{*}\right)}{v\left(\chi\left(\zeta^{*}\right) /(C \zeta+D), e_{1}^{*}\right)} \\
& =K-\lim _{\zeta \rightarrow p_{1}} \frac{C \zeta+D}{C f(\zeta)+D} \cdot K-\lim _{\zeta \rightarrow p_{1}} \frac{v\left(\chi\left(f(\zeta)^{*}\right), e_{1}^{*}\right)}{v\left(\chi\left(\zeta^{*}\right), e_{1}^{*}\right)} .
\end{aligned}
$$

Corollary 1.6 implies that $K-\lim _{z \rightarrow p_{1}} f(z)=p_{1}$; then

$$
K-\lim _{\zeta \rightarrow p_{1}} \frac{C \zeta+D}{C f(\zeta)+D}=1 .
$$

Hence

$$
K-\lim _{z \rightarrow e_{1}} \frac{1-f_{1}(z)}{1-z_{1}}=K-\lim _{\zeta \rightarrow p_{1}} \frac{v\left(\chi\left(f(\zeta)^{*}\right), e_{1}^{*}\right)}{v\left(\chi\left(\zeta^{*}\right), e_{1}^{*}\right)} .
$$

Using the fact that $\chi \in S U(n, 1)$, we obtain that

$$
K-\lim _{\zeta \rightarrow p_{1}} \frac{v\left(\chi\left(f(\zeta)^{*}\right), e_{1}^{*}\right)}{v\left(\chi\left(\zeta^{*}\right), e_{1}^{*}\right)}=K-\lim _{\zeta \rightarrow p_{1}} \frac{v\left(f(\zeta)^{*}, \chi^{-1}\left(e_{1}^{*}\right)\right)}{v\left(\zeta^{*}, \chi^{-1}\left(e_{1}^{*}\right)\right)} .
$$

Now, since $\Psi_{\chi}=\varphi^{-1}$ and $\varphi\left(e_{1}\right)=p_{1}$, we obtain that $\Psi_{\chi^{-1}}\left(e_{1}\right)=p_{1}$. If $\chi^{-1}=\left(\begin{array}{c}A_{1} \\ C_{1} \\ B_{1}\end{array}\right)$, then a direct inspection proves that $\chi^{-1}\left(e_{1}^{*}\right)=p_{1}^{*}\left(C_{1} e_{1}+\right.$ D_{1}). Therefore we get

$$
\begin{aligned}
K-\lim _{z \rightarrow e_{1}} \frac{1-\check{f}_{1}(z)}{1-z_{1}} & =K-\lim _{\zeta \rightarrow p_{1}} \frac{v\left(f(\zeta)^{*}, p_{1}^{*}\right)}{v\left(\zeta^{*}, p_{1}^{*}\right)} \cdot \frac{\overline{C_{1} e_{1}+D_{1}}}{C_{1} e_{1}+D_{1}} \\
& =K-\lim _{\zeta \rightarrow p_{1}} \frac{v\left(f(\zeta)^{*}, p_{1}^{*}\right)}{v\left(\zeta^{*}, p_{1}^{*}\right)} .
\end{aligned}
$$

By definition, $\quad v\left(\zeta^{*}, p_{1}^{*}\right)=-1+\left\langle\zeta, p_{1}\right\rangle \quad$ and $\quad v\left(f(\zeta)^{*}, p_{1}\right)=-1+$ $\left\langle f(\zeta), p_{1}\right\rangle$. If follows that

$$
K-\lim _{\zeta \rightarrow e_{1}} \frac{1-\left\langle f(\zeta), p_{1}\right\rangle}{1-\left\langle\zeta, p_{1}\right\rangle}
$$

does exist if and only if

$$
K-\lim _{z \rightarrow e_{1}} \frac{1-f_{1}(z)}{1-z_{1}}
$$

does exist and that, if they exist, then they are equal.
As a consequence of the above lemma we can state Theorem 2.2 in an "invariant version."

Theorem 2.4. Let γ be a hyperbolic automorphism of Δ_{n} and let p_{1}, p_{2} be the fixed points of γ in $\partial \Delta_{n}$. Let $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ be such that
(a) f commutes with γ,
(b) there exists $K-\lim _{z \rightarrow p_{1}}\left(\left(1-\left\langle f(z), p_{1}\right\rangle\right) /\left(1-\left\langle z, p_{1}\right\rangle\right)\right)=c \in \mathbf{C}$.

Then there exists $t_{1} \in \mathbf{R}$ and $\varphi \in$ Aut Δ_{n} such that

$$
\left\langle\varphi^{-1} \circ f \circ \varphi(z), e_{1}\right\rangle=\frac{\cosh t_{1} z_{1}+\sinh t_{1}}{\sinh t_{1} z_{1}+\cosh t_{1}} .
$$

In particular, $\left\langle\varphi^{-1} \circ f \circ \varphi(z), e_{1}\right\rangle$ does not depend on z_{2}, \ldots, z_{n}.
By assuming a "certain regularity" on a map $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ which commutes with a hyperbolic automorphism of Δ_{n}, we have obtained a very precise and surprising information on the map f itself. In particular we have obtained that one of the components of f is always, up to conjugation in Aut Δ_{n}, a function of one complex variable. This "regularity condition" we have assumed is the existence of K-limits (instead of the existence of restricted K-limits) for function (i) in Theorem 1.5.

Now we will prove that "assuming regularity" on function (ii) in Theorem 1.5 is meaningless: namely we will prove that for γ itself (which obviously commutes with γ) it is not true that

$$
K-\lim _{z \rightarrow e_{1}} Q_{e_{1}}(\gamma(z)) /\left(1-z_{1}\right)^{-1 / 2}=0
$$

(here $Q_{e_{1}}$ is as usual the projection on the orthogonal complement of $\mathbf{C} e_{1}$). In fact we have

$$
\begin{aligned}
& \left\|Q_{e_{1}}(\gamma(z))\right\|^{2}\left|1-z_{1}\right|^{-1} \\
& \quad=\left(\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)\left|\sinh t_{0} z_{1}+\cosh t_{0}\right|^{-2}\left|1-z_{1}\right|^{-1} .
\end{aligned}
$$

Since $\left|\sinh t_{0} z_{1}+\cosh t_{0}\right| \leqslant \cosh t_{0}+\left|z_{1}\right| \sinh t_{0} \leqslant \cosh t_{0}+\sinh t_{0}=e^{t_{0}}$, then

$$
\begin{equation*}
\left\|Q_{e_{1}}(\gamma(z))\right\|^{2}\left|1-z_{1}\right|^{-1} \geqslant e^{-2 t_{0}}\left(\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)\left|1-z_{1}\right|^{-1} . \tag{2.4}
\end{equation*}
$$

Take $a, z_{1} \in(0,1)$ and set $z_{2}=a \sqrt{1-z_{1}^{2}}$. To prove that the point $\left(z_{1}, z_{2}, 0, \ldots, 0\right)$ belongs to $K\left(e_{1}, 2\left(1-a^{2}\right)^{-1}\right)$, we evaluate $\left|1-z_{1}\right|$ $(1-\|z\|)^{-1}$. Since z_{1} and a are real, we find

$$
\begin{aligned}
& \left|1-z_{1}\right|(1-\|z\|)^{-1} \leqslant 2\left(1-z_{1}\right)\left(1-\|z\|^{2}\right)^{-1} \\
& \quad=2\left|1-z_{1}\right|\left(1-\left(z_{1}^{2}+a^{2}\left(1-z_{1}^{2}\right)\right)\right)^{-1} \\
& \quad=2\left(1-z_{1}\right)\left(1-z_{1}^{2}\right)^{-1}\left(1-a^{2}\right)^{-1} \\
& \quad=2\left(1+z_{1}\right)^{-1}\left(1-a^{2}\right)^{-1} \leqslant 2\left(1-a^{2}\right)^{-1} .
\end{aligned}
$$

Therefore, fixed $a \in(0,1)$, the points of the form $\left(z_{1}, a \sqrt{1-z_{1}^{2}}, 0, \ldots, 0\right)$ belong to $K\left(e_{1}, 2\left(1-a^{2}\right)^{-1}\right)$ for all $z_{1} \in(0,1)$. If we now compute the limit of $e^{-2 t_{0}}\left(\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)\left|1-z_{1}\right|^{-1}$ on the points of the form $\left(z_{1}, a \sqrt{1-z_{1}^{2}}, 0, \ldots, 0\right)$, with $z_{1} \rightarrow 1$, we obtain

$$
e^{-2 t_{0}} a^{2}\left(1-z_{1}^{2}\right)\left(1-z_{1}\right)^{-1}=a^{2} e^{-2 t_{0}}\left(1+z_{1}\right),
$$

whose limit for $z_{1} \rightarrow 1$ is equal to $2 a^{2} e^{-2 t_{0}} \neq 0$. Comparing this result with inequality (2.4), we contradict the fact that the K-limit at e_{1} of the function $Q_{e_{1}}(\gamma(z)) /\left(1-z_{1}\right)^{-1 / 2}$ is equal to 0 .

We will now conclude this paper by proving that a statement similar to the one in Theorem 2.2 holds true also in the case in which we have the existence of the K-limit (and not only of the restricted K-limit) for the function $\left\langle d f_{z} e_{1}^{\perp}, e_{1}\right\rangle /\left(1-z_{1}\right)^{1 / 2}$ when $z \rightarrow e_{1}$ (here e_{1}^{\perp} is any vector in \mathbf{C}^{n} orthogonal to e_{1}). To be more precise we can state the following

Theorem 2.5. Let γ be as in (1.1) and let $f \in \operatorname{Hol}\left(\Delta_{n}, \Delta_{n}\right)$ be such that $f \circ \gamma=\gamma \circ f$. If e_{1}^{\perp} denotes any vector in \mathbf{C}^{n} orthogonal to e_{1} and if

$$
K-\lim _{z \rightarrow e_{1}} \frac{\left\langle d f_{z} e_{1}^{\perp}, e_{1}\right\rangle}{\left(1-z_{1}\right)^{1 / 2}}=0,
$$

then f_{1} does not depend on z_{2}, \ldots, z_{n} and therefore

$$
f_{1}(z)=\frac{\cosh t_{1} z_{1}+\sinh t_{1}}{\sinh t_{1} z_{1}+\cosh t_{1}}
$$

for a suitable $t_{1} \in \mathbf{R}$.
Proof. Taking γ or γ^{-1} we can always suppose that e_{1} is the Wolff point of γ (that is, we can suppose that $t_{0}>0$ in (1.1)).

If we fix $z \in \Delta_{n}$ and define σ as in (2.1), then we have

$$
f\left(\sigma\left(m t_{0}\right)\right)=f\left(\gamma^{m}(z)\right)=\gamma^{m}(f(z)) .
$$

Therefore

$$
f_{1}\left(\gamma^{m}(z)\right)=\frac{\cosh m t_{0} f_{1}(z)+\sinh m t_{0}}{\sinh m t_{0} f_{1}(z)+\cosh m t_{0}},
$$

and by differentiating both members of the last equality with respect to z_{j} (for $j \geqslant 2$) we obtain

$$
\frac{\partial f_{1}}{\partial z_{j}}\left(\gamma^{m}(z)\right) \frac{e^{i \theta_{j} m}}{\sinh m t_{0} z_{1}+\cosh m t_{0}}=\frac{\partial f_{1}}{\partial z_{j}}(z)\left(\sinh m t_{0} f_{1}(z)+\cosh m t_{0}\right)^{-2}
$$

that is,

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial z_{j}}\left(\gamma^{m}(z)\right)=\frac{e^{-i \theta_{j} m}\left(\sinh m t_{0} z_{1}+\cosh m t_{0}\right)}{\left(\sinh m t_{0} f_{1}(z)+\cosh m t_{0}\right)^{2}} \frac{\partial f_{1}}{\partial z_{j}}(z) \tag{2.3}
\end{equation*}
$$

The fact that the K-limit of $\left\langle d f_{z} e_{1}^{\perp}, e_{1}\right\rangle /\left(1-z_{1}\right)^{1 / 2}$ at e_{1} is equal to 0 implies obviously that

$$
K-\lim _{z \rightarrow e_{1}}\left(\left\langle d f_{z} e_{1}^{\perp}, e_{1}\right\rangle\right)^{2}\left(1-z_{1}\right)^{-1}=0 .
$$

By Proposition 2.1, the curve σ is contained in a suitable Korányi region, and then we can compute the limit of $\left(\left\langle d f_{z} e_{1}^{\perp}, e_{1}\right\rangle\right)^{2}\left(1-z_{1}\right)^{-1}$ on the
sequence $\left\{\sigma\left(m t_{0}\right)\right\}$ and obtain 0 . Fix now $j \in\{2, \ldots, n\}$ and choose $e_{1}^{\perp}=e_{j}$. Then

$$
\lim _{m \rightarrow+\infty}\left(\frac{\partial f_{1}}{\partial z_{j}}\left(\gamma^{m}(z)\right)\right)^{2}\left(1-\gamma_{1}^{m}(z)\right)^{-1}=0 .
$$

Formula (2.3) implies that

$$
\lim _{m \rightarrow+\infty} \frac{e^{-2 i \theta_{j} m}\left(\sinh m t_{0} z_{1}+\cosh m t_{0}\right)^{3}}{\left(\sinh m t_{0} f_{1}(z)+\cosh m t_{0}\right)^{4}\left(\cosh m t_{0}-\sinh m t_{0}\right)\left(1-z_{1}\right)}\left(\frac{\partial f_{1}}{\partial z_{j}}(z)\right)^{2}=0 .
$$

Taking the modulus we get

$$
\lim _{m \rightarrow+\infty} \frac{e^{m t_{0}}\left|\sinh m t_{0} z_{1}+\cosh m t_{0}\right|^{3}}{\left|\sinh m t_{0} f_{1}(z)+\cosh m t_{0}\right|^{4}\left|1-z_{1}\right|}\left|\frac{\partial f_{1}}{\partial z_{j}}(z)\right|^{2}=0 .
$$

Now, since the limit (for $m \rightarrow+\infty$) of the function

$$
\frac{e^{m t_{0}}\left|\sinh m t_{0} z_{1}+\cosh m t_{0}\right|^{3}}{\left|\sinh m t_{0} f_{1}(z)+\cosh m t_{0}\right|^{4}}
$$

is equal to $\left|1+z_{1}\right|^{3}\left|f_{1}(z)+1\right|^{-4}$, we have

$$
\lim _{m \rightarrow+\infty}\left|\frac{\partial f_{1}}{\partial z_{j}}(z)\right|^{2}\left|1-z_{1}\right|^{-1}=0
$$

and therefore $\left(\partial f_{1} / \partial z_{j}\right)(z)=0$, for all $j \geqslant 2$. Taking into account the results of Proposition 1.3, we obtain the assertion.

REFERENCES

1. M. Abate, "Iteration Theory of Holomorphic Mappings on Taut Manifolds," Mediterranean Press, Rende, 1989.
2. M. Abate and J. P. Vigué, Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc. 112 (1991), 503-512.
3. D. F. Behan, Commuting analytic functions without fixed points, Proc. Amer. Math. Soc. 37 (1973), 114-120.
4. C. C. Cowen, Commuting analytic functions, Trans. Amer. Math. Soc. 283 (1984), 685-695.
5. T. Franzoni and E. Vesentini, "Holomorphic Maps and Invariant Distances," NorthHolland, Amsterdam, 1980.
6. M. H. Heins, A generalization of the Aumann-Carathéodory "Starrheitssatz," Duke Math. J. 8 (1941), 312-316.
7. S. G. Krantz, "Function Theory of Several Complex Variables," Wiley, New York, 1982.
8. M. Kuczma, "Functional Equations in a Single Variable," PWN, Warsaw, 1980.
9. M. Kuczma, "An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality," PWN, Warsaw, 1985.
10. W. Rudin, "Function Theory in the Unit Ball of \mathbf{C}^{n}," Springer-Verlag, Berlin, 1980.
11. A. L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703-706.

[^0]: * Partially supported by M.U.R.S.T., fondi 40%.

