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Abstract

The p-rank of an algebraic curveX over an algebraically closed fieldk of characteristicp > 0
is the dimension of the vector spaceH1(Xet,Fp). We study the representations of finite subgro
G ⊂ Aut(X) induced onH1(Xet,Fp) ⊗ k, and obtain two main results.

First, the sum of thenonprojectivedirect summands of the representation, i.e., itscore, is deter-
mined explicitly by local data given by the fixed point structure of the group acting on the curv
a corollary, we derive a congruence formula for thep-rank.

Secondly, the multiplicities of theprojectivedirect summands of quotient curves, i.e., theirBorne
invariants, are calculated in terms of the Borne invariants of the original curve and ramification
In particular, this is a generalization of both Nakajima’s equivariant Deuring–Shafarevich fo
and a previous result of Borne in the case of free actions.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We fix an irreducible, smooth and complete curveX over an algebraically close
field k of positive characteristicp. The etale cohomology groupH 1(Xet,Fp) is a finite-

E-mail address:nicolas.stalder@math.ethz.ch.
URL: http://www.math.ethz.ch/~nicolas.
0021-8693/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2004.05.026

https://core.ac.uk/display/82125328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


826 N. Stalder / Journal of Algebra 280 (2004) 825–841

f

riants
under
t

he

nnot

er 2,

resen-
.e., its
, this
makes
eristic
ties of

d the

u-
,

riants.

g–

itu-
be
ion
dimensional vector space overFp . Its dimension, thep-rank of X, is a global invariant o
the curve.

If we fix a finite groupG of automorphisms of the curveX, thenH 1(Xet,Fp) becomes
a finite-dimensional representation ofG overFp. Moreover,H 1(Xet,Fp)⊗Fp k is a finite-
dimensional representation ofG overk.

First results on determining this representation up to isomorphism by local inva
of the curve and of the group action have been obtained by Shoichi Nakajima [5],
the assumption thatG is ap-group, and by Niels Borne [3], under the assumption thaG

operates without fixed points. We continue thistradition, with no assumptions on either t
groupG or its action.

The local invariants (by this I essentially mean the ramification information) ca
determine the representation completely, as the example of an elliptic curveE over a field
of characteristic�= 2 shows. Such a curve always allows an automorphism of ord
which stabilizes exactly 4 points (and the projection to the quotient curve istamelyramified
in these points). Namely, if the curve is given by the equationy2 = f (x), consider the
mapping given by(x, y) �→ (x,−y). However, thep-rank ofE can be 0or 1, depending
on whether this curve is supersingular or not.

Accordingly, our results must be incomplete. Using the language of modular rep
tation theory, what we do determine completely is the core of the representation (i
“nonprojective” part, cf. Section 2); this is the content of Theorem 4.8. In a sense
result is surprising, since generally the nonsemisimplicity of representations is what
modular representation theory more difficult than representation theory in charact
zero. Now the representation is determined completely by its core and the multiplici
the indecomposable projective summands, which we callBorne invariantsof the curve and
introduce in Section 5. However, it is impossible to determine these bylocal invariants, as
the above example shows.

The content of Theorem 5.4 is to determine explicitly, in terms of local data an
Borne invariants ofX, the Borne invariants of quotient curvesX/N with respect to the
quotient groupG/N , for any normal subgroupN ⊂ G. This gives a procedure for calc
lating the Borne invariants ofX for those representations ofG induced by quotient groups
in terms of the local invariants and the Borne invariants of the “smaller” curveX/N , and
may thus be regarded as a partial solution to the problem of determining Borne inva
In particular, ifN is ap-group this approach gives all Borne invariants ofX in terms of
those ofX/N , and if G itself is ap-group we recover Nakajima’s equivariant Deurin
Shafarevich formula.

2. Modular representation theory of finite groups

It is customary to call a (finite-dimensional) representation of a (finite) group amodular
representationif the characteristic of the field divides the order of the group. In this s
ation, the notions ofsimpleandindecomposablemodule no longer coincide, as would
the case in characteristic 0 by Maschke’s theorem. This makes for a richer representat
theory, which we will now review.
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In the following we shall fix an algebraically closed fieldk of characteristicp > 0,
a finite groupG, and denote byk[G] the group ring ofG overk. All modules under con
sideration will be finitely generated leftk[G]-modules, and we identify finite-dimension
representations ofG over k with such modules. All homomorphisms are assumed to
k[G]-linear.

2.1. Definition. A representation issimple(or irreducible) if it is nontrivial and has no
proper submodules. We denote the set of isomorphism classes of simple modules bG.
A representation isindecomposableif it is nontrivial and admits no proper direct sum
mands. It isprojectiveif the functor Hom(P,−) is exact.

2.2. Theorem (Krull–Schmidt). If M is a representation, andM ∼= ⊕m
i=1 Mi

∼= ⊕n
j=1 Ni

are two decompositions with indecomposable summands, thenm = n and, after suitable
renumbering,Mi

∼= Ni for all i.

Proof. [1, Theorem 1.4.6]. �
This theorem allows us to speak of “the” indecomposable direct summands of a

module. To study modules in terms of these summands, we must introduce cores, pro
covers, and loop spaces.

2.3. Definition. The (isomorphism class of the) direct sum of the nonprojective indec
posable summands of a given representationM is calledthe core ofM, and will be denoted
by core(M). If we haveM ∼= core(M), we callM itself a core. The (isomorphism class o
the) direct sum of the projective indecomposable summands is called theprojective part
of M.

2.4. Definition.

(i) A homomorphism of modules is calledessentialif it is surjective and its restriction to
every proper submodule of its domain is not surjective.

(ii) A projective coverof a moduleM consists of a projective moduleP and an essentia
mapπ :P → M.

2.5. Theorem. Any module has a projective cover, which is again finitely generated
unique up to(nonunique) isomorphism. The projective cover of a direct sum is the di
sum of the individual projective covers.

Proof. [7, Chapter 14, Proposition 4].�
We may thus speak of “the” projective coverPG(M) of a module.
It is known that the number of isomorphism classes of simple modules is finite [7, C

ter 18, Corollary 3]. By contrast, there are in general infinitely many isomorphism cl
of indecomposable modules [1, Theorem 4.4.4]. However, theprojectiveindecomposable
modules are easily described by the following theorem.
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2.6. Theorem. The operation “projective cover” induces a bijection between the setIrr G

of isomorphism classes of simple modules and the set of isomorphism classes of pr
indecomposable modules.

Proof. [7, Chapter 14, Corollary 1]. �
It follows from the above theorem that any moduleM has a decomposition

M ∼= core(M) ⊕
⊕

S∈Irr G

PG(S)⊕b(M,S)

for unique integersb(M,S) � 0. To know the isomorphism class ofM is to know its core
and to know the value of these integers.

The core of a module is the degree zero case of a concept of “loop spaces” devel
understand modules “up to projectives.” Other authors writeΩ0

G(M) := core(M). We will
need the degree one case:

2.7. Definition. Given a moduleM, its (first) loop spaceis

ΩG(M) := Ω1
G(M) := ker

(
PG(M) → M

)
.

Recursively, we defineΩi
G(M) := ΩG(Ωi−1

G (M)) for i > 1.

What follows are some technical lemmas. The reader only interested in the stateme
of our theorems now has the necessary notation, and may skip the rest of this subs

2.8. Proposition. Given a moduleM and a simple moduleS, we have

HomG(M,S) = HomG

(
PG(M),S

)
.

Proof. We apply the functor HomG(−, S) to the exact sequence

0 → ΩG(M)
i−→ PG(M)

πM−−→ M → 0

to get the exact sequence

0 → HomG(M,S) → HomG

(
PG(M),S

) i∗−→ HomG

(
ΩG(M),S

)
.

The lemma follows from the equationi∗ = 0. Assume thati∗ �= 0, then there exists
nonzero mapf ∈ HomG(ΩG(M),S) which factors throughPG(M) asf = Fi, for some
F ∈ HomG(PG(M),S). SinceS is irreducible,f andF must be surjective. The map

PG(M)
(πM,F )−−−−→ M ⊕ S

is still surjective. Thus kerF
πM−−→ M is surjective. SinceF �= 0, i.e., kerF � P(M), this is

a contradiction to the fact thatπM is essential. �
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2.9. Corollary. If we write

PG(M) ∼=
⊕

S∈Irr G

PG(S)b(PG(M),S),

then the multiplicitiesb(PG(M),S) are given byb(PG(M),S) = dimk HomG(M,S).

Proof. We fix S ∈ Irr G and calculate by means of the previous lemma:

HomG(M,S) = HomG(PG(M),S) ∼=
⊕

T ∈Irr G

HomG

(
PG(T ), S

)⊕b(PG(M),T )

=
⊕

T ∈Irr G

HomG(T ,S)⊕b(PG(M),T ).

By Schur’s lemma, the dimension of HomG(T ,S) is 0 or 1, depending on whetherT and
S are isomorphic or not. Thus the corollary follows by counting dimensions.�
2.10. Proposition. Given a moduleM, the following are equivalent:

(i) M is projective,
(ii) M is injective,
(iii) core(M) = 0,
(iv) ΩG(M) is projective, and
(v) ΩG(M) = 0.

Furthermore,ΩG(M) is always a core.

Proof. The equivalence of (i) and (ii) follows from [1, Propositions 1.6.2 and 3.1
Clearly, (i) and (iii) are equivalent by definition. SinceΩG(M) = 0 if and only if
PG(M) → M is an isomorphism, (i) and (v) are equivalent. The equivalence of (iv) an
follows from the claim thatΩG(M) is a core, which we now prove.

Assume thatP ⊂ ΩG(M) ⊂ PG(M) is a nonzero projective submodule. Then (by
equivalence of (i) and (ii))PG(M) decomposes as a direct sumPG(M) ∼= P ⊕ Q, and the
image ofQ in M is all M. This is a contradiction to the fact thatPG(M) → M is essential;
henceΩG(M) is a core. �

The following proposition is well known; we give a proof here since it will be a cen
component in the proof of our Theorem 4.8.

2.11. Proposition. Consider an exact sequence0 → N → P → M → 0 of modules, where
P is projective. Then there exists an isomorphism

core(N) ∼= ΩG(M).

Furthermore, if we denote the projective part ofN byQ, we haveP ∼= PG(M) ⊕ Q.
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Proof. We construct the following commutative diagram

0 N P M 0

0 ΩG(M) PG(M) M 0

The middle vertical arrow exists becauseP is projective; it is surjective becausePG(M) →
M is essential. LetQ be the kernel of this middle arrow. SincePG(M) is projective, so
is Q. By the snake lemma, the first vertical arrow is surjective, and its kernel is isomo
to Q. SinceQ is injective (Proposition 2.10), we have an isomorphism

N ∼= ΩG(M) ⊕ Q,

which proves the second claim. SinceQ is projective, andΩG(M) is a core (Proposi
tion 2.10),ΩG(M) is the core ofN . �
2.12. Proposition. Let pn be thep-part of the order ofG, i.e., |G| = pnk with k ∈ N and
p � k. Then the dimension of every projective module is divisible bypn.

Proof. [7, Exercise 16.3]. �
2.13. Proposition. LetN ⊂ G be a normal subgroup, and consider the groupH := G/N .
There is an inclusionIrr H ⊂ Irr G. GivenS ∈ Irr G, we have

PG(S)N ∼=
{

PH (S) if S ∈ Irr H,

0 if S ∈ Irr G \ Irr H.

Proof. [3, Lemma 2.7]. �
In the last section we will need the following statement about group cohomology.

2.14. Proposition. LetK ⊂ G be a subgroup withp � [G : K]. Then for any representatio
M of G, and for all i � 0, the restriction map

Res :Hi(G,M) → Hi(K,M)

is injective. In particular, ifp � |G|, thenHi(G,M) = 0 for all i > 0.

Proof. [1, Corollary 3.6.18]. �
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3. The p-rank of curves

We continue to assume as given an algebraically closed fieldk of characteristicp > 0. In
this article, acurvesignifies a complete, smooth, connected, 1-dimensional variety ovk.
The (absolute) Frobenius morphismF of such a curveX is the (canonical) morphism
which is the identity on topological spaces, and thep-power map on sections of the stru
ture sheaf. It induces maps on the (Zariski) cohomology groupsHi(X,OX). These are
additive, but notk-linear maps: They arep-linear, meaning that

F(λξ) = λpF(ξ) for λ ∈ k andξ ∈ Hi(X,OX).

The only nontrivial case for curves is the induced map onH 1(X,OX).
For this, let us review some material onp-linear maps. There is a category ofp-linear

maps, with objects the pairs(V ,F ) consisting of a finite-dimensional vector spaceV and
a p-linear endomorphismF of V . The morphisms in this category are the linear m
on the underlying vector spaces which commute with the givenp-linear endomorphisms
Given such an object(V ,F ), we setV F := {v ∈ V : Fv = v}, the fixed vectors ofF in V ,
furthermoreV s := ⋂

i>0 imF i , andV n := ⋃
i>0 kerF i .

The integerh = dimk V s is called thestable rank ofF . The vector spaceV s is often
called thesemisimplepart ofV .

3.1. Proposition. In the above situation, we have

(i) V F is a Fp-vector space.
(ii) V s andV n are k-vector spaces stable underF .
(iii) dimk V s = dimFp V F .
(iv) V = V s ⊕ V n.
(v) F restricted toV s is bijective,F restricted toV n is nilpotent.
(vi) (−)s is an exact functor on the category ofp-linear maps.

Proof. See [4] or [6] for (i) to (v). The last statement is clear, since we assume the
in the category to be compatible with the respectivep-linear mapsF . �

On the dual vector spaceV ∗ = Homk(V , k) we can define a mapC by setting
C(ψ)(v) := ψ(F(v))1/p for v ∈ V andψ ∈ V ∗. This map is additive and 1/p-linear, i.e.,
we haveC(λψ) = λ1/pC(ψ). The decompositionV = V s ⊕ V n corresponds to a decom
position ofV ∗, andC has the same stable rank asF . Since any 1/p-linear map can be
viewed as the dual of ap-linear map, the structure theory of the previous proposition ca
be translated to 1/p-linear maps.

3.2. Definition. Thep-rankhX of a curveX is the stable rank of the Frobenius morphi
onH 1(X,OX).

It is clear that we have estimates 0� hX � gX , wheregX = dimk H 1(X,OX) is the
genus ofX.
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We would like to know explicitly the dual map of the Frobenius morphism
H 1(X,OX). Recall that a rational functiont ∈ k(X) is calledseparatingif the field exten-
sionk(X)/k(t) is separable. Given a meromorphic differentialω = f ·dt , wheref ∈ k(X)

andt is separating, we may write

f = f
p

0 + f
p

1 t + · · · + f
p

p−1t
p−1.

TheCartier operatoron differentials is defined by setting

C(ω) := fp−1 dt =
(

p

√
−

(
d

dt

)p−1

f

)
dt. (3.1)

This is well defined and independent of the choice oft [6].

3.3. Proposition. The dual vector space ofH 1(X,OX) is, by Serre duality, the vector spa
H 0(X,ΩX) of holomorphic differentials. Under this identification, the Cartier operatoC
is the dual mapC of the Frobenius morphismF .

Proof. [6]. �
The geometric meaning of thep-rank is the following: There arephX unramified Galois

coverings of the curveX with Galois groupFp (one of which is the trivial cover), up t
isomorphism of the covering curve together with the action ofFp . More precisely, the
group Hom(πet

1 (X),Fp) classifies such covers, and there are natural isomorphisms(
H 0(X,ΩX)C

)∗ ∼= H 1(X,OX)F ∼= H 1(Xet,Fp) ∼= Hom
(
πet

1 (X),Fp

)
,

compatible with the operation of automorphisms ofX on the respective vector spaces. F
proofs and further background, we refer to the survey in [2]. In this article, we will avoi
tionality questions in representation theory by studyingH 1(X,OX)s = H 1(Xet,Fp)⊗Fp k

instead ofH 1(X,OX)F = H 1(Xet,Fp). Also, we will study the dual representatio
H 0(X,ΩX)s instead ofH 1(X,OX)s to simplify computations.

4. The cores of p-rank representations

Consider a curveX, and a finite subgroupG ⊂ Aut(X). If X is of genusgX � 2, then
Aut(X) itself is finite, but even in that case we wish to allow ourselves the freedo
choosing a smaller group.

Given a pointx ∈ X, we use the notationvx(−) for the function which assigns to
function, differential or divisor its order atx.

4.1. Proposition. Let D be an effective divisor on a curveX. The Cartier operatorC
operates on the sheafΩX(D). If D is G-invariant, thenG also operates on this sheaf, an
the two operations commute.



N. Stalder / Journal of Algebra 280 (2004) 825–841 833

ct

y

ce

ily

e.
In particular, the vector spaceH 0(X,ΩX(D))s of semisimple differentials with respe
to C is a (finite-dimensional) representation ofG.

Proof. Consider an open setU ⊂ X and a differentialω ∈ ΩX(D)(U). Forx ∈ U choose
a local parametert atP and write

ω = (
f

p

0 + f
p

1 · t + · · · + f
p

p−1 · tp−1)dt = f · dt (4.1)

as in Section 3, noting thatt is separating. Settingn = vx(D) � 0, the assumptions impl
thatvx(f ) = vx(ω) � −n. Thus the estimate

p · vx(fp−1) + p − 1 = vx

(
f

p

p−1t
p−1) � min

i

(
vx

(
f

p
i ti

)) = vx(f ) � −n

holds true. We now see thatvx(C(ω)) = vx(fp−1) � 
(1− p − n)/p� � −n, where
y�
signifies the smallest integer greater thany. Therefore, we haveC(ω) ∈ ΩX(D)(U).

Chooseg ∈ G. We haveC(ω)g = (fp−1 dt)g = f
g

p−1(dt)g . On the other hand, ift is
separating, so iss = tg , thus if we write

ωg = (· · · + (
f

g

p−1

)p · sp−1)ds,

we haveC(ωg) = f
g

p−1 ds = C(ω)g , since the definition ofC does not depend on the choi
of separating variable.�
4.2. Definition. The moduleVD := H 0(X,ΩX(D))s of the previousproposition is the
p-rank representationof G associated to the (G-invariant and effective, but not necessar
reduced) divisorD.

We introduce the notionDred for the reduced effective divisor associated toD. The
following observation will prove to be helpful:

4.3. Proposition. If D is aG-invariant effective divisor onX, then thep-rank representa-
tion does not depend on the multiplicities ofD, i.e.,VD = VDred.

Proof. The claim is that elements ofH 0(X,ΩX(D))s have poles of order at most on
By Proposition 3.1(iii), it is sufficient to provethis claim for differentials of the formω =
C(ω). If vx(ω) = −n < 0, then as in the proof of Proposition 4.1 we havevx(C(ω)) �

(1− p − n)/p�. It is elementary to prove that

1− p − n

p
= −n ⇔ n = 1,

so we see thatvx(ω) � −1. �
In the following, we will always assume thatD andD̃ are effective andG-invariant

reduced divisors.
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4.4. Definition. We will call D̃ sufficiently large with respect toG if it is nonempty, and
contains all points ofX with nontrivial stabilizer inG. (Remember that by our conventio
D̃ is also effective, reduced andG-invariant.)

4.5. Proposition (Nakajima). If D̃ is sufficiently large with respect toG, thep-rank repre-
sentationVD̃ is a projectivek[G]-module.

Proof. Let P ⊂ G be a p-Sylow subgroup ofG. By [5, Theorem 1] we know tha
VD̃ is k[P ]-free. This is equivalent to the fact thatVD̃ is k[G]-projective [1, Corol-
lary 3.6.10]. �

We will present the core of ap-rank representation as a loop space of the follow
ramification module.

4.6. Definition. Given aG-invariant effective reduced divisorD as above, wechoosea
sufficiently large divisor̃D ⊃ D. Theramification module ofVD (with respect tõD) is the
following:

RG,D,D̃ :=
{

k[D̃ \ D], if D �= ∅,

ker(k[D̃] → k,
∑

λxx �→ ∑
λx), if D = ∅,

where, for any reduced effective divisorE, by k[E] := ⊕
x∈E k · x we denote the affine

coordinate ring of the reduced subvariety ofX associated toE.
Thecore module ofVD is the loop space

CD := ΩG(RG,D,D̃).

4.7. Remark. We note that the moduleCD does not depend on the choice of̃D, since
enlargingD̃ corresponds to adding toRG,D,D̃ direct summands isomorphic tok[G], and
such free summands are annihilated by the loop space operator. Furthermore,

k
[
D̃ \ D

] ∼=
⊕

x∈D̃\D (mod G)

k[G/Gx]

is a sum of induced representations of the trivial representation.

4.8. Theorem. The core of thep-rank representation associated to aG-invariant effective
divisorD (not necessarily reduced) is given by the following formula:

core(VD) ∼= CDred.

Proof. By Proposition 4.3 we may assume thatD is reduced. We choosẽD ⊃ D suffi-
ciently large. TheñD \ D is also reduced andG-invariant, and the residue map induces
exact sequence of sheaves

0 → ΩX(D) → ΩX

(
D̃

) Res−−→ OD̃ → 0,
\D
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which is invariant under the operation ofG. This induces a long exact sequence

0 → H 0(X,ΩX(D)
) → H 0(X,ΩX

(
D̃

)) → k
[
D̃ \ D

]
δ−→ H 1(X,ΩX(D)

) → 0,

which terminates atH 1(X,ΩX(D̃)) = 0 sinceD̃ �= ∅. Clearly, we have kerδ = RG,D,D̃ ;
hence there is an exact sequence ofk[G]-modules

0 → H 0(X,ΩX(D)
) → H 0(X,ΩX

(
D̃

)) Res−−→ RG,D,D̃ → 0.

In order to extract from this an exact sequence of semisimple parts, we define a 1/p-linear
map onk[D̃ \ D] = ⊕

d∈D̃\D k · d by letting it operate on the standard basis{d}d∈D̃\D as
the identity. This induces a 1/p-linear map onRG,D,D̃, compatible with the operation ofG.
Since we know that Res(Cω)p = Res(ω) by [6], the above sequence is an exact seque
in the category of 1/p-linear maps. Thus, by the exactness of(−)s , we obtain the exac
sequence

0 → VD → VD̃ → RG,D,D̃ → 0.

By Proposition 4.5 the middle term is a projective module, and Proposition 2.11 gives t
desired result. �
4.9. Remark. If G has no fixed points, then forD = ∅ the core of the associatedp-rank
representation is

core(V∅) = Ω1
G(RG,∅,D̃) = Ω2

G(k),

sincek[D̃] ∼= k[G]r for somer � 1, which implies that core(RG,∅,D̃) = Ω2
G(k). This par-

ticular core has been calculated by Borne in [3].

4.10. Remark. Since a projective representation is determined up to isomorphism
composition factors [7, Chapter 14, Corollary 3 to Proposition 41], the local invarian
used in Theorem 4.8 and the modular character of ap-rank representation determine su
a representation up toisomorphism.

4.11. Corollary. Consider a curveX and a finite groupG of automorphisms ofX. Let r
be the number of points ofX with nontrivial stabilizer inG, and letpn be thep-part of
the order ofG. Then

hX ≡ 1− r
(
mod pn

)
.

Proof. We choose a minimal sufficiently large divisor̃D ⊃ ∅, and setR := RG,∅,D̃. Since
hX is the dimension ofV∅ and by Theorem 4.8 this module differs from its core only
projective summands, Proposition 2.12 implies that

hX ≡ dimΩG(R)
(
mod pn

)
.



836 N. Stalder / Journal of Algebra 280 (2004) 825–841

di-

e

lows

nly

ormal

.
e-

-

ra-
Similar reasoning applies toΩG(R) andR, which have dimensions adding up to the
mension of the projective modulePG(R), and shows that

dimΩG(R) ≡ −dimR
(
mod pn

)
.

If G has a point with nontrivial stabilizer, then dimR = dimk[D̃] − 1 = r − 1, and if not,
then dimR = dimk[D̃] − 1 = |G| − 1 ≡ 0− 1 = r − 1 (mod pn); hence we can combin
the above congruences to obtain the corollary.�
4.12. Remark. Akio Tamagawa has reminded me that the above corollary also fol
from the Deuring–Shafarevich formula (cf. [2,5]) applied to the coveringX → X/P , where
P is a p-Sylow subgroup ofG. Note that while the Deuring–Shafarevich formula o
captures wildly ramified points, the number of tamely ramified points is a multiple ofpn.

5. Borne invariants of quotient curves

In addition to the notation and conventions of the previous section, we consider a n
subgroupN of G, and the short exact sequence

1 → N → G → H → 1.

A representation ofH lifts to a representation ofG, and we obtain an inclusion IrrH ⊂
Irr G of the set of irreducible representations.

Let Y := X/N be the quotient curve, and letπ :X → Y be the canonical projection
There is a natural induced operation ofH onY . The notation of the last section will som
times have to be decorated by subscriptsX or Y .

5.1. Definition. TheBorne invariantsb(G,D,S) of the curveX (with respect toG andD)
are the multiplicities of the projective indecomposable modules in thep-rank representa
tion of G with respect toD. Thus, we have an isomorphism

VD = core(VD) ⊕
⊕

S∈Irr G

PG(S)⊕b(G,D,S).

We simplify notation, settingb(G,S) := b(G,∅, S).

5.2. Proposition (Pink). LetD be anN -invariant reduced effective divisor onX. There is
a natural isomorphism of sheaves

π∗ΩX(D)N ∼= ΩY (E)

for an effective divisorE onY , which commutes with the Cartier operator and the ope
tion ofG. We have

Ered= π(D)red∪ {y ∈ Y | π is wildly ramified overy}.
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Proof. Pulling back differentials fromY to X via π induces an injective sheaf homomo
phism

ΩY → π∗ΩX(D)N .

The target of this homomorphism is a torsion-free, coherent sheaf of rank 1; hence th
is a unique effective divisorE on Y such that the above homomorphism extends
an isomorphismΩY(E) → π∗ΩX(D)N . By construction of the Cartier operator, this
Cartier-equivariant.

We now proceed to determineE. If R is a local ring, we denote its completion bŷR.
Choosey ∈ Y , we then have

π∗ΩX(D)N ⊗OY,y
ÔY,y =

( ⊕
x∈π−1(y)

ΩX(D) ⊗OX,x
ÔX,x

)N

= (
ΩX(D) ⊗OX,x

ÔX,x

)Nx for anyx ∈ π−1(y)

= Ω̂X(D)x
Nx

.

Choosex ∈ π−1(y), and denote again byx andy local parameters atx andy respectively.
We have

ÔX,x = k[[x]] and ÔY,y = k[[y]] = k[[x]]Nx .

Settingn := |Nx |, we may expressy as

y = xn + terms of higher order inx.

It follows that m := vx(dy/dx) = n − 1 if p � n, andm � n if p | n. Let us setd :=
vx(D) and writed + m = an + b, for integersa, b � 0 with b � n − 1. The following are
equivalent:

(i) a � 1,
(ii) d + m � n,
(iii) d � 1 orp | n.

We now see that

Ω̂X(D)x
Nx =

(
1

xd
k[[x]]dx

)Nx

=
(

1

xd+m
k[[x]]

)Nx

dy = 1

ya
k[[y]]dy,

which implies thatπ∗ΩX(D)N = ΩY (E) if we setvQ(E) := a, as claimed. �
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5.3. Definition. Consider an irreducible representationS ∈ Irr G. The restriction map
H 1(G,S) → H 1(Gx,S) combine to a global restriction map

rG,X,S :H 1(G,S) →
∏
x∈X

H 1(Gx,S) ∼=
⊕

{x∈X: Gx �=1}
H 1(Gx,S).

Its kernelH 1
LT,X(G,S) := kerrG,X,S consists of thelocally trivial first cohomology classe

of S(with respect toG andX). We set

d(G,X,S) := dimH 1
LT,X(G,S).

5.4. Theorem. The Borne invariants ofX andY = X/N with respect toG andH = G/N

for T ∈ Irr H are related by the following formula:

b(G,T ) + d(G,X,T ) = b(H,T ) + d(H,Y,T ).

Proof. This is a lengthy calculation, which we divide into several steps. We choose a
ciently large divisor̃D onX with respect toG, and set̃E := π∗(D̃)red; this is a sufficiently
large divisor onY with respect toH .

Step 1. SinceD̃ contains all ramified points, wildor not, Proposition 5.2 implies that

(VX,D̃)N = VY,Ẽ.

In particular, sinceVX,D̃ is projective by Proposition 4.5, we may apply Proposition 2
to its indecomposable summands to obtain

b
(
G,D̃,T

) = b
(
H, Ẽ,T

)
for T ∈ Irr H. (5.1)

Step 2. The short exact sequence

0 → VX,∅ → VX,D̃ → RG,∅,D̃ → 0,

established at the end of the proof of Theorem 4.8 induces, by the second claim of
sition 2.11, an isomorphism⊕

S∈Irr G

PG(S)b(G,D̃,S) ∼= PG(RG,∅,D̃) ⊕
⊕

S∈Irr G

PG(S)b(G,∅,S).

In particular, using Proposition 2.8, we may apply HomG(−, S) to deduce the equation

b
(
G,D̃,S

) = dimk HomG(RG,∅,D̃, S) + b(G,∅, S) for S ∈ Irr G. (5.2)
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Step 3. On the other hand, let us considerS ∈ Irr G and the short exact sequence

0 → RG,∅,D̃ → k
[
D̃

] → k → 0.

Applying HomG(−, S) to this sequence gives an exact sequence

0 → SG →
⊕

x∈D̃ (mod G)

SGx → HomG(RG,∅,D̃, S)

→ H 1(G,S)
rG,X,S−−−→

⊕
x∈D̃ (mod G)

H 1(Gx,S),

that is, an exact sequence

0 → SG →
⊕

x∈D̃ (mod G)

SGx → HomG(RG,∅,D̃, S) → H 1
LT,X(G,S) → 0.

Similar reasoning applies toT ∈ Irr H , leading to the exact sequence

0 → T H →
⊕

y∈Ẽ (mod H)

T Hy → HomH (RH,∅,Ẽ, T ) → H 1
LT,Y (H,T ) → 0.

Using the fact that the alternating sum of dimensions in an exact sequence is 0, the e
T G = T H and, fory = π(x), the analogousequalitiesV Gx = V Hy , we have

dimk HomH (RH,∅,Ẽ, T ) − dimk HomG(RG,∅,D̃, T ) = d(H,Y,T ) − d(G,X,T ). (5.3)

Step 4. Finally, combining Eqs. (5.1) and (5.2) (forX and Y ), and (5.3) gives the re
sult. �
5.5. Remark. If N is ap-group, then it is known that IrrG = Irr H [3, Remark after Defi-
nition 2.5]. Thus, in this case, the Borne invariants ofY determineall the Borne invariants
of X. In this sense, Theorem 5.4 generalizes the equivariant Deuring–Shafarevich fo
of Shoichi Nakajima [5], which is the special case ofN = G being ap-group.

5.6. Remark. If the operation ofG on X is tame, that is if p � |Gx | for all x ∈ X, then
all higher cohomology groups of the stabilizersGx vanish by Proposition 2.14. Thu
d(G,X,S) = dimH 1(G,S), which proves the conjecture that Niels Borne states in
after Proposition 2.4.

Under certain circumstances, the calculation of the locally trivial cohomology grou
not necessary:

5.7. Proposition. The following estimate holds true:

b(G,T ) � b(H,T ) for all T ∈ Irr H.
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Furthermore, if there is anx ∈ X such thatp � [G : Gx] or p � [N : Nx], then

b(G,T ) = b(H,T ) for all T ∈ Irr H.

Proof. Givenx ∈ X and settingy = π(x), the sequence

1 → Nx → Gx → Hy → 1

is exact. We chooseT ∈ Irr H and use the abbreviationsLTG := H 1
LT,X(G,T ) andLTH :=

H 1
LT,Y (H,T ). The inflation-restriction sequence of group cohomology [1, Chapter 3.

Exercise] gives the exact sequence

0 → H 1(H,T )
inf−→ H 1(G,T )

res−→ H 1(N,T )H .

We use this to construct the following commutative diagram:

0 0 0

0 LTH

i

H 1(H,T )
a ⊕

y H 1(Hy,T )

0 LTG H 1(G,T )
b ⊕

x H 1(Gx,T )

cokeri
j

H 1(N,T )H
c ⊕

x H 1(Nx,T )Hy

0

The first two rows are exact by the definition of locally trivial cohomology classes
The last two columns are exact by the inflation-restriction sequence. The injectivity
the inflation maps shows thati is injective, so the first column is exact and in particula
d(H,Y,T ) � d(G,X,T ), which implies thatb(G,T ) � b(H,T ).

Now a diagram chase shows thatLTH = LTG ∩H 1(H,T ); hence the induced mapj is
injective and its image lies in kerc. To show thatb(G,T ) = b(H,T ) in the cases mentione
in the proposition, we will show thatLTG = LTH .

If p � [N : Nx ] holds for somex ∈ X, then by Proposition 2.14 the mapH 1(N,T ) →
H 1(Nx,T ) is injective, soc is injective. Since cokeri ⊂ kerc = 0, it follows that
LTG = LTH .

If p � [G : Gx] holds for somex ∈ X, then sinceN is normal,[N : Nx] divides[G : Gx].
So by the above paragraph,LTG = LTH . However, a direct analysis shows more:
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Proposition 2.14 the restriction mapH 1(G,T ) → H 1(Gx,T ) is injective. Thus,b is injec-
tive, andLTG = kerb = 0. SinceLTH ⊂ LTG = 0, it follows thatLTH = LTG = 0. �
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