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Abstract

The p-rank of an algebraic curv& over an algebraically closed fieldof characteristicp > 0
is the dimension of the vector spafE' (Xet, Fp). We study the representations of finite subgroups
G C Aut(X) induced onH 1(Xet, Fp) ® k, and obtain two main results.

First, the sum of theonprojectivedirect summands of the representation, i.e.cae is deter-
mined explicitly by local data given by the fixed point structure of the group acting on the curve. As
a corollary, we derive a congruence formula for gheank.

Secondly, the multiplicities of thprojectivedirect summands of quotient curves, i.e., tH&irne
invariants are calculated in terms of the Borne invariants of the original curve and ramification data.
In particular, this is a generalization of both Nakajima’s equivariant Deuring—Shafarevich formula
and a previous result of Borne in the case of free actions.
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1. Introduction

We fix an irreducible, smooth and complete cur¥eover an algebraically closed
field k of positive characteristip. The etale conomology groufi1(Xet, F,) is afinite-
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dimensional vector space ovE. Its dimension, the-rank of X, is a global invariant of
the curve.

If we fix a finite groupG of automorphisms of the cun, then H1(Xey, F,) becomes
afinite-dimensional representation@foverlF ,. Moreover,H(Xet, Fp) ®r, k is a finite-
dimensional representation 6f overk.

First results on determining this representation up to isomorphism by local invariants
of the curve and of the group action have been obtained by Shoichi Nakajima [5], under
the assumption tha¥ is a p-group, and by Niels Borne [3], under the assumption that
operates without fixed points. We continue ttnadition, with no assumptions on either the
groupG or its action.

The local invariants (by this | essentially mean the ramification information) cannot
determine the representation completely, as the example of an elliptic Ewver a field
of characteristicZ 2 shows. Such a curve always allows an automorphism of order 2,
which stabilizes exactly 4 points (and the projection to the quotient cutaeislyramified
in these points). Namely, if the curve is given by the equaiidr= f(x), consider the
mapping given by(x, y) — (x, —y). However, thep-rank of E can be Oor 1, depending
on whether this curve is supersingular or not.

Accordingly, our results must be incomplete. Using the language of modular represen-
tation theory, what we do determine completely is the core of the representation (i.e., its
“nonprojective” part, cf. Section 2); this is the content of Theorem 4.8. In a sense, this
result is surprising, since generally the nonsemisimplicity of representations is what makes
modular representation theory more difficult than representation theory in characteristic
zero. Now the representation is determined completely by its core and the multiplicities of
the indecomposable projective summands, which weBmathe invariantof the curve and
introduce in Section 5. However, it is impossible to determine thededay invariants, as
the above example shows.

The content of Theorem 5.4 is to determine explicitly, in terms of local data and the
Borne invariants ofX, the Borne invariants of quotient curv&s N with respect to the
quotient groupG /N, for any normal subgroufy C G. This gives a procedure for calcu-
lating the Borne invariants of for those representations 6finduced by quotient groups,
in terms of the local invariants and the Borne invariants of the “smaller” cii&, and
may thus be regarded as a partial solution to the problem of determining Borne invariants.
In particular, if N is a p-group this approach gives all Borne invariants¥ofn terms of
those ofX/N, and if G itself is a p-group we recover Nakajima’s equivariant Deuring—
Shafarevich formula.

2. Modular representation theory of finite groups

Itis customary to call a (finite-dimensional) representation of a (finite) granpdular
representationf the characteristic of the field divides the order of the group. In this situ-
ation, the notions osimpleandindecomposablenodule no longer coincide, as would be
the case in characteristic 0 by Maschke’s tleen. This makes for a richer representation
theory, which we will now review.
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In the following we shall fix an algebraically closed fietdof characteristicp > 0,
a finite groupG, and denote b¥[G] the group ring ofG overk. All modules under con-
sideration will be finitely generated lef{ G]-modules, and we identify finite-dimensional
representations off overk with such modules. All homomorphisms are assumed to be
k[G]-linear.

2.1. Definition. A representation isimple (or irreducible) if it is nontrivial and has no
proper submodules. We denote the set of isomorphism classes of simple modules.by Irr
A representation isndecomposablé it is nontrivial and admits no proper direct sum-
mands. It igprojectiveif the functor Hong{P, —) is exact.

2.2. Theorem (Krull-Schmidt) If M is a representation, and/ = " ; M; = @?:1 N;
are two decompositions with indecomposable summandsyihem and, after suitable
renumberingM; = N; for all ;.

Proof. [1, Theorem 1.4.6]. O

This theorem allows us to speak of “the” indecomposable direct summands of a given
module. To study modules in terms of these summands, we must introduce cores, projective
covers, and loop spaces.

2.3. Definition. The (isomorphism class of the) direct sum of the nonprojective indecom-
posable summands of a given representatiois calledthe core of\7, and will be denoted

by coréM). If we haveM = corg M), we call M itself a core The (isomorphism class of
the) direct sum of the projective indecomposable summands is callgudjeetive part

of M.

2.4. Definition.

(i) A homomorphism of modules is callegssentialf it is surjective and its restriction to
every proper submodule of its domain is not surjective.

(ii) A projective covenf a moduleM consists of a projective modul® and an essential
mapr P — M.

2.5. Theorem. Any module has a projective cover, which is again finitely generated and
unigue up to(nonuniquég isomorphism. The projective cover of a direct sum is the direct
sum of the individual projective covers.

Proof. [7, Chapter 14, Proposition 4].0

We may thus speak of “the” projective coveg (M) of a module.

Itis known that the number of isomorphism classes of simple modules is finite [7, Chap-
ter 18, Corollary 3]. By contrast, there are in general infinitely many isomorphism classes
of indecomposable modules [1, Theorem 4.4.4]. Howevermptbgctiveindecomposable
modules are easily described by the following theorem.



828 N. Stalder / Journal of Algebra 280 (2004) 825-841

2.6. Theorem. The operation “projective cover” induces a bijection between thdrset
of isomorphism classes of simple modules and the set of isomorphism classes of projective
indecomposable modules.

Proof. [7, Chapter 14, Corollary 1]. O
It follows from the above theorem that any modMehas a decomposition

M=coraM)® P P(5)MY
Selrr G

for unique integers(M, S) > 0. To know the isomorphism class #f is to know its core
and to know the value of these integers.
The core of a module is the degree zero case of a concept of “loop spaces” developed to
understand modules “up to projectives.” Other authors vm'ge(M) :=corg(M). We will
need the degree one case:

2.7. Definition. Given a moduleV, its (first) loop spaces
26(M) := Q2L(M) :=ker(Pg(M) — M).
Recursively, we defin@% (M) := 26 (251 (M) fori > 1.

What follows are some technical lemmas. Thader only interested in the statements
of our theorems now has the necessary notation, and may skip the rest of this subsection.

2.8. Proposition. Given a modulé/ and a simple modul§, we have
Homg (M, S) = Homg (P (M), S).
Proof. We apply the functor Hom(—, S) to the exact sequence
0— QM) L Pg(M) 24 M — 0
to get the exact sequence
0— Homg (M, §) — Homg (PG (M), S) > Homg (26 (M), S).
The lemma follows from the equatiarf = 0. Assume thai* # 0, then there exists a

nonzero mapf € Homg (26(M), S) which factors throughPg (M) as f = Fi, for some
F e Homg(Pg (M), S). SinceS is irreducible,f and F must be surjective. The map

Po(M) 05 M@ S

is still surjective. Thus keF M. Mis surjective. Since” # 0, i.e., ketF & P(M), thisis
a contradiction to the fact thaty, is essential. O
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2.9. Corallary. If we write

Pa(M)= () Po(85)" Mo,
Selr G

then the multiplicitie® (Pg (M), S) are given byb(Pg (M), S) = dim; Homg (M, S).

Proof. We fix S € Irr G and calculate by means of the previous lemma:
~ b(PG(M),T
Homg (M, S) =Homg (Pg (M), S) = @ HOW’G(PG(T), S)ea (PG(M),T)

Telr G

— @D Homg (T, )@ Pe.D),
TelrG

By Schur’s lemma, the dimension of Hex(T', S) is 0 or 1, depending on wheth&rand
S are isomorphic or not. Thus the corollary follows by counting dimensioms.

2.10. Proposition. Given a modulé, the following are equivalent

(i) M is projective,
(i) M isinjective,
(iii) core(M) =0,
(iv) £2¢(M) is projective, and
(v) 2¢(M)=0.

Furthermore 26 (M) is always a core.

Proof. The equivalence of (i) and (ii) follows from [1, Propositions 1.6.2 and 3.1.2].
Clearly, (i) and (iii) are equivalent by definition. Sinc@s(M) = 0 if and only if

P (M) — M is anisomorphism, (i) and (v) are equivalent. The equivalence of (iv) and (v)
follows from the claim tha¥2 (M) is a core, which we now prove.

Assume thatP C 2¢(M) C Pg(M) is a nonzero projective submodule. Then (by the
equivalence of (i) and (ii))P¢ (M) decomposes as a direct sutp (M) = P & Q, and the
image ofQ in M is all M. This is a contradiction to the fact th&t (M) — M is essential,
hence2g (M) isacore. O

The following proposition is well known; we give a proof here since it will be a central
component in the proof of our Theorem 4.8.

2.11. Proposition. Consider an exact sequenge> N — P — M — 0 of modules, where
P is projective. Then there exists an isomorphism

corgN) = 2¢(M).

Furthermore, if we denote the projective part’dtby Q, we haveP = Pg(M) @ Q.
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Proof. We construct the following commutative diagram

0 N p M 0

_

00— 2¢M) — P(M) —= M —=0

The middle vertical arrow exists becauRés projective; it is surjective because;, (M) —

M is essential. LeD be the kernel of this middle arrow. Sind®; (M) is projective, so

is Q. By the snake lemma, the first vertical arrow is surjective, and its kernel is isomorphic
to Q. SinceQ is injective (Proposition 2.10), we have an isomorphism

N=Q6M) o 0,

which proves the second claim. Sin¢eis projective, and2s (M) is a core (Proposi-
tion 2.10),26(M) isthe core ofN. O

2.12. Proposition. Let p" be thep-part of the order ofG, i.e.,|G| = p"k with k ¢ N and
p1k. Then the dimension of every projective module is divisiblgby

Proof. [7, Exercise 16.3]. O

2.13. Proposition. Let N C G be a normal subgroup, and consider the gradp= G/N.
There is an inclusiotrr H C Irr G. GivenS € Irr G, we have

Py(S) fSelrrH,
0 if SelrrG\Irr H.

PG(H" = {
Proof. [3,Lemma 2.7]. O

In the last section we will need the following statement about group cohomology.

2.14. Proposition. Let K C G be a subgroup withy 1 [G : K]. Then for any representation
M of G, and for alli > 0, the restriction map

Res:H'(G, M) — H' (K, M)
is injective. In particular, ifp { |G|, thenH! (G, M) = Ofor all i > 0.

Proof. [1, Corollary 3.6.18]. O
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3. The p-rank of curves

We continue to assume as given an algebraically closedfigidharacteristipp > 0. In
this article, acurvesignifies a complete, smooth, connected, 1-dimensional varietykover
The (@bsoluté Frobenius morphisn¥ of such a curveX is the (canonical) morphism
which is the identity on topological spaces, and papower map on sections of the struc-
ture sheaf. It induces maps on the (Zariski) cohomology graipgs(, Ox). These are
additive, but nok-linear maps: They arg-linear, meaning that

F(A6) =APF (&) foraekandté € H (X, Ox).

The only nontrivial case for curves is the induced magbhiX, Ox).

For this, let us review some material pAlinear maps. There is a category pflinear
maps, with objects the pai(¥/, F) consisting of a finite-dimensional vector spaceand
a p-linear endomorphisn¥ of V. The morphisms in this category are the linear maps
on the underlying vector spaces which commute with the gjdinear endomorphisms.
Given such an objeatV, F), we setVF := {v € V: Fv =}, the fixed vectors of in V,
furthermoreV* :=(",_oim F', andV" :=J,_kerF".

The integerh = dim; V* is called thestable rank of F. The vector spac&? is often
called thesemisimplgoart of V.

3.1. Proposition. In the above situation, we have

(i) vFisaF,-vector space.
(i) VS andV" are k-vector spaces stable undér
(i) dimy V*® =dimg, vE.
(iv) V=V V",
(v) F restricted toV* is bijective,F restricted toV" is nilpotent.
(vi) (—)* is an exact functor on the category pflinear maps.

Proof. See [4] or [6] for (i) to (v). The last statement is clear, since we assume the maps
in the category to be compatible with the respecjivinear mapsF. O

On the dual vector spac&* = Hom(V,k) we can define a mag by setting
C(Y)(v) := ¥ (F@)Y? for v e V andy € V*. This map is additive and/p-linear, i.e.,
we haveC (L) = AYPC (). The decompositio? = V* @ V" corresponds to a decom-
position of V*, andC has the same stable rank Bs Since any 1p-linear map can be
viewed as the dual of a-linear map, the structure thgoof the previous proposition can
be translated to /Jp-linear maps.

3.2. Definition. The p-rank i x of a curveX is the stable rank of the Frobenius morphism
on H(X, Oyx).

It is clear that we have estimatesOhy < gx, wheregy = dimy H1(X, Oy) is the
genus ofX.
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We would like to know explicitly the dual map of the Frobenius morphism on
H(X, Ox). Recall that a rational functione k(X) is calledseparatingf the field exten-
sionk(X)/k(t) is separable. Given a meromorphic differendba f - dt, wheref € k(X)
andt is separating, we may write

f:fop—i-fft—i-“'-i-f;_lt”_l.

The Cartier operatoron differentials is defined by setting

d\"1
C(w) = fp_1dt = (” _<E> f) dt. (3.1)

This is well defined and independent of the choice [].

3.3. Proposition. The dual vector space éf1(X, Oy) is, by Serre duality, the vector space
HO(X, 2x) of holomorphic differentials. Under this identification, the Cartier operator
is the dual mag” of the Frobenius morphisriA.

Proof. [6]. O

The geometric meaning of therank is the following: There arg”x unramified Galois
coverings of the curvé with Galois groupF,, (one of which is the trivial cover), up to
isomorphism of the covering curve together with the actiori pf More precisely, the
group Hon(nft(X), IF,,) classifies such covers, and there are natural isomorphisms

(HO(X, 2x)°)" = HY(X, Ox)F = HY(Xet, Fpp) = Hom(z$Y(X), F),

compatible with the operation of automorphisms¥obn the respective vector spaces. For
proofs and further background, we refer to the survey in [2]. In this article, we will avoid ra-
tionality questions in representation theory by studyify X, Ox)* = H*(Xet, F,) ®r, k
instead of H1(X, Ox)F = HY(Xet, Fp). Also, we will study the dual representation
HO(X, 2x)* instead ofH1(X, Ox)* to simplify computations.

4. Thecoresof p-rank representations

Consider a curveX, and a finite subgroug C Aut(X). If X is of genusgy > 2, then
Aut(X) itself is finite, but even in that case we wish to allow ourselves the freedom of
choosing a smaller group.

Given a pointx € X, we use the notation, (—) for the function which assigns to a
function, differential or divisor its order at.

4.1. Proposition. Let D be an effective divisor on a curg. The Cartier operatoiC
operates on the she&x (D). If D is G-invariant, thenG also operates on this sheaf, and
the two operations commute.



N. Stalder / Journal of Algebra 280 (2004) 825-841 833

In particular, the vector spac#%(X, 2x(D))* of semisimple differentials with respect
to C is a (finite-dimensionglrepresentation of.

Proof. Consider an open sét C X and a differentialv € 2x (D)(U). Forx € U choose
a local parameterat P and write

wz(f(f"'flp't+"'+f;_1'tp_1)dt=f-dt (4.1)

as in Section 3, noting thatis separating. Setting = v, (D) > 0, the assumptions imply
thatv, (f) = vy (w) > —n. Thus the estimate

p- Ux(fpfl) +p—1=vu (f;’,ltpil) P miin(vx (f,'pti)) =v(f)=—n

holds true. We now see that (C(w)) = vx(fp-1) = [(1—p —n)/p] > —n, where[y]
signifies the smallest integer greater thaherefore, we havé(w) € 2x(D)(U).

Chooseg € G. We haveC(w)$ = (fp—1dt)s = f;ffl(dt)g. On the other hand, if is
separating, so is= 8, thus if we write

wé = ( 4 (f;’_l)p .sp—l) ds.

we haveC (wf) = f§_1 ds = C(w)8, since the definition of does not depend on the choice
of separating variable. O

4.2. Definition. The moduleVy := HO(X, 2x(D))* of the previousproposition is the
p-rank representationf G associated to thef-invariant and effective, but not necessarily
reduced) divisoD.

We introduce the notiorD™d for the reduced effective divisor associatedo The
following observation will prove to be helpful:

4.3. Proposition. If D is a G-invariant effective divisor oiX, then thep-rank representa-
tion does not depend on the multiplicitiesfi.e., Vp = Vpred.

Proof. The claim is that elements di°(X, £2x(D))* have poles of order at most one.
By Proposition 3.1(iii), it is sufficient to provis claim for differentials of the forrw =
C(w). If vy(w) =—n <0, then as in the proof of Proposition 4.1 we havéC(w)) >
[(1— p—n)/p].Itis elementary to prove that

l-p—n
p

-n & n=1,

so we see that, (w) > —1. O

In the following, we will always assume th#@ and D are effective ands-invariant
reduced divisors.
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4.4. Definition. We will call D sufficiently large with respect t@ if it is nonempty, and
contains all points of with nontrivial stabilizer inG. (Remember that by our convention
D is also effective, reduced an@ invariant.)

4.5. Proposition (Nakajima) If D is sufficiently large with respect 16, the p-rank repre-
sentationVy is a projectivek[G]-module.

Proof. Let P ¢ G be a p-Sylow subgroup ofG. By [5, Theorem 1] we know that
V5 is k[P]-free. This is equivalent to the fact thdt; is k[G]-projective [1, Corol-
lary 3.6.10]. O

We will present the core of @-rank representation as a loop space of the following
ramification module

4.6. Definition. Given aG-invariant effective reduced divisap as above, wehoosea
sufficiently large divisoD > D. Theramification module ofp (with respect taD) is the
following:

N._{k[ﬁ\D]’ if D#0,
G,D,D *— ker(k[5] =k, Y x> Y Ay), If D=0,

where, for any reduced effective divisar, by k[E] := @, g k - x we denote the affine
coordinate ring of the reduced subvarietyXvfissociated td& .
Thecore module oV, is the loop space

Cp = 26(Rg p 5)-

4.7. Remark. We note that the modul€'p does not depend on the choice Bf since
enlargingD corresponds to adding ® ,, 5 direct summands isomorphic ¥G], and
such free summands are annihilated by the loop space operator. Furthermore,

KD\Dl= @  kIG/G.]

xeD\D (mod G)

is a sum of induced representations of the trivial representation.

4.8. Theorem. The core of the-rank representation associated taz&invariant effective
divisor D (not necessarily reducéds given by the following formula

corgVp) = CDred.

Proof. By Proposition 4.3 we may assume thatis reduced. We choosB > D suffi-
ciently large. TherD \ D is also reduced an@-invariant, and the residue map induces an
exact sequence of sheaves

0— 2x(D) > 2x(D) B8 05, , — 0,
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which is invariant under the operation 6f This induces a long exact sequence
0— H°(X, 2x(D)) — H°(X, 2x(D)) — k[D\ D] & HY(X, 2x(D)) — 0,

which terminates at/1(X, 2x (D)) = 0 sinceD # #. Clearly, we have ke¥= R, ,, 5
hence there is an exact sequence[@f]-modules

0— HO(X, 2x(D)) - H°(X, 2x (D)) & R; p 5 — 0.

In order to extract from this an exact sequence of semisimple parts, we defipeliadar
map onk[D \ D] = @Dacp\p k - d by letting it operate on the standard bagi$, 5, , as

the identity. This induces &/ p-linear map orR; ,, 5, compatible with the operation 6f.
Since we know that Ré€w)” = Resw) by [6], the above sequence is an exact sequence
in the category of Ap-linear maps. Thus, by the exactnesgef*, we obtain the exact
sequence

0—Vp— V5—>RG’D’5—>O.

By Proposition 4.5 the middle term is a proj@etmodule, and Proposition 2.11 gives the
desired result. O

4.9. Remark. If G has no fixed points, then fdd = ¢ the core of the associatggdrank
representation is

cora Vi) = 2§ (R 4.5) = R&(K),

sincek[ D] = k[G]" for somer > 1, which implies that cor&; 4 5) = Q(Z;(k). This par-
ticular core has been calculated by Borne in [3].

4.10. Remark. Since a projective representation is determined up to isomorphism by its
composition factors [7, Chapter 14, Coraolle3 to Proposition 41], the local invariants
used in Theorem 4.8 and the modular character pfrank representation determine such

a representation up isomorphism

4.11. Corollary. Consider a curveX and a finite groupG of automorphisms oX. Letr
be the number of points &f with nontrivial stabilizer inG, and letp” be thep-part of
the order ofG. Then

hx=1-r (modp").
Proof. We choose a minimal sufficiently large divisbro #, and setR := Rg 4. p- Since
hy is the dimension oV, and by Theorem 4.8 this module differs from its core only by

projective summands, Proposition 2.12 implies that

hx =dim2G(R) (mod p").
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Similar reasoning applies t@s(R) and R, which have dimensions adding up to the di-
mension of the projective modul®; (R), and shows that

dim2¢(R)=—dimR (mod p").

If G has a point witn nontrivial stabilizer, then diRn= dimk[ﬁ] —1=r -1, andif not,
then dimR =dimk[D] —1=|G|—1=0—1=r — 1 (mod p"); hence we can combine
the above congruences to obtain the corollany.

4.12. Remark. Akio Tamagawa has reminded me that the above corollary also follows
from the Deuring—Shafarevich formula (cf. [2,5]) applied to the coveking X /P, where

P is a p-Sylow subgroup ofG. Note that while the Deuring—Shafarevich formula only
captures wildly ramified points, the number of tamely ramified points is a multippé& of

5. Borneinvariantsof quotient curves

In addition to the notation and conventions of the previous section, we consider a normal
subgroupV of G, and the short exact sequence

1-N—-G—H-—1

A representation of{ lifts to a representation off, and we obtain an inclusion Iff C
Irr G of the set of irreducible representations.

Let Y := X/N be the quotient curve, and let: X — Y be the canonical projection.
There is a natural induced operationffon Y. The notation of the last section will some-
times have to be decorated by subscripter Y.

5.1. Definition. TheBorne invariant$ (G, D, S) of the curveX (with respect taG andD)
are the multiplicities of the projectvindecomposable modules in therank representa-
tion of G with respect taD. Thus, we have an isomorphism

Vp = corgVp) & @ PG (S)BPGD.S),
Selrr G

We simplify notation, setting (G, S) :=b(G, 9, S).

5.2. Proposition (Pink). Let D be anN-invariant reduced effective divisor oxi. There is
a natural isomorphism of sheaves

1. 2x(D)N = Qy(E)

for an effective divisoE on Y, which commutes with the Cartier operator and the opera-
tion of G. We have

E™=7(D)®U {y e Y | 7 is wildly ramified overy}.
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Proof. Pulling back differentials fronY to X via = induces an injective sheaf homomor-
phism

Qy —> . 2x(D)N.

The target of this homomorphism is a torsifsee, coherent sheaf of rank 1; hence there
is a unique effective diviso£ on Y such that the above homomorphism extends to
an isomorphismRy (E) — m,82x(D)V. By construction of the Cartier operator, this is
Cartier-equivariant.

We now proceed to determinge. If R is a local ring, we denote its completion By
Choosey € Y, we then have

N
m.2x(D)Y ®o,, Ory=( B 2x(D)®oy, Ox,x>

xer1(y)
= (.QX(D) R0y, @)NX foranyx e n_l(y)

_— Ny
=80x(D)x .

Choosex € 7 ~1(y), and denote again byandy local parameters at andy respectively.
We have

Ox..=kllx]l and Oy, =k[lyll=k[lx]]™.
Settingn := [N, |, we may express as
y = x" + terms of higher order in.

It follows thatm := vy (dy/dx) =n — 1 if ptn, andm > n if p | n. Let us setd :=
vy (D) and writed + m = an + b, for integersa, b > 0 with » < n — 1. The following are
equivalent:

) a=1,
(i) d+m>n,
(i) d=1orp|n.

We now see that

N 1 Nx 1 N 1
2x(D); = (—dk[[x]]dx) = (mk[[x]]) dy = —k[[ylldy.
X X y

which implies thatr, 2x (D)"Y = Qy (E) if we setvg(E) := a, as claimed. O
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5.3. Definition. Consider an irreducible representatiSre Irr G. The restriction maps
HY(G, S) — HY(G,, S) combine to a global restriction map

rox.s HYG, ) — [[ HY G H = @  HUG.. 9.
xeX {xeX: G,#1}

Its kernelHLlT’X(G, S) := kerrg. x,s consists of théocally trivial first cohomology classes
of S(with respect taG and X). We set

d(G, X, ) =dimH}; (G, ).

5.4. Theorem. The Borne invariants ok andY = X /N with respecttaG andH = G/N
for T € Irr H are related by the following formuia

b(G,T)+d(G,X,T)=b(H,T)+d(H,Y,T).
Proof. Thisis alengthy calculation, which we divide into several steps. We choose a suffi-
ciently large divisorD on X with respect taG, and set := (D)™ this is a sufficiently
large divisor ony with respect taH .
Step 1. SinceD contains all ramified points, wildr not, Proposition 5.2 implies that

N
Vx 5)" =Vyi-

In particular, since/y 5 is projective by Proposition 4.5, we may apply Proposition 2.13
to its indecomposable summands to obtain

b(G,D.T)=b(H,E,T) forT elrH. (5.1)
Step 2. The short exact sequence
0—Vxyg—>Vxp—>Rspp—0,

established at the end of the proof of Theorem 4.8 induces, by the second claim of Propo-
sition 2.11, an isomorphism

P PPV =Pe(Rsy5)® P Po(H"P.
SelrG Selr G

In particular, using Proposition 2.8, we may apply Heg, S) to deduce the equation

b(G. D, S) =dimyHomg (Rg s 5. S) +b(G. 8. 8) forSelrG. (5.2)
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Step 3. On the other hand, let us considee Irr G and the short exact sequence
0— Rgyp— k[ﬁ] —k—0.

Applying Homg (—, S) to this sequence gives an exact sequence

05> P % —>Homg(Rgy 5. 9)

xeD (mod G)
- HYG.5) 5 P HYG.S).
xeD (mod G)

that is, an exact sequence

0— s¢ > EB 56 — Homg(Rg s 5. S) — H}7 (G, S) — 0.
xeD (mod G)

Similar reasoning applies t6 € Irr H, leading to the exact sequence
0>TH - EB T — Homyu (Ryy 4 5. T) — Hir y(H,T) — 0.
yeE (mod H)

Using the fact that the alternating sum of dimensions in an exact sequence is 0, the equality
T¢ =TH and, fory = 7 (x), the analogousqualitiesV ¢* = V# we have

dimy Homy (Ry g g, T) — dimg HomG (R 4 5, T) =d(H, Y, T) —d(G, X, T). (5.3)

Step 4. Finally, combining Egs. (5.1) and (5.2) (faf and Y), and (5.3) gives the re-
sult. O

5.5. Remark. If N is ap-group, then itis known that ¢ = Irr H [3, Remark after Defi-

nition 2.5]. Thus, in this case, the Borne invariant¥adetermineall the Borne invariants

of X. In this sense, Theorem 5.4 generalizes the equivariant Deuring—Shafarevich formula
of Shoichi Nakajima [5], which is the special caseddE G being ap-group.

5.6. Remark. If the operation ofG on X is tame that is if p 1 |G| for all x € X, then

all higher cohomology grups of the stabilizers;, vanish by Proposition 2.14. Thus
d(G, X, S) =dimHY(G, S), which proves the conjecture that Niels Borne states in [3]
after Proposition 2.4.

Under certain circumstances, the calculation of the locally trivial cohomology groups is
not necessary:

5.7. Proposition. The following estimate holds true

b(G,T)<b(H,T) forall TelrrH.



840 N. Stalder / Journal of Algebra 280 (2004) 825-841

Furthermore, if there is am € X such thatp{[G : G,] or p{[N : Ni], then
b(G,T)=b(H,T) forall T elrrH.
Proof. Givenx € X and settingy = 7 (x), the sequence
1-N,—>Gy—>Hy—1
is exact. We choosE e Irr H and use the abbreviatiohd's := H}'; (G, T) andLTy :=
HLlT’Y(H, T). The inflation-restriction sequeamf group cohomology [1, Chapter 3.4,
Exercise] gives the exact sequence

0— HYH,T) ™ gYG,T) =8 gY(N, T)H.

We use this to construct the following commutative diagram:

0 0 0

0 LTy HYH,T) —— @, H'(H,.T)
b

0 LTg HYG,T) — @, HYG,, T)

j .
cokeri ——= HYN, T)H —— @, HX(N,, T)

0

The first two rows are exact by the definitiof locally trivial cohomology classes.
The last two columns are exact by the infletirestriction sequence. The injectivity of
the inflation maps shows thatis injective, so the first colmn is exact and in particular
d(H,Y,T)<d(G, X, T),whichimplies thab(G, T) < b(H, T).

Now a diagram chase shows thafy = LTg N HY(H, T); hence the induced mapis
injective and its image lies in ker To show thab(G, T) = b(H, T) in the cases mentioned
in the proposition, we will show thatTg = LTy .

If p{[N : N,] holds for somex € X, then by Proposition 2.14 the map*(N, T) —
HY(N,,T) is injective, soc is injective. Since cokerc kerc = 0, it follows that
LTg=LTy.

If p1[G : Gx]holds for some € X, then sinceV is normal[N : N,] divides[G : G,].
So by the above paragraphfs = LTy. However, a direct analysis shows more: By
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Proposition 2.14 the restriction m&p' (G, T) — HY(G,, T) is injective. Thusp is injec-
tive, andLTs =kerb =0. SinceLTy C LTg =0, it follows thatLTy = LT =0. O
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