
 Procedia CIRP 44 (2016) 395 – 400

Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS)
doi: 10.1016/j.procir.2016.02.105

ScienceDirect

6th CIRP Conference on Assembly Technologies and Systems (CATS)

Optimal robot placement for tasks execution

Domenico Spensieria, Johan S. Carlsona, Robert Bohlina, Jonas Kressina, Jane Shib

aFraunhofer-Chalmers Research Centre, Geometry and Motion Planning Group, 41288 Göteborg, Sweden
bGeneral Motors Global R&D Center, Warren, Michigan, US

∗ Corresponding author. Tel.: +46-31-7724252; fax: +46-31-7724260. E-mail address: domenico.spensieri@fcc.chalmers.se

Abstract

Automotive assembly cells are cluttered environments, including robots, workpieces, and fixtures. Due to high volumes and several product

variants assembled in the same cell, robot placement is crucial to increase flexibility and throughput. In this paper, we propose a novel method to

optimize the base position of an industrial robot with the objective to reach all predefined tasks and minimize cycle time: robot inverse kinematics

and collision avoidance are integrated together with a derivative-free optimization algorithm. This approach is successfully used to find feasible

solutions on industrial test cases, showing up to 20% cycle time improvement.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS).

Keywords: Robotics, optimization, cell layout, path planning

1. Introduction

Flexible assembly holds the promise of removing the need

of highly dedicated and structured workspace, increasing pro-

ductivity for more difficult components, as well as responding

more quickly to product changes. Within flexible manufactur-

ing systems, dynamic and robust layout are crucial and strategi-

cally important, since they are often done at early stages in the

process, see [1].

In many areas, such as automotive, electronics manufactur-

ing, and inspection, robots are used to perform specific opera-

tions on a workpiece in a station. Examples range from spot,

stud, laser welding on sheet metal assemblies, to camera-laser-

touch measuring on different objects. A complete set of opera-

tions consists in performing a specific task/operation, e.g. mea-

suring or welding, by a robot on a set of work-points. Often,

after the robot returns to its starting configuration, a new work-

piece is introduced in the station and the new operations are

performed. Since these cycles are repeated several times, it is

very important that they are executed as fast as possible in order

to maximize the throughput and to increase resource/equipment

utilization.

Generally, a rule of thumb is used to determine the work

flow for each robot workstation based on the overall production

throughput requirement. Once a set of specific tasks is assigned

to a robot, the layout engineer has limited freedom to optimize

the robot workstation:

• robot’s base placement (translation and rotation);

• robot’s home configuration in the station (six joints);

• visiting order of the work-points;

• robot’s paths with via-points.

The last three ones may be modified by changing the robot pro-

grams, whereas the first has to be completely decided before

installing the robot in the workstation. The engineers use the

robot working envelop to roughly place the robot base. If some

portion of the tasks is out of robot’s reach, a 1dof linear track

could be used to extend the reach of a 6dofs (degrees of fre-

dom) industrial robot. This typical layout practice only con-

siders robot’s basic reachability requirement. It is unknown to

the layout engineers if there is any potential optimality in the

robot base placement that could yield the best cycle time with

the guaranteed reachability for a given set of tasks. Therefore,

the optimization of the robot base placement w.r.t. the given

set of tasks is of fundamental importance and, due to the recent

advances in CAD/CAM software, [2], it is now possible to face

problem of industrial relevance.

In this work, we describe a new approach and related algo-

rithms to automatically calculate an optimal robot base loca-

tion. This novel method is based on a derivative-free optimiza-

tion algorithm and makes use of built-in functionalities in the

software Industrial Path Solutions, [3], for the computations of

robot reachability analysis and distances.

This paper is organized in the following way. First, related

work is presented and the problem is described in more detail

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82125292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

396 Domenico Spensieri et al. / Procedia CIRP 44 (2016) 395 – 400

and the tools used are presented. Then, a derivative-free model

for the problem is presented together with a well known opti-

mization algorithm; results are also shown. In Section 5 the

method is generalized to deal with several workpieces. Even-

tually, cycle times for the optima found are generated and con-

clusions with ideas for future work are presented.

2. Related work

The most comprehensive works regarding cycle time opti-

mization for a given set of tasks by moving the robot base are

two early works from the 90s, see [4] and [5], and a more recent

one, see [6]. The problem can be also seen from the workpiece

perspective, see [7]. In [4] a grid in the state space of the robot

base location is built at a given resolution. Afterwards, a gen-

eralized traveling salesman problem (GTSP) is solved in order

to find the minimum cycle time for a robot visiting all work-

points and performing all tasks. This is done for each base lo-

cation, corresponding to the points in the grid. The method,

however, does not take into account collision detection in or-

der to avoid geometrical obstacles. In [5], simulated anneal-

ing, see [8], is applied to cycle time optimization, both when

moving the robot base location and when changing tasks se-

quence. The first solution is accomplished also by the help of

reachability analysis and collision detection exploiting analyti-

cal expressions for fast computations of the so called ’obstacle

shadows’ and tasks reachability regions. The method is com-

pleted by also using clustering heuristics in order to deal with

large sequencing problem instances. In [6] the relative position

between the robot base and a path connecting fixed locations is

optimized with respect to cycle time. Since the relative position

between the robot base and the path is the interesting one, the

path is translated and rotated. The results obtained show that

cycle time can be improved by 37% with respect to the worst

cycle time. More interesting figures concern the improvement

with respect to paths generated by experienced engineers: these

range between ca 3,5% to ca 21%. The main idea in [6] is to

try to identify how cycle time varies with respect to the change

of robot base by running a series of experiments that evaluate

the real cycle time (for given robot base positions). Afterwards,

cycle time for positions not covered in the experiments is ap-

proximated by the response surface method. The boundaries

for the values of the robot base position are found by a bisec-

tion method. The function resulting from the response surface

method is optimized with respect to robot base position, al-

lowing it to vary within the boundaries found. A simulation

is performed to check whether the path is kinetically feasible

and to get an exact value for the cycle time. Small adjustments

exploiting sensitivity analysis are applied if the original robot

base position does not satisfy kinematic constraints. Limita-

tions for this approach include lack of collision avoidance and

no reordering of task locations. This is believed to be relevant

when different robot bases give paths that heavily differ topo-

logically.

Besides these works that consider the complete process,

there are several articles dealing with subproblems whose solv-

ing algorithms could be included as blocks in a more complex

method solving the overall problem. In [9], the authors deal

with the optimization of the base location of a manipulator in

an environment cluttered with obstacles. The problem is limited

to single path optimization. The strength of the approach lies

in a fast path re-optimization technique that can be applied to a

collision-free path when changing the robot base position. The

search for the best base is done through a neighborhood search

in the state space. Robot base optimization is also treated in

[10], where the TCP (Tool Center Point) path is fixed and the

goal is to minimize the robot energy consumption. Another

work involving robot placement for minimum time motion is

[11]. A core block for the optimization of the robot base po-

sition, given a set of tasks, is the identification of robot bases

from which specified task can be reached. A recent work deal-

ing with fast algorithms solving this problem is [12].

3. Definition

The input for the problem is represented by:

• the robot model, including CAD geometries and its kine-

matic behavior,

• the CAD models representing fixture, welding gun and en-

vironment,

• a set of NT tasks T = {T 1, . . . ,T NT }, e.g. spot welding

points.

In the rest of the paper tasks and welding points will be used

indifferently, as common practice for this kind of application.

Finding the best (minimizing cycle time) positioning for the

robot base requires repeated computations of:

1. reachability analysis;

2. collision test;

3. cycle time estimation.

A brute force analysis would, in practice, look like as in Algo-

rithm 1.

Algorithm 1 Brute force computation of optimal robot base

placement b giving the minimum cycle time c.

1: c← ∞
2: b← O

3: for all bi do
4: cB = ComputeCycleTime(bi)

5: if cB < c then
6: c← cB

7: b← bi

8: end if
9: end for

10: return b, c

The robot base dofs consist of the (x, y, z) coordinates repre-

senting translation part and (RX ,RY ,RZ) representing the ori-

entation part. The ’ComputeCycleTime’ procedure requires

heavy computations, that, in this work, rely on the simulation

software platform IPS, see [3]. For more details about the soft-

ware architecture and the implementation, please refer to Ap-

pendix 9. Brute force analysis, however, does not necessarily

well scale, neither is the best approach, when

• the number of tasks increases;

• the CAD geometries get more complex;

397 Domenico Spensieri et al. / Procedia CIRP 44 (2016) 395 – 400

Fig. 1: Pilot scene modeled in IPS, an overview.

• multiple fixtures and workpieces need to be considered;

• cycle time needs to be simulated;

• the interest is in one feasible solution.

The pilot scene used throughout the paper is an assembly station

provided by General Motors Company, consisting of FANUC

robots equipped with spot welding guns. Figure 1 shows an

overview of one assembly cell. In Section 4 an optimization

algorithm is presented, which is suitable for objective functions

based on black-box evaluations or resulting from highly com-

plex software simulations.

4. Optimization approach

In the application considered, the search space consists of a

three-dimensional box corresponding to the xyz coordinates of

the robot base. Note that the three rotational dofs (RX ,RY ,RZ)

are not considered at this point, in order to keep a low complex-

ity. Moreover, it is believed that the six robot dofs can account

for that. Thus, in the rest of this article, we assume b = (x, y, z).

The idea is to maximize a function f (b) of the base position

corresponding to the number of tasks that can be executed by

the robot in a collision free way, nCF :

f (b) = nCF(b) (1)

Note that this function is not continuous with respect to x, y, z,

neither is it convex. The main reasons for that are the kine-

matic constraints for the robot and obstacles in the environ-

ment. Thus, derivatives do not exist for such a function, and

a derivative-free algorithm is adopted here: the simplex based

Nelder-Mead search, see [13].

4.1. Nelder-Mead algorithm

The search starts by building a simplex, a polytope of n + 1

vertices in a n-dimensional search space and evaluates the func-

tion at those points, with n = 3 in our case. Then, the algo-

rithm starts a number of iterations where vertices of the simplex

are replaced by extrapolating the objective function value and

exploring promising areas. A simplex is maintained, obtained

by reflection, expansion, contraction and other operations per-

f1 f2

f3

f4

f5

Fig. 2: Example of simplex in 2 dimensions.

formed on the simplex at the previous iteration. Eventually, it

terminates when the maximum number of iterations is reached

or when the objective function is not improved anymore. An

example of three iterations of the simplex method is illustrated

in 2, where the function to be optimized is computed 5 times.

The Nelder-Mead numerical method has a very widespread use,

however, converge properties have not been proved, except for

problems of small dimensions, see [14]. After some tests run

by applying Nelder-Mead on the function defined in Equation

1, with several starting points, it was shown that this measure

gives no information about where to move the robot base po-

sition in case a weld point cannot be reached: the search gets,

therefore, easily stuck. Based on this observation, a new mea-

sure is introduced, in order to cope with this problem. More-

over, since cycle time estimation is still computationally expen-

sive at this stage, the measure does not yet explicitly consider

it.

4.2. Reachability measure

A measure of reachability is the number of tasks that the

robot can execute in a collision free way, as in Equation 1.

However, in order to give the solver more information about

possible causes of failure, we decided to introduce a penalty

term indicating how far the robot is from reaching a task. The

idea is to build a smoother function, that improves its value

when getting closer to a task position. A powerful way to do

that is to compute the Euclidean distances between each robot

task position and the robot’s workspace. The analysis is lim-

ited to common industrial robots used in automotive, i.e. 6-

joints robot manipulators, consisting of 3 rotational joints se-

rially connected, followed by 3 rotational joints forming the

wrist. The distance can basically be obtained by considering

the wrist of the robot and the position center for joint 2 or, ap-

proximately, the robot base center frame. In Fig. 3, the inner

and outer radii are drawn, helping to identify the approximation

of the robot’s workspace. Note that the needed robot wrist po-

sition in order to fulfill a task is independent of the robot base.

Given a fixed baseplate b, and a fixed task T i, a measure m
about how far an unreachable point is:

m = |di − rC |
di = ‖wi − b‖2 (2)

rC =
r + R

2

398 Domenico Spensieri et al. / Procedia CIRP 44 (2016) 395 – 400

R

r

Fig. 3: Approximation of robot’s workspace.

where di is the Euclidean distance between the wrist wi at task

T i and the baseplate b, and rC is the average distance to the

baseplate for the centroid of the robot reachable workspace.

Note that, rC , is a property of the robot, which can be computed

statically, at the beginning. A preprocessing can also be done

for the computation of the wi, since they do not depend either

on the robot base. On the other hand, the remaining quantities

depend on the robot baseplate and, therefore, need to be eval-

uated any time the robot base position is changed. Here, for

sake of clarity in explanation, rC is assumed to be the exact av-

erage. However, depending on the robot characteristics, it may

be approximated in another way. Therefore, a modified objec-

tive function f is introduced, which weights how far a task is

from being reached kinematically, see Algorithm 2.

Algorithm 2 Given a fixed robot base position b, compute n. of

reachable tasks nR, n. of collision free tasks nCF , and penalty p
for unreachable tasks.

1: p← 0

2: nR ← 0

3: nCF ← 0

4: for i = 1 to NT do
5: if KinematicReachabilityAnalysis(T i, b) then
6: nR ← nR + 1

7: if CollisionFree(T i, b) then
8: nCF ← nCF + 1

9: end if
10: else
11: m = measure(T i, b)

12: p← p + m
13: end if
14: end for

Now, Eq. 1 can be modified to:

f (b) = nCF(b) − α ∗ fP(b). (3)

The introduction of the penalizing term fP results in a substan-

tial improvement of the search algorithm, since now there are

’hints’ about in which direction the robot base needs to move.

The factor α is set to a small scalar in order to correctly weight

the primary objective nCF against the penalty fP. Note that,

even if the robot joint limits and collisions are not considered,

start position

Nelder-Mead IPS callbacks

Compute function

Save optimum

new start solution?

stop

yes

no

Fig. 4: Overall workflow.

Fig. 5: The 27 local minima found for 27 start positions of Nelder-Mead, w.r.t

the workpiece. Robot with welding gun also illustrated.

the function fP is not yet convex. The overall workflow is illus-

trated in Fig. 4.

Each of the 3 dimensions x, y, z, has been uniformly sam-

pled at three points, generating 27 points. A simplex is created

around each starting point, thereafter the algorithm is run 27

times, one for each starting simplex. Several function evalua-

tions are needed for the algorithm to reach a stop criterion: in

this test 336 (adding together evaluations for all 27 start po-

sitions). Refer to section 4.1 about the function evaluations

needed in the simplex method. Moreover, in 170 out of 336,

all tasks could be reached. Fig. 5 illustrates the 27 positions

corresponding to the local minima found for each of the 27 start

positions. Note that they are not heavily clustered around one

or few points, but are quite widespread along the workspace.

Lighter green indicates better values than darker.

5. Several workpieces

Often, in the automotive industry, the same robot station

is utilized for different workpieces with the corresponding fix-

399 Domenico Spensieri et al. / Procedia CIRP 44 (2016) 395 – 400

(a) Original workpiece with

weld points

(b) Displaced workpiece with

weld points

Fig. 6: Relative positions of workpieces and tasks sets.

tures. Therefore, it would be a great advantage to have the pos-

sibility to consider all these alternatives at the same time in the

design phase.

This is possible by slightly modifying the current method-

ology. The only extension to be done is to couple the right

geometry models with the corresponding tasks to be planned,

when performing collision tests. In other words, when check-

ing whether a robot is colliding at a given task, then only the

workpiece and the fixture corresponding to the actual task are

considered.

This functionality has been added to the current optimiza-

tion algorithm, see Algorithm 3, where the total number of wor-

pieces is NW .

Algorithm 3 Given a fixed robot base position b, compute data

to evaluate function for several workpieces Wi

1: p← 0

2: nR ← 0

3: nCF ← 0

4: for i = 1 to NW do
5: Enable fixture, tasks, and geometries for Wi

6: (pi, ni
R, n

i
CF) = FuncEval(b)

7: p← p + pi

8: nR ← nR + ni
R

9: nCF ← nCF + ni
CF

10: end for

The ’FuncEval’ routine is the one described in Algorithm

2. We have created an artificial test scene, by displacing the

original workpiece in the pilot scene, with its corresponding

weld points, as in Figure 6. By applying the extended algorithm

on it, all 24 tasks are reached for 26 of the 27 start positions.

This means that, given a fixed robot base position, the robot can

perform the 12 tasks in a collision-free way on the workpiece,

as in Fig. 6a. Then, one could re-orient the workpiece with

the tasks, as in Fig. 6b, and all 12 tasks could be performed in

a collision-free way, without moving the robot base. Note that

the workpieces do not appear at the same time in the scene, only

one at a time.

6. Cycle time

Cycle time has not been considered so far because of its high

computational effort needed to get it. Cycle time simulation has

been done by using IPS built-in functionalities. The simulations

solve iteratively a Generalized Traveling Salesman Problem,

Table 1: Estimated cycle times for the robot placements corresponding to the

local optima found above.

Optimum no. Estimated cycle time (s) Estimated motion time (s)

1 33.8 9.8

2 39.2 15.2

3 33.7 9.7

4 34.7 10.7

5 35.0 11.0

6 33.3 9.3

7 37.3 13.3

8 33.9 9.9

9 35.1 11.1

10 34.6 10.6

11 38.3 14.3

12 32.7 8.7
13 35.1 11.1

14 35.0 11.0

15 40.3 16.3
16 INF INF

17 37.0 13.0

18 34.6 10.6

19 35.1 11.1

20 INF INF

21 34.7 10.7

22 35.4 11.4

23 39.6 15.6

24 40.1 16.1

25 INF INF

26 36.4 12.4

27 34.5 10.5

and robot path planning problem in order to get a collision-free

sequence of robot movements performing all tasks.

We show here the results obtained by running cycle time es-

timation for all the local optima found in Section 4.2.

It is worth to note here that some of the robot placements do

not lead to a collision-free path covering all tasks, INF in Table

1. This is mainly due to two reasons:

• given a robot base placement, the robot configurations

needed to cover some tasks are very close to the joint lim-

its, therefore it may happen that the robot cannot move

along directions avoiding obstacles. In other words, the

robot encounters its joint limits when trying to move away

from the obstacles;

• the path planner algorithm requires too much effort to

resolve collisions, and the computational time limit is

reached. That often indicates an intrinsic bad characteris-

tic of such paths, that the engineer usually wants to avoid

anyway: these could be very long robot motions, or paths

with small clearance. Investigation of how to avoid areas

with small clearance or with large geometrical variation is

done in [15].

However, for those positions where it is possible to find a

collision-free path reaching all the welding points, there still

is a very large time span, the shortest (no. 12) being ca 20%

faster than the slowest (no. 15).

Moreover, it is very important here to note that the times re-

ported in the second column of Table 1 include the times needed

to perform the welding operations, which is 2s for each of the

12 welding points. This time cannot be reduced and is constant,

400 Domenico Spensieri et al. / Procedia CIRP 44 (2016) 395 – 400

independently of the robot base position and of the robot con-

figuration. Therefore, by subtracting 24s from the cycle times,

see column 3 in Table 1, the relative differences become even

larger: the time for fastest motion time is almost half the time

of the slowest one.

7. Conclusions and future work

An algorithm optimizing the cycle time for a robot station

by placing the robot in a good way has been described and im-

plemented. The computational studies in this work show that

there is a large span of feasible robot placements giving signif-

icantly different cycle times. Indeed, this fact strongly justifies

the relevance of the problem investigated. The analysis about

whether each task can be executed by the robot in a collision-

free way, is time consuming in itself and hard to do manually.

Even harder is the generation of collision-free paths between

the welding points. These facts motivate the use of automatic

tools, as the one described in this article, that are highly valu-

able even in different phases of a project, e.g. early layout of

the cells, and later generation of robot programs.

In some cells, it may happen that all tasks cannot be done

by only one robot. Therefore, another robot is necessary. The

introduction of an additional robot brings more capabilities in

terms of

• flexibility, since in many cases a task can be performed by

more than one robot;

• effectiveness, since robots can work in parallel, therefore

with high probability decreasing cycle time.

However, the complexity, due to the need to coordinate the

robot paths, is increased and automatic tools would be of great

help for the end users. Ongoing work is focusing on optimiza-

tion of the placements for several robots, and on the automatic

creation of optimized robot programs, see [16] and [17] for re-

cent research in this field. Furthermore, a very relevant aspect

is to speed up the algorithms, in order to handle complex CAD

models in reasonable time and to well scale while the number

of tasks increases.

8. Acknowledgements

This work is partially supported by a research grant from

General Motors Global R&D Center at Warren. Michigan, US.

Part of this work was also carried out within the Wingquist Lab-

oratory VINN Excellence Centre, supported by the Swedish

Governmental Agency for Innovation Systems (VINNOVA). It

is also part of the Sustainable Production Initiative and the Pro-

duction Area of Advance at Chalmers University of Technol-

ogy.

9. Appendix A - Implementation architecture

IPS makes some internal functionalities available externally

through a LUA scripting engine. Lua scripts can be executed in

IPS either via Remote Procedure Call (RPC) or locally, see Fig.

7. A client application can be written, which produces scripts to

be run into IPS and it can get back the results via the same Lua

Fig. 7: General Lua scripting interaction with IPS.

interface, see Fig. 7. In this way, one can use IPS as a service,

comparable to a Software Development Kit (SDK) approach.

References

[1] G. Moslemipour, T. Soon Lee, D. Rilling, A review of intelligent ap-

proaches for designing dynamic and robust layouts in flexible manufactur-

ing systems, The International Journal of Advanced Manufacturing Tech-

nology,Vol. 60, Issue 1, pp. 11-27, April 2012.

[2] M. P. Groover, Automation, Production Systems, and Computer-Integrated

Manufacturing (4th Edition), Prentice Hall, 2014

[3] www.industrialpathsolutions.com

[4] Y. K. Hwang, P. A. Watterberg, Optimizing Robot Placement for Visit-

Point Tasks, Proceedings of the AI and Manufacturing Research planning

project, 1996.

[5] D. Barral, J.-P. Perrin, E. Dombre, A. Liegeois, Development of Optimisa-

tion Tools in the Context of an Industrial Robotic CAD Software Prod-

uct, The International Journal of Advanced Manufacturing Technology,

September 1999, Volume 15, Issue 11, pp 822-831.

[6] B. Kamrani, D. Wäppling, U. Stickelmann, X. Feng, Optimal robot place-

ment using response surface method, The International Journal of Ad-

vanced Manufacturing Technology (0268-3768). Vol. 44 (2009), 1-2, p.

201-210.

[7] S. Caro, C. Dumas, S. Garnier, B. Furet, Workpiece placement optimiza-

tion for machining operations with a KUKA KR270-2 robot, IEEE Inter-

national Conference on Robotics and Automation, 2013.

[8] P. J. M. van Laarhoven, E. H. L. Aarts, Simulated Annealing: Theory and

Applications Springer, 1987.

[9] D. Hsu, J.-C. Latombe, S. Sorkin, Placing a Robot Manipulator Amid Ob-

stacles for Optimized Execution, Proc. IEEE Int. Symp. on Assembly and

Task Planning /(ISATP’99).

[10] R. Ur-Rehman, S. Caro, D. Chablat, P. Wenger, Path placement optimiza-

tion of manipulators based on energy consumption: application to the or-

thoglide 3-axis, Transactions of the Canadian Society for Mechanical En-

gineering, Vol. 33 (3), 2009.

[11] J. T. Feddema, Kinematically optimal robot placement for minimum time

coordinated motion, IEEE International Conference on Robotics and Au-

tomation, 1996.

[12] N. Vahrenkamp, T. Asfour, R. Dillmann, Robot placement based on reach-

ability inversion, IEEE International Conference on Robotics and Automa-

tion, 2013.

[13] J. A. Nelder, R. Mead, A simplex method for function minimization, Com-

puter Journal 7, pp. 308-313, 1965.

[14] J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright, Convergence

properties of the Nelder-Mead simplex simplex method in low dimensions,

SIAM Journal of Optimization, Vol. 9, No. 1, pp 112-147, 1998.

[15] J. S. Carlson, D. Spensieri, R. Söderberg, R. Bohlin, L. Lindkvist, Non-

nominal path planning for robust robotic assembly, Journal of Manufactur-

ing Systems, Elsevier, Vol. 32, No. 3, pp. 429-435, 2013.

[16] D. Spensieri, R. Bohlin, J. S. Carlson, Coordination of robot paths for cycle

time minimization, IEEE International Conference on Automation Science

and Engineering, Madison, USA, 2013.

[17] D. Spensieri, J. S. Carlson, F. Ekstedt, R. Bohlin, An Iterative Approach for

Collision Free Routing and Scheduling in Multirobot Stations, IEEE Trans-

actions on Automation Science and Engineering, online on June 2015.

