Ameloblastic fibrosarcoma: A rare malignant odontogenic tumor

S.M. Gilani*, A. Raza, B.M. Al-Khafaji

Department of Pathology, St John Hospital & Medical Center, 22101 Moross Rd, Detroit, MI 48236, USA

KEYWORDS
Odontogenic tumor; Ameloblastic fibrosarcoma; Malignant; Differential diagnosis; Surgical resection

Summary
Introduction: Ameloblastic fibrosarcoma (AFS) is a rare malignant odontogenic tumor. It can arise de novo, however one-third of cases may arise from a recurrent ameloblastic fibroma, in which case they appear to present at an older age.
Case report: A 16-year-old female presented with one month history of right mandibular mass. Computerized tomography (CT) scan showed a large destructive mass. A biopsy of the mass was performed. Histologically, it consisted of a mixed epithelial-mesenchymal odontogenic neoplasm composed of benign islands of well-differentiated ameloblastic epithelium within a malignant fibrous stroma consisting of spindle cells or fibroblasts with a brisk mitotic activity. The malignant spindle cell proliferation showed positive staining with p-53 and a high proliferation index with ki-67. A diagnosis of AFS was rendered.
Conclusion: The differential diagnosis includes other odontogenic sarcomas, ameloblastic carcinomas and spindle cell carcinoma. Treatment of choice is wide surgical excision, with long-term follow-up. Postoperative chemotherapy and radiotherapy has been used successfully in a few reported cases. AFS is a locally aggressive malignant tumor, with regional and distant metastases being uncommon.

© 2013 Elsevier Masson SAS. All rights reserved.

CASE REPORT

Introduction
Ameloblastic fibrosarcoma (AFS) is an extremely rare malignant odontogenic tumor that was first described in 1887 [1]. To the best of our knowledge only 71 cases of AFS have been reported in the literature with most cases occurring in the mandible within the third decade of life.

Case Report
We reported a rare case of AFS in a 16-year-old female, who presented with a month history of right mandibular mass, resulting in difficulty in swallowing. The patient was worked up and a maxillofacial CT-scan was performed. CT scan showed a destructive 5-cm mass on the right molar. Additionally, it showed cortical expansion and perforation with invasion into pterygopalatine space causing destruction of facial bones (Fig. 1). An incisional biopsy was done. Microscopically, there was a biphasic pattern composed of bland appearing epithelium that resembled ameloblastic fibroma, but quantitatively less, along with a malignant mesenchymal component (Fig. 2A). The mesenchymal cells showed

* Corresponding author. Tel.: +1 313 609 7302; fax: +1 313 881 4727.
E-mail address: magilani@hotmail.com (S.M. Gilani).

1879-7296/ - see front matter © 2013 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.anorl.2013.03.001
marked cellularity, nuclear atypia and occasional mitoses (Fig. 2B). The benign epithelial component showed uniform positivity for pan-cytokeratin (Fig. 3A), while the malignant mesenchymal component was positive for p53 (Fig. 3B) with a high proliferation index for Ki67 (Fig. 3C), while negative for c-KIT (CD-117) (Fig. 3D). Based on the morphology and immunohistochemical staining pattern, a diagnosis of AFS was rendered.

Discussion

AFS is a rare neoplasm, in which the clinical and pathological distinction from other neoplasms is essential for appropriate care. The terms ameloblastic dentinosarcoma and ameloblastic odontosarcoma have been used in the past for these types of neoplasms depending on the presence of dentin or enamel as some authors consider these lesions as histological variants of the same neoplasm. However, in the recent World Health Organization (WHO) “classification” of odontogenic tumors, ameloblastic odontosarcoma and dentinosarcoma are listed separately from AFS. AFS occurs within a wide age range from 3 to 89 years [2].

The mean age at time of presentation for all reported cases is 27.3 years [3]. Of the 62 cases analyzed by Huguet et al., 20 arose in previously benign AFS [4].

The usual clinical presentation consists of a patient who complains of a painful but occasionally painless, facial mass with accompanying paresthesia or dyesthesias. The duration of symptoms varies widely from a few weeks up to 2 years.

Radiologically, AFS presents as destructive expansile radiolucent mass with irregular and ill-defined borders. Grossly the tumor may be cystic or solid with a fleshy whitish to yellow consistency that usually causes destruction of the bone. The epithelial component is present in the form of nests and branching cords with anastomosing strands of odontogenic epithelium exhibiting peripheral palisading that resembles the developing enamel organ. The mesenchymal cells vary from hyperchromatic spindle to stellate that exhibit moderate to marked nuclear pleomorphism with a high number of mitotic figures. Dentin matrix material may be present within the intercellular areas. Ultrastructurally, these tumors exhibit features of fibroblasts.

The sarcomatous mesenchymal component of AFS is positive for p53 and proliferating cell nuclear antigen (PCNA) as compared to negativity for these stains in AF [4]. The mesenchymal component of recurrent AF and AFS usually show higher labeling indices for Ki-67 as compared with non-recurrent AF [5]. Williams et al. identified diffuse nuclear positivity for p53 in the sarcomatous component along with positivity for c-KIT (CD 117) [6]. However, expression of CD-117 is variable in AFS and can show a negative staining pattern. Pontes and coworkers demonstrated a positive

Figure 1 Computed Tomography (CT) scan showing a mass lesion straddles the right mandibular ramus and extends laterally and medially from the right mandibular ramus causing bony destruction.

Figure 2 A. Biphasic pattern with benign odontogenic epithelium surrounded by hypercellular mesenchymal component (H & E x 100). B. Malignant proliferation of mesenchymal component with mitosis (H & E x 400).
Ameloblastic fibrosarcoma: A rare malignant odontogenic tumor

Figure 3 A. Cytokeratin AE1/AE3 expression in benign epithelial component (×100). B. Positive expression for p53 in sarcomatous stromal component (×100). C. Ki-67 expression in the tumor showing high proliferation index (×100). D. CD-117 is negative in both epithelial and mesenchymal component (×100).

BCL-2 expression within the sarcomatous portion of the tumor, while negative in the epithelial component [7]. This staining pattern is the opposite in AF.

The differential diagnosis includes other odontogenic sarcomas, specifically two closely related entities that have similar histological features as AFS, ameloblastic fibrodentinosarcoma and fibro-odontosarcoma (Table 1). These sarcomas have similar morphologic features of AFS; however, in addition they either have dysplastic dentin (fibro-dentinosarcoma) and/or enamel and dentin (fibro-odontosarcoma) [2] a feature not seen in AFS. Meanwhile, ameloblastic carcinosarcoma, another entity within the differential diagnosis, shows a malignant spindle cell proliferation along with carcinomatous elements. In comparison, AFS does not have a malignant epithelial component. Additionally, spindle cell carcinoma can also be confused with AFS. However, the neoplasm has a biphasic histological picture, consisting of a squamous cell carcinoma and a malignant spindle cell lesion. As a minority of AFS arise from a pre-existing AF, this remains an important

<table>
<thead>
<tr>
<th>Differential diagnosis</th>
<th>Morphologic features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ameloblastic fibrosarcoma</td>
<td>The bland epithelial component is present in a branching cord pattern with a</td>
</tr>
<tr>
<td></td>
<td>hypercellular malignant mesenchymal or fibroblastic component. Usually positive</td>
</tr>
<tr>
<td></td>
<td>staining for p53 protein with high proliferation index for Ki-67</td>
</tr>
<tr>
<td>Ameloblastic fibroma</td>
<td>Immature mesenchymal tissue consisting of fibroblasts admixed with epithelial</td>
</tr>
<tr>
<td></td>
<td>component. Less cellular, absent mitotic activity and benign stromal component</td>
</tr>
<tr>
<td>Ameloblastic fibro-odontoma</td>
<td>Histological appearance similar to ameloblastic fibroma; however, well-formed</td>
</tr>
<tr>
<td></td>
<td>teeth are present</td>
</tr>
<tr>
<td>Fibro-dentinosarcoma</td>
<td>Mixed epithelial and mesenchymal tissue, similar to AFS with dysplastic dentin</td>
</tr>
<tr>
<td></td>
<td>tissue</td>
</tr>
<tr>
<td>Fibro-odontosarcoma</td>
<td>Resemble AFS but they have hard dental tissue including dysplastic enamel scattered</td>
</tr>
<tr>
<td></td>
<td>throughout</td>
</tr>
<tr>
<td>Ameloblastic carcinosarcoma</td>
<td>Ameloblastic atypical cells, with high mitotic index and necrosis. Admixed with</td>
</tr>
<tr>
<td></td>
<td>malignant mesenchymal spindle cell component</td>
</tr>
<tr>
<td>Spindle-cell carcinoma</td>
<td>Malignant appearance of spindle cell lesion with features of squamous cell carcinoma</td>
</tr>
</tbody>
</table>
differential diagnosis. Microscopically AF is composed of strands and islands of ameloblastic epithelium embedded within a pulp like, myxoid cellular connective tissue, which resembles odontogenic mesenchyme. Special attention should be given to the stroma, which is characteristically malignant in AF56.

The treatment modalities for AFS include a combination of chemotherapy, radiotherapy accompanied with wide surgical resection of the affected segment of the maxilla or mandible with long-term follow-up. Combination or adjuvant chemotherapy is regarded as having provided complete remission in one of the reported cases, which had an extensive maxillary lesion [8]. The chemotherapeutic regimes used in that case include daily oral cyclophosphamide, weekly intravenous actinomycin-D and vincristine. Also post-operative radiotherapy (50 Gy) has been used successfully. Zabolinejad et al. recommend adding radiation to the treatment for the prevention of recurrence especially in cases of incomplete surgical resection [1]. Demoor-Goldschmidt et al. reported two pediatric cases with AFS and suggested the effectiveness of combination of chemotherapy, radiotherapy with wide surgical excision and follow-up [9]. AFS is considered a locally aggressive neoplasm with a low potential for distant metastasis (4.5%) and having overall mortality rate of 25.4%. Thirty-seven percent of the reported cases of AFS showed at least one recurrence [8]. The patients with AFS have a better prognosis with this form of sarcoma than other tumors of the jaw [10].

Conclusion

AFS is an extremely rare odontogenic tumor with unclear etiology, which has clinical and radiological features similar to other odontogenic tumors. The rarity of these neoplasms plus their overlapping features with other odontogenic tumors can make diagnosis challenging. These cases should be discussed and reviewed by oral pathologists in multidisciplinary conferences, dealing with sarcoma, at national and international level.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

References