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I~ THIS PAPER we study the group PL_(R) of piecewise linear (PL) homeomorphisms of the
real line R with compact support.

This group has been studied by many people. As for the homology of this group,
Epstein showed that the group is a perfect group and hence it is a simple group [2]. The
lower-dimensional homology of this group was determined by Greenberg [8]. In particular,
his result says that the 2-dimensional homology is R ®2 R and it is easy to see that the
canonical bilinear map R ®;R — R is nothing but the discrete Godbillon—Vey class
described in [6] and [4]. In [22], we determined all the homology group using Greenberg’s
description [8] of the classifying space for transversely PL foliations.

Our study on the group PL.(R) was motivated by an intention to use these results on the
homology of PL (R) to understand the homology of groups of Lipschitz homeomorphisms
of R. In particular, since the (discrete) Godbillon—Vey 2-cocycle for PL (R) was completely
understood, we tried to understand the Godbillon—Vey 2-cocycle for groups of Lipschitz
homeomorphisms of R using approximations by elements of the group PL.(R).

The Godbillon-Vey invariant was first defined for codimension-1 C? foliations of closed
oriented 3-manifolds [7]. This invariant is the only known non-trivial invariant for C?
foliated cobordism and it varies continuously under the deformation of the foliation [14].

For transversely oriented codimension-1 C! foliations, the classifying space for them is
contractible [ 18] and such foliations of closed oriented 3-manifolds are all cobordant. This
fact has already been shown for transversely oriented Lipschitz foliations [11]. Hence the
Godbillon-Vey invariant cannot be defined for codimension-1 C' or Lipschitz foliations.
There are, however, a lot of classes of foliations between C* or Lipschitz and C2. In fact, the
Godbillon-Vey invariant was extended to the foliations of class C* ** (« > %) by Hurder and
Katok [9], and to the transversely piecewise linear (or piecewise C2) by Ghys and Sergiescu
[6,4]. We defined the Godbillon-Vey invariant for the foliations of class C-** with
(1 < B < 2) [20, 23], which contain both the foliations of class C***#(1/8 > 1/2) and the
transversely PL foliations.

Since each cobordism class of the foliations of class C:** (1 < 8 < 2) of closed oriented
3-manifolds contains a representative which is a 2-cycle for the group GL "*(R) of dif-
feomorphisms of class C*”* of the real line R with compact support [12], the key problem
is to understand the Godbillon—Vey invariant on 2-cycles of the group GI-”*(R).

For a real number B (f > 1), the group G5 "*(R) of CL-** diffeomorphisms of R with
compact support is defined as follows. An element f of GL-”#(R) is a Lipschitz homeomor-
phism with compact support such that log f'(x — 0) is with bounded p-variation (see
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Section 1). The f-variation to the 1/f power gives rise to a right invariant metric on the
group G 77(R). The Godbillon-Vey 2-cocycle is defined for the group GL'*(R) (1 < f < 2),
and is continuous with respect to the topology induced by this metric [20]. Note that
G ”*(R) contains both the group G! *#(R) of C' *'/# diffeomorphisms of R with compact
support and the group PL (R), and the Godbillon—Vey 2-cocycle restricted to these groups
coincides with the Godbillon-Vey 2-cocycle previously defined.

Now, the group PL.(R) is dense in G- *#(R) (in the topology of G **(R) (B’ > B) as we
show it in Section 6), and the 2-cycles of PL (R) are known by Greenberg [8] as was
mentioned. In order to understand a 2-cycle of the group G ”*(R), we try to approximate
the 2-cycle by a sequence of 2-cycles of the group PL.(R). In fact, we can approximate
a stabilization of the 2-cycle, and in order to make the approximations, it is necessary to
have controlled estimates on commutators.

A 2-cycle of GL**(R) is geometrically represented by a C-”» foliated R-product with
compact support over a closed oriented surface X, i.e. a C” foliation of £ x R transverse to
the fibers of the projection £ x R —» X which coincides with the product foliation with leaves
X x {*} outside a compact set. This foliated R-product is determined by the holonomy
homomorphism =, (Z) - GL"*(R).

If we approximate the holonomies along the usual generators of 7,(X£) by PL homeo-
morphisms, then the product of commutators of them which was originally the identity
becomes a PL homeomorphism close to the identity. If we can write it as a product of a fixed
number of commutators of PL homeomorphisms close to the identity, then the PL
approximations of the holonomies along the generators together with these PL homeomor-
phisms define an approximation of a stabilization of the original 2-cycle.

Thus, the problem in which we are interested is as follows. We consider the group
PL.(R) with the metric induced from that of G **(R). For a subinterval [4, B] of [0, 1], can
we write any PL homeomorphisms with support in [ A4, B] sufficiently close to the identity
as a product (composition) of a fixed number of commutators of PL homeomorphisms with
support in [0, 1] close to the identity? Note that it is known (see Section 1) that any PL
homeomorphism of R with compact support is written as a product of two commutators of
PL homeomorphisms with compact support. But the known commutators are not small.
We show in this paper that, with an assumption on the number of non-differentiable points,
the answer to the above problem is yes.

More precisely, we show first the following theorem (see Section 3). A piecewise linear
homeomorphism of R with compact support is said to be elementary if it has at most three
non-differentiable points.

THEOREM A. Let f be a real number not less than 1. There exist positive real numbers
¢ and C satisfying the following conditions. Let ¢ be a positive real number such that ¢ < c. Let
f be an elementary piecewise linear homeomorphism of R with support in [§,%]. Assume that

IIog f'llls < €.

Then f is written as a product (composition) of three commutators of piecewise linear
homeomorphisms of R as follows:

S=191,921193,941[9s,96]

where the supports of g; (i = 1, ..., 6) are contained in [0, 1] and

llllog g:llls < Ce.
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This theorem applies to a sequence of PL homeomorphisms with a bounded number of
non-differentiable points converging to the identity. When we approximate an element of
GE73(R) by a sequence of PL homeomorphisms, we have to treat PL homeomorphisms
with an increasing number of non-differentiable points. To treat such PL homeomorphisms,
we show the following theorem (see Section 5).

THEOREM B. Let f be a real number not less than 1. Let g be a positive integer and
& a positive real number. There exist positive real numbers ¢ and C satisfying the following
conditions. Let ¢ be a positive real number such that ¢ < c. Let f be a piecewise linear
homeomorphism of R with support in [4, 3] such that the number of the non-differentiable
points of f is at most 4¢™% + 2 and

Il log f'1ll5 < 8¢,
Then

16(q+1)

f= 1__[ [92i-1,92i]

where the supports of g; (j = 1,...,32(q + 1)) are contained in [0, ] and

lllog(g))llls < Ce.

Writing a difffomorphism close to the identity as a product of a fixed number of
commutators of diffecomorphisms close to the identity is important when we work on the
2- or higher-dimensional homology groups of Lipschitz homeomorphism groups. The
reason is that we need to treat the cycles whose members are the countable juxtapositions of
diffeomorphisms with disjoint supports. If we have a small commutator result, we can show
many such cycles are homologous to zero. This idea was first applied to the C* differenti-
able case to determine certain cobordism classes of foliations [17]. Here is another
application. By using Theorem A, we can determine cobordism classes of transversely PL
foliations of closed oriented 3-manifolds (see [21, Appendix] for the proof).

TueoreM C [21]. The foliated cobordism class as foliations of class C-"* (1 < B < 2) of
transversely oriented transversely piecewise linear foliations of closed oriented 3-manifolds is
characterized by its (discrete) Godbillon-Vey class.

Now we look at 2-cycles of GL'"*(R). A 2-cycle of GLX”*(R) is represented by
a C»”* foliated R-product 4 with compact support over a closed oriented surface T.
A stabilization of ¢ is a foliated R-product over the connected sum L#X’ with a closed
oriented surface ¥’ such that the holonomy homomorphism 7, (X # £') - GL **(R) factors
through the holonomy homomorphism =, (Z) - GL "*(R) of 4. The 2-cycle represented by
a stabilization is homologous to the original 2-cycle.

As for the stable approximation of a 2-cycle of the group G:**(R) (0 <a < 1) by
2-cycles of PL.(R), using Theorem B, we show the following theorem (see Section 6).

TueoreM D. Let 4 be a foliated R-product of class C'** (0 < o < 1) with compact
support over the closed oriented surface . Let B be a positive real number greater than 1/a.
Then there is a sequence of PL-foliated R-product %, over the connected sum L#ZX’' converg-
ing to the stabilization of % in the C-*** topology. Here the meaning of convergence is that for
any y e m (X #ZX'), the holonomy along y converges. In particular, if 1/a < § < 2, the Godbil-
lon—Vey invariant GV (%,) converges to GV (%).
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Note that if GV(%) = 0, then %, in Theorem D can be chosen so that GV(%,) = 0. Then,
as a corollary to Theorems C and D, we have the following characterization of the
Godbillon—Vey invariant (see [23] for the proof).

TueoreM E [23]. Let # be a codimension-1 transversely oriented foliation of class C* **
(¢ < a < 1) of a closed oriented 3-manifold M. The Godbillon—Vey invariant of ¥ is zero if and
only if F is foliated cobordant to a codimension-1 transversely oriented foliation % of class
C'** of a closed oriented 3-manifold N and there exists a sequence %y of codimension-1
null-cobordant foliations of class C-* of N converging to % in the C* topology
(1)« < B < 2). Here, % is a foliated S*-product over a surface T and the meaning of conver-
gence is that for any y € n(X), the holonomy along y converges.

There are generalizations of Theorem D and E for 2-cycles of the group G£*”*(R) and for
foliations of class C**, respectively (see Section 6 and [23]).

We organize this paper as follows.

In Section 1, first we prepare notations to write down PL homeomorphisms. We also
review the metric we consider on the group of PL homeomorphisms. Then we write an
elementary PL homeomorphism as a commutator following [2]. We also formulate a ver-
sion of Mather’s trick [13] which is the main tool for us. Then we show that any PL
homeomorphism of R with compact support is written as a product of two commutators of
PL homeomorphisms with compact support. This implies that the group PL.(R)is uniform-
ly perfect. This has been well known for specialists and can also be proved by purely
algebraic considerations [1]. However, this argument is not sufficient to prove that an
elementary PL homeomorphism which is close to the identity is written as a product of
commutators of PL homeomorphisms close to the identity.

In Section 2, we establish two technical results. Lemma 2.2 expresses a small elementary
PL homeomorphism with small support as a product of two small commutators. Lemma
2.3 improves on this, showing that a small elementary PL homeomorphism with small
support can be written as a single commutator of small PL homeomorphisms. Lemma 2.4
extends this result to juxtapositions of small elementary PL homeomorphisms with small
support.

In Section 3, we develop several techniques to obtain small commutators. We use
Mather’s trick and prove Theorem A (Theorem 3.2). Lemma 3.7 extends Theorem 3.2 to
juxtapositions of elementary PL homeomorphisms. By Lemma 3.5, a juxtaposition of
elementary PL homeomorphisms is written as a product of small commutators and
a juxtaposition of elementary PL homeomorphisms with small support. The latter is written
as a commutator of small PL homeomorphisms by Lemma 2.4 and we obtain Lemma 3.7.
The proof of Theorem B is reduced to Lemma 3.7 by the argument of the following two
sections.

Section 4 is the technical heart of this paper, and very rough going. In this section, we
develop a technique to express a PL homeomorphism f as a composition f = f;[g,,9.],
where f; is a juxtaposition of small PL homeomorphisms with smaller numbers of non-
differentiable points and [g,,¢,] is a small commutator. By iterating this process, we can
write a PL homeomorphism f as a composition of a fixed number of juxtapositions of small
elementary PL homeomorphisms and a product of a fixed number of small commutators.
The expression is obtained in two steps: Lemmas 4.1 and 4.2 express PL homeomorphism
as a composition of PL homeomorphisms with controlled estimates on the norms and the
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numbers of non-differentiable points. Lemmas 4.4 and 4.5 use Mather’s trick (refor-
mulated in Lemma 4.3) to derive the form f = f,[g1,92].

In Section 5, we prove Theorem B (Theorem 5.1). We show that if the number of
non-differentiable points of a PL homeomorphism f'is less than the ( — gq)th power of the
distance from fto the identity, then fis written as a fixed number of small commutators. Qur
proof shows that this number depends linearly on q.

In Section 6, we prove Theorem D (Theorem 6.1). Lemmas 6.4 and 6.6 show that PL (R)
is dense in G; " '/#(R) and G¢"*(R) in the topology of G **(R) (8 > ), respectively. For
a C'** foliated R-product with compact support over a closed oriented surface X, we can
approximate the holonomies along the usual generators of 7, (£) by PL homeomorphisms,
and then we can apply Theorem 5.1 to the product of commutators of PL approximations
to show Theorem 6.1. We also prove Theorem 6.5, a generalization of Theorem 6.1 for
2-cycles of G ”*(R), i.e. a 2-cycle of G- **(R) is stably approximated by 2-cycles of PL.(R)
in the topology of G ”*(R) (B’ > p).

1. PRELIMINARIES

We first establish our notation for describing the piecewise linear (PL) homeomor-
phisms of R with compact support.

For closed intervals [a,,a,] and [by,b,], let L, 4.7 (4,4, be the affine map of R which
sends [a,,a,] onto [b;,b,]. For two finite increasing sequences ay < --- < a, and
by < --- < b, of real numbers such that a, = by and g, = by, let

Aoy .-, O
PL (bo, . bk)

denote the piecewise linear (PL) homeomorphism of R which coincides with Ly, 11 ra.. ..
on [a;_y,a;] (i = 1,...,k) and with the identity on ( — 00,ao] U [ay, ©).

For a PL homeomorphism f, let ND(f) denote the set of non-differentiable points of
f and NND(f), the number of non-differentiable points. Then for PL( ),
NND(f) < k + 1. We call a PL homeomorphism f of R with compact support elementary, if
it has at most three non-differentiable points, i.c. NND( f) < 3. By using the above notation,
fis written as PL(§%5"52), for ag < a; < a, and by < by < b, such that ag = bg and a, = b,.
It is easy to see that any PL homeomorphism of R with compact support can be written as
a composition of (NND(f) — 2) elementary PL homeomorphisms.

In the group of PL homeomorphisms, we consider the topology induced by the f-norm
Il lllg introduced in [20]. Let § be a real number not less than 1. For a function ¢ on R with
compact support, we put

V(@) = sup Z lo(x;) — (P(xj—l)lﬁ

J

where the supremum is taken over all finite subsets {x,, ..., x;} (xo < --- < x,) of R. We call
it the B-variation of ¢. The functions on R with compact support whose -variations are
bounded form a normed linear space ¥ with respect to the following f-norm ||} IIg:

ellls = Va(e@)'".

We use the following properties of -variations frequently in this paper. Note that they
are different from obvious consequences of the fact that ||| ||| is a norm.
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ProprosITION 1.1. Let aq < -+ < ai be a finite increasing sequence of real numbers. Let
@ be a function on R with compact support.

@) If ¢ = Y. and the support of ¢; is contained in (a;- 1, a;), then

_Z Valoi) < V(o).

(i) If ¢ =Y ¢; and the support of @; is contained in [a;_,,a;], then

k
Valo) <2871 3 Vil
i=1
Proof. (i) follows from the definition of ¥; noting that the left-hand side can be seen as
the supremum of the sum of |p(x;) — (p(x,-_l)l” over special finite subsets containing
{ay, ..., a}. To show (ii), we use the inequality (|a| + |bly* < 2~ (lal® + |b|’) and we replace
lo(x;) — @(x;-1)I” by lo(x;-1)® + |@(x;)|® when [x;_,,x;] contains some a;. O

The right invariant metric on the group of PL homeomorphisms with compact support
is defined as follows. For a PL homeomorphism f of R with compact support, let f* denote
the left derivative of f. In other words, f”(x) is the limit from the left of the almost everywhere
defined derivative of /. For PL homeomorphisms f; and f, of R with compact support,

dist (f1, f2) = llllog (fi>£2” Dlllg-

The group PL (R) of PL homeomorphisms of R with compact support is not a topologi-
cal group with respect to this topology. However, the “discrete” Godbillon-Vey cocycle is
continuous with respect to this topology (1 < f < 2). (The metric is of course the one
induced from the metric defined on the group G% * of Lipschitz homeomorphisms f with
compact support such that log f” is contained in ¥} and the Godbillon—Vey invariant is
defined on GL** (8 < 2) and continuous with respect to the topology induced by the metric
[20].) The metric we are considering in the group PL.(R) of PL homeomorphisms of R with
compact support has the following properties.

ProposiTioN 1.2. (i) For xe R, |log f'(x)| <27 |||log f|ll-
(ii) If B < B, then |||log f'llls < lll1og f'llls--
(i) For any (1 < B), llllog(f1./2) lllg < lll1og fillls + |ll10g f3llls.
In other words, dist(f, o f,, id) < dist( f,1d) + dist( f,,1d).
(iv) |lllog f’|l|s is invariant under the conjugation by an affine homeomorphism of R.

By the right invariance of the metric and (iii) above, the inversion and the composition is
continuous at the identity. Such groups are calied partial topological groups by Gardiner
and Sullivan [3].

We begin the study of commutators by recalling a result from [2].

LeMMa 1.3. For real numbers 0 <a <b <c <1, put
0,a,1 0,c,1
f= PL(O,b, 1> and g = PL(O,a, 1>.
Then

[f; g] =fgf—1g_1 — PL(g(b), a, b)

gb), faf ~'(c), b
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where

-1 _ . _ -1 -
BO-g®)_bi-a o b—ff Q) _Kl-9
a—gb) a(l — b) b—a ol — b)
This lemma implies that any elementary PL homeomorphism with support in (0, 1) can
be written as a commutator.

CoROLLARY 1.4. Any elementary PL homeomorphism h with support in (0, 1) can be
written as a commutator with support in [0, 1].

Proof. We can arrange 0 < a < b < ¢ < 1 so that the two derivatives of the elementary
PL homeomorphism k coincide with those of [ f,g] or [g, f ], and then we can conjugate it
by a PL homeomorphism which sends [g(b), b] linearly to the support of h. ]

If fand g of Lemma 1.3 are close to the identity, then the support [g(b),b] of the
commutator [f, g] is also small. In order to write a PL homeomorphism close to the
identity with big support as a product of small commutators, we need other technique.
Here, we give the most useful device for us which is due to Mather [13].

ProrosiTiON 1.5. For a positive real number a, let T, denote the translation on R by a. Let
fi i = 1, 2) be a PL homeomorphism with support in [A, B] < (0, 1) such that |f; — id| < a. Let
h be the PL homeomorphism defined by

h(x) = (T, f2)* (T, f1) 7*(x)

where k is a positive integer such that (T, f;)"*(x) < A. Then hT,(x) = T, h(x) if both x and
h(x) belong to [B, o0). Moreover if h is the identity on [ B, B + a], then h is a PL homeomor-
phism with compact support and

fr =T T ik~ = fil(T. 1)L R = [T hlhfih ™.

In writing this, one can replace T, by any PL homeomorphism with support in [0, 1] which
coincides with T, on [A, B].

Proof. Since T,fy = T, = T,f; on(— o0, A], his well defined. Since 7,f, = T, = T,f;
on[B, ), hT,(x) = T,h(x)if both x and h{x) belong to [ B, oo ). If we choose a large integer
k depending on x, we have

Tofoh(x) = (Taf2) " (Taf1) 400 = (T (T f) ™ 7! Tafi(x) = T f1 ().
Thus the proposition follows. O

As a corollary to this proposition, we can show that any PL homeomorphism with
compact support is written as a composition of two commutators of PL homeomorphisms
with compact support. This implies that the group PL.(R) of PL homeomorphisms of
R with compact support is uniformly perfect. This has been well known for specialists. This
also follows from [1].

THEOREM 1.6. Let f be a PL homeomorphism of R with compact support. Then there exist
four PL homeomorphisms fi, f3, f3, f4 of R with compact support such that

=10 12115 1]

T0P 34/4-E
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Sketch of the proof. Assume that f'is a composition of elementary PL homeomorphisms
fi i=1,...,n. We compare it with the juxtaposition of them, ie. the product g of
O fi() "* (i =1,...,n), where t is an appropriate translation made support compact.
Since tf and tg are conjugate by Proposition 1.5 and g is written as a commutator (of
juxtapositions) by Corollary 1.4, Theorem 1.6 follows. O

The conclusion of Theorem 1.6 is not suitable for our purposes. The supports of the PL
homeomorphism f; appearing in the commutators [ f;, /5] [ f3, fo] may be arbitrarily large
even if the support of the PL homeomorphism f is contained in a fixed interval
[4, B] < (0, 1). If we want the support to be small, then we have to use a conjugation by
a PL homeomorphism with big norm. It is not very easy to write a small elementary PL
homeomorphism f= PL(4§3) as a composition of small commutators with support in
[0, 1]. In the next two sections we solve this problem for a small elementary PL homeomor-

phism f.

2. SMALL ELEMENTARY PL HOMEOMORPHISMS WITH SMALL SUPPORT

We show that a small elementary PL homeomorphism with small support can be
written as a product of small commutators. In fact we write it as a single small commutator.
We fix positive real numbers K < 2 and ¢, < 1/2, such that |x| < g, implies

e*— 1 <K|x|, |log(l +x)|<Kl|xl and |1+x)*'|<K.

For example, we can take K = 2 and ¢, = % or K closer to 1 and ¢, closer to 0.
We begin writing down a small PL translation as a commutator of small PL homeomor-
phisms.

LeMMA 2.1. Let [ A, B] be a subinterval of (0,1). Let ¢, d and u be real numbers such that
A<c<d<d+u<B. Put

b= PL(A’ c, d, B>.

A, c+u d+u B
Then there are real numbers a and b such that 0 <a <b < 1 and

h=[fgl=faof ‘¢!

4, a, B 0, 4, B, 1
f=PL< > & ) and g=PL< )

where

A, b, B 0, ¢ d 1

Moreover, for a real number B(1 > p), suppose that there are positive real numbers ¢4, &5 < &g
such that

llogh'|llp <&, and max{c — A,B — d, c-A+B- d} < &.
A '1—B B—4

Then
llllog fllls = Il log #lls < &,

and

B—d+c——A+c—A+B—d
1-B A B—A

logg'll, < zx( ) < 23Ke,,
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Proof. Put a=c/(1 + ¢ —d) and b = (c + u)/(1 + ¢ — d). Then the above f and g are
well defined and a direct computation shows the lemma. Note that g(a) = a. The estimate
for ffollows from the fact that the derivatives of f coincide with those of h. The estimate for
g follows from the following inequality:

B-d c—A
lllogg'lly < Il togg'Il leog(l +1—_§>+2log<1 £ )

O

—A+B—d
+210g<1 +£—+—-—>

B-4A

Here the value of § > 1 is not important. In fact, if the number of non-differentiable
points is bounded, the norms are equivalent. For example, we have for above h,

u u
14+ —— _—
log< + - A)‘ log(l B d)
u u
log<1 + C—_—A-)] +2 10g<1 — —B—_EN

Using Lemma 2.1, we can write an elementary PL homeomorphism with small support
as a composition of two small commutators, because such a PL homeomorphism is
a composition of two PL homeomorphisms satisfying Lemma 2.1.

218 max{

} < [IlHog#|lls < [l log K’ |ll4

=2

LEmMMA 2.2. Let [A, B] be a subinterval of (0, 1). Let f = PL(%: & 3) be an elementary PL
homeomorphism, where A < a <b < B. Suppose that there are positive real numbers
1,63 < &g such that

-4

lllog f'|llg < &1 and m <

Then f is written as a composition of two commutators as follows:

f=191,921193.94]

where the supports of g1, 92, g3,9a are contained in [0, 1] and
llloggilll, < max{2%¢,,2*°Ke,} for i=1,2,3,4.
If[A, B] = [1/4,3/4], 2*(B — A) < ¢ < &, and |||logfllls < & < ¢, then [||loggillls < 2°Ke.

We have the following improvement of Lemma 2.2, i.e. we can write a small elementary
PL homeomorphism with small support as a single commutator.

To obtain Lemma 2.3, we would like to refine Lemma 1.3. Lemma 1.3 itself does not give
a good way to write an elementary PL homeomorphism as a small commutator. We can see
it as follows. The equation [ f, g] = h is equivalent to fgf~! = hg. In Lemma 1.3, g is an
elementary PL homeomorphism and hg is a PL homeomorphism with 4 non-differenti-
able points. The two non-differentiable points other than 0 and 1 correspond to one
fundamental domain of g. Hence if h is very close to the identity then g is also close to the
identity and the support of h becomes too small. We can get through this difficulty by taking
a number of fundamental domains of g, and then f becomes complicated.

LemMa 2.3. Let [A, B] be a subinterval of (0, 1). Let h = PL(% & 3)be an elementary PL
homeomorphism, where A <a <b < B. Suppose that there are positive real numbers
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1,82 < £0/223 such that

B-4

Kl <e —_— < &5,
lIllog |||p—31 and min{A,l—B}_ez

Then h is written as a commutator as follows:

h=1L[f.4]
where the supports of f and g are contained in [0, 1] and
lilog f'lily < 23 K*(e1 + 2¢,) and |l|logg'|lls = lillogh'lfls < &,.
If{A,B] = [4, 2], 2%(B — A) < £ < £0/2%3 and |||logh'|||s < & < £0/2%3, then h = [g1,9,],
where ||| log(g:)'llls < 2*-3K% (i = 1,2).

Proof. We may assume that b — A > (B — A)/2, for otherwise B — a > (B — A)/2 and
we consider the images under the outer automorphism which sends the homeomorphism
fto the homeomorphism x +— 1 — f(1 — x).

Note that
b—-4A B—b
max{log _A,logB_ l}sZ‘”ﬂel
implies
b—a
- <2-Up
mm{a—A,B—b}_2 Ke,
hence
b—a <271"UBKe <27 'Ke
B—A" P v

Let k be the minimum positive integer such that

B—-4 1

TR

Then we put g to be h™' conjugated by the similarity transformation of ratio
1 + (B — A)/k(b — a) with center a. In other words, put

A'=a—(l+—§—_—A—>(a——A)

k(b —a)
= B-A)\p_
B—a+<1+k(b_a)>(B a)

and
B—- A
b= — (b -
a+ (1 + k(b—a))(b a).
Then by (B — A) < &; min{4, 1 — B},

1
A'Za—a—(B——A)Za—AZO
2
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and
1
B’Sa+£—(B-—A)Sa+1—Bs1
2
and g is written as follows:

g=PL<A’ b, B)

A, a, B)

We can write hg easily as follows:

’ ~1 -1 '
A, A, B, B

Note that by the choice of k,
(hg)* (B) = A.

This implies that g and hg are conjugate by a PL homeomorphism. This is also a version of
Mather’s trick [13]. In fact, we can explicitly write down fsuch that fgf ~! = hg as follows:

(A @ g7, ..., g(@), a B
r= PL(A', A, (hg)™'(B), ..., hg(B), B, R)'

Then the derivative of f is estimated as follows:

g"a) — A
‘°‘°'(‘ + A——A_N

k(b —a)
= |log(l + ———————-(a G- A) (g*(a) — A))‘.

I3

1 A4
0 !
Ef@— 4

Here

1g4a) — A| s|g*(a)—a|+|a—A|skB—;-f+|a—A|sz(B—A).

Since k is the smallest integer for the inequality to define it,

(k—l)(b—a)< &
B—A4 T 1—g

Then (b — a)/(B — A) < 27 'K, implies

k(b —
1(3_:) < K(e1/2 + ).

S K£2.

Since b — a < Kegy(a — A),
a—A=b—A—-(b—a)>2b— A— Ke(a— A).
Since we assumed that b — A = (B — A)/2,

b—A (B-A)
—A> > .
44211 Ke, = 2K

Thus

k(b—-a _ 2
P L AR EES R
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and we have

A—A
'logm' < K3(egy + 2¢;).
Now forj=1,...,k,
(hg)’~*(B) — (hg)’ (B) (B — A)/k

' : =11 :

‘1‘) 9@ - '@ l l B —a) {(a— /b - A)}f‘
(B — A)/k |
(b—a) (1 + =% {la— /b~ 4}

b~ (
klog(l + k](} - :)){(a — A)/(b - A4))]

log

il

il

}log(l 4 “’)] + jllogl(a — A)/(b — A)}l

B—A4
2 _ b—a
< K*(g1/2 + &)+ log 1+m .

Since
)b —al_ 2(b—a)
b— A~ B—-A"
i (1 LoaN - w kB - a)
jflog{ 1 +7— )| <J a
<k2(b—a)K/(B — A)
< K2(81/2 + 282)
and we have
(hgy~*(B) — (hgY (B)
\10 7 @) —g@ <3K%(ey/2 + £2):
Finally,
log‘:, : g‘ = )log (1 + kg)_—:)) < K%(e)/2 + ¢3).
Note that

(hgy ™" (B) — (hgY (B)
T @

is positive and increasing in j. Hence

A lis < I < K3 + 3K2 + K?) (6, + 265) < 2 K2(e4/2 + &5). O

For a juxtaposition of elementary PL homeomorphisms with small support we have the
following lemma.

Lemma 24. Let f be a PL homeomorphism with support in (0,1) such that
fillog f'|llz < €0/2%3. Suppose that the support of fis contained in a disjoint union of N intervals
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of length | and the restriction of f to each interval is elementary. Suppose also that the distance
between any two intervals is not smaller than a positive real number L and the distance between
an interval and the boundary {0, 1} is not smaller than L/2, where the positive real number
L satisfies |/ L < €0/233. Then f is written as a commutator

S=191,95]
where g; (i = 1,2) are PL homeomorphisms with support in [0, 1] such that
lIllog (g:) llls < 2° 72 K(lf|log f'llls + N*/#(2*1/L))

or
llog (g} lllg < 2° K*(llllog f'llls + N(2*I/L))

Proof. Let [a;, a; + I]1(k = 1,..., N) be the intervals such that f|[a, a; + {] are elemen-
tary. We write each restriction f|[a;, a, +1] as a commutator with support in
[a — L/2, a, + 1 + L/2] as follows:

flay ax + 17 = [¢¥, g1
Then by Lemma 2.3,
Ilog ()l < 2° K>(ll log(f | [aw, ax + 11) lllp + 221/L).
Let g; be the composition of g*. Then by Proposition 1.1,
Va(log(g:)) < 2°71 Y Vy(log(gy)

<271V {22 K2 (Hog (f | [aw ai + 11) lllp + 2%1/ 1)}
<2871N {22 KAE 2L (Vy(log(f|[aw ai + 11)) + (221/ L))
< 29872 K" 28(Vy(logf’) + N(2*1/LY)
<2972 K 7 (ltlog 'l + NYEQRI/ LY.

Hence we obtain the first estimate. The second estimate is just a sum of the norms of
log(g®). O

3. SMALL ELEMENTARY PL HOMEOMORPHISMS

In this section, we write a small elementary PL homeomorphism f= PL(} & §) as
a composition of three small commutators with support in [0, 1] without assuming that
B — A is small. To do this we combine Lemma 2.4 and the following lemma.

LEMMA 3.1. Let [A,B] be a subinterval of (0,1). For a positive real number
a <min{A, 1 — B, B — A}e/22, let T, denote the translation on R by a. Let ¢ be a positive
real number such that g/a < ¢,. Let fbe a PL homeomorphism with support in [ A, B) such that
If—id| < ¢ and |||logf'|lls < & for a positive real number ¢. Put:x, = (T,fy(A) (k = 0).
Suppose that x, = B and ND(f) c {X\}x=0,. .. Then f is written as a product of two
commutators as follows:

f= [91,92] [g3a 94]
where g; (i = 1,...,4) are PL homeomorphisms with support in [0, 1] such that

a B— A

—B,B— 4}

Jllg < 3K? 2t ke g &L
fitlog (g:) Hln_maX{Z K min {41 +2 Ka, Ke +2 Ka}
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Proof. Note that the above n satisfies
n<(B— A)/{a—¢ < K(B— A4)/a.
Let g be the PL homeomorphism defined by

X0, Y1, Yn—15 Vn A$ Vi1, Yn—-1, B
= PL = PL
g (xo, y1+da yn—l+d, yn> <A’ .V1+d, yn—1+d’ B)
where d=(B—-A—na)/n—1) and y,=A+ka+k—-1)dk=1,...,n) (hence
V. = X, = B). Let h be the PL homeomorphism defined by

h(x) = (T. /) (T.g)""(x) for xe[A, B]

and h(x) = x elsewhere. It is easy to see that the above h satisfies h|[X,, Xp+1] = idy, .. .3
hence h is a PL homeomorphism with support in [A4, B]. By Proposition 1.5,

f= g[(Tag)_l’ h]

and we can replace T, by ¢, given by

PL 0, A, B, 1
fa = 0,A+a B+a, 1

where
lllog(¢) lllz < 2*Ka/min{4, 1 — B}.
For g we see that x, = A+ aand,for 1 <k <n,
k—1
< 3 1T~ id)xel < (k - De.
i=1

i=

|xp — A — ka| =

ki; {xp+1 — (xx + @)}
Hence |d] = |(x, — A — na}/(n — 1)| < &. Since ¢/a < &, |logg’| < Ke/a. For [||logg’|lls, we
see that
lIl1og g'llls < llllog ¢'lll; < 2°Ke/a.
For h, we see that
h|[4, Bl(x) = (T ) (Tag)™"(x) = (To [V (To) " (To) (Tag) ™" (x).
The distance to the identity of

A+a, A+an, A+an+1), y,+an
A +a, Yns Ynta, ya+an

(Tagy(Ta)™" = PL(
is the same as that of g, hence
Ilog((Ta9)"(Ta)™")'lllg < 2°Ke/a.
Since ||| log f'llls < &,
llog (Ta /)" (Ta)™") lllg < nliilog fllls < ne’.
Thus we obtain
llllogh'|lls < ne’ + 2*Ke/a < K&'(B — A)/a + 2*Ke/a.

Now by Lemma 2.1, g is written as a commutator

g=1091.921,
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where

I1tog(g1) llls = llllogg’llls < 2°Ke/a

and

1-B A+B—A
a+e a 2a+ce
< 2K —
= <I—B+A+B—A>

< 23K? max{

+d 2a+d
Illlog(gz)’lll,,szK(“ La . 2 )

Thus we have

f=191-921193,94]
where g3 = (T,g)" " and g, = h. These g,, g,, g3, g4 satisfy the desired estimates. O

Now we prove Theorem A, which says that an elementary PL homeomorphism
PL(4 & 3) close to the identity is written as a product of three commutators of PL
homeomorphisms close to the identity. This theorem is used in [21] to show Theorem C of
the Introduction.

THeoREM 3.2. Let [A, B] be a subinterval of (0, 1). Let ¢ be a positive and real number
such that ¢ < min{A, 1 — B, 1/4}¢,/2?3. Let f= PL(} % 3) (A < a < b < B) be an elemen-
tary PL homeomorphism such that

lilog fllls < &

Then [ is written as a composition of three commutators as follows:

f=191,921193.94] [95.96]

where the supports of g; (i = 1, ...,6) are contained in [0, 1] and
lllloggillls < llllogg/ll; < 2°K’¢/min{A, 1 — B}.

Therefore, if [A, B] = [1/4,3/4] and ¢ < £5/2*3 and |||log [ |||s < & thenf = [g1,92] [93: 94l
[9s.96] with |||loggillls < 28 K3e.

Proof. We may assume that B — A4 >3 For otherwise, we replace [0,1] by
[0,13]n[4 — (B — A)/2, B+ (B — A4)/2] using the conjugacy by an affine homeomor-
phism.

Let T, be the translation by e. Since |||log f'|llz < &% |log f'| <27 ¢?( < ), we see
that [f' — 1| <27 '#Ke? < Ke?. Since the support of f is [A4, B] < [0, 1], this implies
|f —id| < Ke?/2 < &% Now let us consider the subset {xo,...,x,} of the orbit of the
non-differentiable point a under 7, f, where x; = (T, f) (x0) (i = 1, ...,n), a = x; for some i,
A—¢e<xo<Aand B<x,< B+ ¢ Then

B-A/e+ey<n<(B— A)/le—e)+2

Now we put

f_= PL(xO’ X1y vy Xy wees Xn—1s Xp = PL X0s X1, 4, Xn—15 Xn )
Xgy X2 = & cevy Xig] — & cuey Xp— &, X, Xo, X2 — & b, X, — &, X,



830 Takashi Tsuboi

Then we see that f differs from f only near x, and x, and
i log f'llls < llilog ' lls < &
We apply Lemma 3.1 to this PL homeomorphism f to obtain
f=1[91,921193,94],
Here g;(i = 1,...,4) are PL homeomorphisms with support in [0, 1] such that

€ &2 B—4
22K —, Ke?—— 22K
min{A—e,l—B—s,B—A}+ € — 7 }

g @)l < max{23K2

< 32K3¢/min {4, 1 — B}.

On the other hand, put f = (f)~!f. Then the support of f is contained in [xg,%;]u
[x,-1, x,]. Note that x; — xo = ¢ and x,, — x,—; < &. Moreover

f|[xo»x1] PL( A X1> and fl[xn—l’ xn] = PL<x"_b 7~ B’ xn)

xi, ()7 4), Xa-12 ()71 (B), %y
where
—(f‘)"(A)/(f)“(A)—xo=b—A and (f)**(B)—x,_l/xn—(f‘rl(B) _B-b
x;—A A—x a—A B—x,_4 x, — B B—a
Hence

Vs(log (f1Lxo, xl])’) + Vy(log (f10xn-1, x21))

o =) b—Af x — (A

= (log - log + [log = A
(f) 1(B) — Xu-1|° B — b} xa— () 1(B)ff

+' B—xnl +logB_ + |log x._B

b— B —bff

<

_2]oga_ +2‘ B

< llo b- ﬁ+lo —B—b b4l + |lo B—bf

- ga—A gB—a —A —

= Vy(log f).

Hence by Proposition 1.1,
lI1log (fY s < 2!~ Y#|||log £'|ll, < 2¢2.

Now we apply Lemma 2.4 to fto obtain
f = [gs,96]

where by the second estimate of Lemma 2.4,
ligllls < 2°K2(ll1og (f)llls + 2%¢/min{4, 1 — B})
< 23K?(2¢* + 2%/min{A4, 1 — B})
< 25K3¢/min{4, 1 — B}.
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Thus fis written as a product of three commutators:

f=f_f= (91,921 [93,94] [95.96]
where g; (i = 1, ..., 6) satisfy the desired estimates. O

The construction of f used in the above proof is very useful. We can generalize this as
follows.

Lemma 3.3. Let fbe a PL homeomorphism of R with support in[0,1]. Let0 =g < -+ <
a, = 1 be a finite increasing sequence. Put

r Ay, A1y vevy Ar-1, ay
f=Fp L(f(ao), @), ey f@r), f(ak))'

Then ||| 10g (/)'llls < lIl1og f*llls-

Proof. Let {xq,...,%,} (Xo < -*+ < x,,) be a finite subset of R. In the sum
Y. |log(fY (x;) — log(f) (x;-1)If
ji=1

we may assume that log(f) (x;) — log(f) (x;-,) has alternating sign. For, if log(f) (x;)
—log(f) (x;-1) and log(f) (x;+1) — log(f)’ (x;) have the same sign,
[Tog(f) (x;) — log(f) (x;- )I¥ + [log(f) (x;+1) — log(f) (x;)I?
< |log(f) (xj+1) — log(f) (x;-1)I®
and we get rid of x; in the following argument. Now if log(f) (x;-,) < log(f) (x;) and
log(f)’ (xj+1) < log(f) (x;), then in the interval [a;- 1, a;] containing x;, there exists a point
y; such that log(fY (x;) <log(f) (y;)- In a similar way, if log(f) (x;-) = log(f) (x;) and

log(f) (xj+1) = log(f) (x;), then in the interval [g;_,, a;] containing x;, there exists a point
y; such that log(f) (x;) > log(f) (v;). Thus

3. log(7Y (x) — 108(FY (x,-)¥ < ¥, llog () — log J(3;- )P

This implies [|[1og (f)'llls < lIllog f'llls. 0

We generalize Lemma 3.1 to juxtapositions of PL homeomorphisms.

LemMA 3.4. Let [A, B] be a subinterval of (0, 1) containing [%, 3]. For a positive real
number a < min{A, 1 — B}eo/2?, let T, denote the translation on R by a. Let ¢ be a positive
real number such that ¢/a < &,. Let fbe a PL homeomorphism with support in [ A, B] such that
If—id| < eand|||log f |l < & for a positive real number ¢'. Suppose that for a positive integer
q, there are points X; g < X3,0 < - < X, o in [A, B] and positive integers q,, 4z, ...,q,
not greater than q satisfying the following conditions. If we put x, ;= (T, fY (xx, o) for
1 <j<qu( <q), then

Xeoaw < Xkw1,0 and fI[xk, go Xk+1,0] =, x 0 Jor k=1..,r—1

and

ND(f) < U {xk, [+2] -",xk,qk}-
k=1
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Then f is written as a product of two commutators as follows:

f=191.921[93,94]

where g; (i = 1,...,4) are PL homeomorphisms with support in [0, 1] such that

a & &
log (g llls < PKE————— + 22K, 2! g + 22K},
lll1og (g:)'lll maX{ min{4, 1 = B) +2°K- e’ + a}

Proof. Let n be the positive integer such that
B<(T,fY(x0) <B+a.
Let g be the PL homeomorphism defined by

0, Vi Va—1> Vn
= PL
g (Oa Vitd o1 +d, Ya

where

Z {xk a — Xk, 0 — Qka}-

n—l

Let h be the PL homeomorphism defined by
h(x) = (T, f )" (T.g)""(x) for xe[A, B]

and h(x) = x elsewhere. Since (7, f)%™ translates [x; o, Xi, 1] = [*x 0, Xx,0 + @] onto
[xk, gus Xk, g + @], we see that h(x)|[yn, Ya+1] = idyy, ,..,;and his a PL homeomorphism with
support in [A, B]. As in Lemma 3.1, by Proposition 1.5,

f=9l(T.9)" ", 1]

and we can replace T, by ¢, given by
0, A B, 1
= PL ’
(0 A+a, B+a, 1>
where (|| log(t,) llls < 22Ka/m1n{A 1 — B}.
For g, we have x;, ,, — X, 0 — g4 < (gx — 1)¢, hence

1
ld| < mZ((Ik —De<e

and
lIlogg’lllg < llllog g'lll; < 2°Ke/a.
For h we have
hi[A, Bl(x) = (T f )" (Tag) ™" (x) = (Tof Y (To) ™" (T (Tag) ™" (x)
and we again have
Il log ((Tag)" (T)~")'llls < 22Ke/a.

For (T,f) (T,)~", note that log((T,f)"Y = 0 on [xx, g Xk+1,0] and for [x; ;, X 1411 S
[xk, 0> X, qk]a

log((Tof )Y |[xk, 1> Xk, i+ 1] = 10((Ta f [k, 05 Xk, 1)) | DXk, 15 X, i 411
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Hence
11og (T, f) (T)™") [[xk, 0 + na, xi, g + nalllls = lll10g ((To S 1[xx, 0s Xk, 0 1)) llg
< qll|1og f'{[x«, 05 Xk, g lll5-
Thus by Proposition 1.1,
Ve(og(Tu /I (T)™")') < 2871 3 Va(log (Tof V' (T ™" [[Xx, 0 + 14, X4, g, + nal)
<2871% ¢ Va(log f'|[xk, 0s Xk, g 1)
<271¢ Vy(log f).
We have
lllogh'|lls < 2' "1/ g’ + 2%Ke/a.

As in Lemma 3.1, by Lemma 2.1, g is written as a commutator:

g =1[919:]
where
lllog(g1)'llls = llllog g’llls < 2*Ke/a
and
a a a
1 / < 23K2 = < 23K? : — B\
lllog(g1) llls < 2°K* max {1 -t A} < 2*K?*a/min{4, 1 — B}

Thus we have

S=191,921193,94]
where g5 = (T,g)" ! and g, = h. These g,, g;, g3, g4 satisfy the desired estimates. ]

Now we look at juxtapositions of elementary PL homeomorphisms.

LEMMA 3.5. Let & and & be positive real numbers such that 26¢ < 1 and ¢ < £4/23. Let
fbe a PL homeomorphism with support in [A, B] < (0, 1) such that ||| log f'|l|s < ¢*. Suppose
that the support of fis contained in a disjoint union of N intervals of length | and the restriction
of f to each interval is elementary. Suppose also that the distance between any two intervals is
not smaller than a positive real number L, where the positive real number L satisfies
el /L < £0/2% and L/min{A, 1 — B} < &,/2%. Then

f=191,921193.941 95, 96] f1

where the supports of g; (1 = 1,...,6) are contained in [0, 1] and f, is a PL homeomorphism
with support in [A — el, B + L/2], the support of f, is contained in a disjoint union of 2N
intervals of length ¢(1 + €)l and the restriction of f, to each interval is elementary. Moreover,
the distance between any two intervals and the distance between an interval and the boundary
{0, 1} are not smaller than a positive real number L/2 = ¢(1 + ¢)l. We have following estimates
on the norms:

llog filll; < 272 |||log f'llls < 2' ™1/ 6¢?

and

lllog g/ |lls < max{23K>(I/L)e + 2K>d¢, 2-3K?5¢, 2K*L/min{A4, 1 — B}}.
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Proof. Let [Ay, B,] be an interval where f|[ A4, B,] is elementary. Put

Akv g, Bk
Ak: bk’ Bk ‘

fIll4i Bl = PL(

Since |||log f’|||s < 6¢%, we have |f' — 1| <2 " K §e? and |f —id| < 27! " VP K&l < el.
Let {xi,o,..., Xk o} b€ the subset of the orbit of a; under T, f which is contained in
(Ax — ¢l, B, + &l). Then A, — el < x, ¢ < A, and B, < x, ,, < By + &l. Hence

B~ A 1 3
qkﬁs—l-:s_l—lésezi+2Sm+2S2(81+l)_<.2K/&
We define
v Xk, 0 xk,l’ a, xk,qk—h xk.qk
— = PL[™* .
SitAc—eh B+ el) =P (xk,o, Xg,2 — el, by, Xk, qe — el, Xk.qk>

Then by Lemma 3.4, we have

f: [gl’ g2] [931 g4]

where

2
2 1-1/p 2 2
L—sl+2 K = ,2 (2K/g)de* + 2°K -

<max{2°K>(l/L)e + 2K?e, 2-3K?6¢}.

: 27 Ko 1K 5e?l
i log @'l < max{23K2 : : __}

Now the support of f = (f)~!fis contained in

U (Exx, 05 Xi, 13 0 [xk, gie— 15 X, i 3)-
k

Here
Xe1— X0 =6l and  xp 4 — X g1 S el(1 + 278 Kbe?) < €l(1 + ¢).
Put
hy =fA|kk) [%i,0. .11 and h; =f| Lk) [Xk, g - 15 Xk, 0 -

We define f; by
fi=h T g rarha(Trp s var) ™"
Here we can replace T ;1461 DY trj2-c01 42 given by

_pL 0, A—e(l+8l, B+e(l+9l, 1
fp—eavar =PE\g gy L 21+, B+ L2 1)

Then f, satisfies the condition on the support. As in the proof of Theorem 3.2,
V3108 (f10xx, 00 X4, 11)) + V3(108(f1 1%k, gu-1> Xk.,1)) < V3llog (f1[Aw Bi1))
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and by Proposition 1.1,

Vallog(f1)) < 2871 {Vpllog (fI[xk, 00 X, 11Y) + Va(log(f1[% s, - 1 Xk, 1))}
k
<28~ 1; Vi(log (f1[As Bel))

< 2°71 ¥(log f").
Hence |l 1og fill; < 2' " |||1og f"lll,- We have
f= hih; =[gs,961 /1

where
[g5 = h;]
llltog(gs) llls < Illlog (f1) llls < 2~ Y2 |||1ogSf ||,
< 26¢?

96 = ljp-e1+2)1
(lllog(ge) lllz < 22K(L/2 — &(1 + &)l/min{A — &(1 + &)l,1 — B — &(1 + &)l}
< 2K*L/min{4, 1 — B}.
Thus we have
f=ff= (91,921 193,941 [95.961 /1

where these g; satisfy the desired estimates. O

Remark. The ratio /L becomes smaller for f;. In fact,

g(1 +¢)l 2
el el L
2—ei+ o= X/

COROLLARY 3.6. Under the same assumption as that of Lemma 3.5,

f= (U [92i-1, gZi]>fs

where f, is a PL homeomorphism with support in [A — &l/(1 — (1 + ¢)), B + L], the support
of f; is contained in a disjoint union of 2° N intervals of length {¢(1 + ¢)}* | and the restriction of
f; to each interval is elementary and the minimal length between the intervals is not smaller than

['1—Q2e(1 +¢)
L 1—2(1+¢)

L

—{1 —2e(1 +¢)

L 2 l s+ 1
> }225{1—2K a(1+s)L}zL/2 .

We have the following estimates on the norms:

“IIOgﬂlllﬂ < zl_l/ﬁm]ogf’”lﬁ < 21-1/8 502

and
((llog g/ iz < max{23 K3(I/L)e + 2K? d¢, 2-3K? 8¢, 2K2L/min{A, 1 — B}}.

Proof. For the estimate for log f;, note that the sum of the f-variations ¥; of the
derivatives of the elementary PL homeomorphisms which are the restrictions of f; is not
greater than that of f;_ ;, hence it is not greater than that of f. For the estimates for log g;, by
the remark above, the estimates become better as s becomes bigger. O
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By using Lemma 2.4, we obtain the following lemma.

Lemma 3.7. Under the same assumption as that of Lemma 3.5 suppose also that s satisfies
(5ef (I/L)N '8 < Ce

for some positive real number C, then

3s
f= (H [92i-1, gn]) [g6s+1,96s+2]
i=1

where

L

’ 33 2 3K 2 2 - 00
{i|log g; |||ﬂsmax{2 K (l/L)e + 2K* d¢, 23K~ b¢, 2K min{4, 1= B}’

25°2BK2(2 5% + 23C£)}.

Proof. By Lemma 2.4, f; in Corollary 3.6 is written as a commutator:

f; = [g6s+1, g6s+2]

where
llllog (g:) Il < 2372 K2<|||108fs'|Hp + (2 N)VE 22%)
< 257U K221 108 552 4 23 (Sep(I/L) N1P),
Here we used 2' *1%(1 + &) < 2’(1 + 273 < 5. O

4. MODIFICATIONS IN PL HOMEOMORPHISMS

In this section, we develop a method to modify PL homeomorphisms to the form of
juxtaposition of elementary PL homeomorphisms by multiplying small commutators.
First we study the decomposition of PL homeomorphisms into PL homeomorphisms
with estimates on the norms and the numbers of non-differentiable points.

LemMA 4.1. Let f be a PL homeomorphism of R with support in [0,1] such that
NND(f)=N +2. Let N;,N,,...,N, be positive integers such that N, + N, + --- +
N, = N. Then there are PL homeomorphisms f,, f, ..., f, of R with support in [0, 1] such that

@) f=fioof,
(i) NND(f;) = N; + 2, and

(iii) [lllog filll < 2llllog f*|llg for i =1,...,r.

In other words, if f is a composition of N elementary PL homeomorphisms then f is written as
a composition of PL homeomorphims f; which are compositions of N, elementary PL homeo-
morphisms with the above estimates.

Proof. The graphs of the PL homeomorphisms fie---of, (i = 1,...,r) are obtained from
the graph of f by connecting several non-differentiable points by line segments. Then by
Lemma 3.3, |fllog(fie---°£)|lls < llllog £ llls. This gives the desired estimates for f;. O
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The method of decomposition described in the above lemma does not give sufficiently
good control on the norms of f;. The following lemma yields better estimates for a PL
homeomorphism f with NND(f) large with respect to the number of PL homeomorphisms
to be decomposed.

LEMMA 4.2. Let f be a PL homeomorphism of R with support in [0,1] such that
NND(f)=N+2 Let No,Ny,...,N, be positive integers such that No+ Ny + --- +
N, = N and N > 2r. Then there are PL homeomorphisms fo, f1, .-., fr of R with support in
[0, 17 such that

W) f=foo - °fs
@) NND(fi)=N;+2 fori=0,...r,

(iii) [/[log follls < [lllog f"llg,
(iv) the supports of f; (i = 1, ..., k) are contained in disjoint intervals of (0, 1), and

(V) 2i-1 Vallog fi) < 2° W (log f").

Proof. Let f be given as

Ao, Ays .-, AN, AN 1 1
e )
bO,bla ""bN9 bN+l

We define f; to be the PL homeomorphism such that the non-differentiable points are a,,

A1 0N, +25 AN+ 358N, 4 Ny +4 AN+ N, + 550 ON 4o v N 4200 — 1) ON 4 e+ Ny +20— D4 15 ON 4o &
Not2rs ON 4 +N+204 150N, + .+ N+ 2r 4 25--» N, dy 4 and the values of these points are
those of f:

fo= PL<aOaalsaN1+2’aN,+3saN,+N2+41aN1+N1+5a--';aN,+~~+N,_1+2(r~1)’
b =

bOabble+2’bN1+3’bN,+N1+4’le+N2+5"'~:bN,+~~+N,_1+2(r~1)5
ANy o+ N+ 2=+ AN + 4+ N+ 200N, + o + N+ 20+ AN+ N+ 25+ 25 -0 QNS AN 4 g
bN‘+-~+N,<;+2(r—l)+l,bN,+~«+N,+2nbN,+--»+N,+2r+lsbN,+~-+N,+2r+2a~--,bNabN+1

Then f, coincides with fon [ay, , .., . 12> @y 1] and the support of f5' ! fis
[ay,an, + 1] U [an, +3,an, + N, + 4] U U (an, + s m 42— 14 AN + e N4 2]
and we put
fi =f0—1f[[aN, b b N 4 A= D+ 1 AN 4o s N+ 2]

Then by Lemma 3.3, we obtain ||logf5llls < |lllog f'llls, hence |||log(fo * fYllls
< 2||[log f"ill- Thus

Y. Vallog fi) < Vyllog (fo ' f)') < 2! V;(log f'). U
i=1

We try to write a PL homeomorphism fin a form f = f; [ g, g, ], where f; is a juxtaposi-
tion of small PL homeomorphisms with smaller numbers of non-differentiable points, and
[g1, g2] is a small commutator. So the support of f; would be contained in a union of
q intervals of length 1/g of the interval containing the support of £ We would like to arrange
the number of non-differentiable points of the restriction of f; to each interval to be the 1/g
of that of . We use the following Lemma 4.3 when the number of non-differentiable points
of the restriction to each interval is different to each other. The situation of Lemma 4.3 is
that there are r boxes and the kth box has g small boxes and p, homeomorphisms and that

TOP 34/4-F
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we exchange homeomorphisms between small boxes in each big box. This is an easy
application of Proposition 1.5.

LemMA 4.3. Let g,r and py, ..., p, be positive integers. For a positive real number a, let T,
denote the translation by a. Let [A;, Ay +qa] (k=1,...,r) be disjoint subintervals of
[A,B] < (0,1). Let f* (k=1,...,r,i=1,...,p) be PL homeomorphisms with support in
[Ax, Ax + a]. Let j9:{1,...,pe} > {0,...,g — 1} (k = 1,...,r, m = 1,2) be functions such that
jo () > j¥ (@) fori<i. For m=1,2, put

'L‘," 1 k —'E,',"l ~E:) k —.E’
szl—[TaJ ()f{) Ta J ()o,,,oTaj m‘)f;(m) Ta J (pk)'
k

Then
Tan =hTaF1h_1
where

h I, = (T, Fy | LY (T, Fy | I)™®  for Ii=[A, Ac+qa]l (k=1,..,r)

and h is the identity on R — U[Ak, A, + qa]. Here T, can be replaced by any PL homeomor-
phism t, which coincides with T, on [A, B]. Moreover, we have

liog Hlll; < 2272 q(llilog (F1)llls + lllog (F2)lils).

Proof. The first part of the lemma follows from Proposition 1.5. Since I, = [4,,
A, + ga] are disjoint, by Proposition 1.1, we have

Vilogh) < Y. 267! Vy(logh' | Ix)

k=1

Y. 27  (lilog k' | Lulllgy
k=1

It

Y 2871 (qllllog F1 | Ll + qlillog F3|Lcllls)?
k=1

< ¥ 287182871 (Vy(log F1 | Ii) + Vyllog F3 | 1))
k=1

<2248 (Vs(log F1) + Vy(log F3))

<2272 g(|lllog F1 llls + llog F3 llls).

Thus we obtain the estimate. O

In the following two lemmas, we express a PL homeomorphism f in the form
f=/f1[91,92]), where f; is a juxtaposition of small PL homeomorphisms with smaller
numbers of non-differentiable points, and [g,, g,] is a small commutator.

LemMMA 4.4. Let p and q be positive integers. For a positive real number a, let T, denote the
translation by a. Let f be a PL homeomorphism with support in the disjoint union | Ji | J7_,
(45 + (i — Da, A, + ia) of intervals and U[Ak, A, + ga] = [A, B] = (0, 1). Suppose that
NND(f|[Ax, Ax + qa]) < qN + 2 for k = 1,...,r. Then there are PL homeomorphisms f,, g,
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and g, such that

f=ri1l91 921

NND(fil[Ax+(G—Da, Ay +ia)<N+2 (k=1,...,r5i=1,...,9).
Moreover, if ||llog f" |||z < ¢, then

and

Itog (f1) lllg <227 ge
and
log(g:) lls < max{22q(1 + 2% g)e, 22 Ka/min {4, 1 — B} + 2%qe} (i =1, 2).

Proof. Note that f(A, + ia) = A, +ia(i=0,...,q) and let f|[A, + (i — 1)a, A} + ia] be
a composition of A® elementary PL homeomorphisms. Then

AP < gN.

Mn

i=1

We can decompose A® into a sum of g non-negative integers
/1?‘) — #(lk, i) + “(k i)
and decompose N into a sum of g non-negative integers
=y d Lo kD
N=vD 4o vt
satisfying the condition that the sequences

k, k, k,g—1 (k,g—1 kl) &, 1)
#( q), ’”‘(1 q)u( q— )’ ,#q q- ) R l‘( “q

and
k. ka) kg1 kg-1 k. 1 k1
v D, v,y R AR

coincide after deleting zero terms.
This decomposition can always be done.
Now, by Lemma 4.1, f|[A, + (i — 1)a, A, + ia] is decomposed as follows:

S+ G = Da, Ay +ia] = f&0 .. f&
where /{9 is a product of p*? elementary PL homeomorphisms. By Lemma 4.1,
lIltog (£ ?Yllls < 2llllog (fI[Ax + (i — Da, Ay + ial)|ll,.
Note that by Proposition 1.1,

Y. Vallog(f([Ax + (i — Da, A + ia])) < V;(log f*).

We can write f in the form of Lemma 4.3

f=TITE (T RO T ) T 0 Ta Y (T, 0 [0 Tam ) Ty et ffe 0 e,
k

By the condition above the sequence
—q+1 p(k, -1 —q+1 pik, -1 k, 1 , 1
T, fearat, Tt fleaa-t | ff ’,...,f;" )

can be regrouped into

k, q) k, k,q-1 k,g—1 k. 1 k, 1
g(lq g;q)g(q) 924)~9()s92)

B

by subtracting and adding the identities, where g @ is a product of v ? elementary PL
homeomorphisms.
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Put

L=TITs tgkoT, 9% . T‘;’“gfl""" T,94 .. gD ...gfl"' b,
k
Then by Lemma 4.3, we have
T.fi=hT,[h},

and we can replace T, by ¢, defined by

0, A, B, 1
t":PL(O, A+a B+a, 1)

where ||[log(z,) ||l < 22 Ka/min {4, 1 — B}.
We have the following estimate on f;:

Vpllog(f1)) < ; 2871 Vy(log (f1 1 [Ax + (i — )a, Ay + ial))
<Y 2y, <log (H gt i’>,>
k, i i
B
< ;2”_ ! (2 lIllog (g% 7Y |||ﬁ>

< TP Vylloglgh )
ki I

<2711 Y Vyllog(fi7))

k. i, j

<271gh 1 Y B (o0g(fIL Ay + (i — Da, 4, + ial))

ki, J

<2¥° 1@y Vy(log(fI [ Ak + (i — Da, A + ia]))
k,i

<2¥°1¢ Yy (log f).

Thus
lIllog(f1)'lls < 22~ qllllog f*|lls.
We have
f=t b fih=fillta )7 ]
where
lIllog B'lils < 2>~ 22 q(lll f'llls + M filllg) < 2% q(1 + 22 q)e
and

lllog (. /1) llls < 22 Ka/min {4, 1 — B} + 2% ge.

O

If the number of non-differentiable points is big with respect to the number of pieces to

be decomposed, then we can use Lemma 4.2.

LeEMMA 4.5. Let p and q be positive integers. For a positive real number a, let T, denote the
translation by a. Let f be a PL homeomorphism with support in the disjoint union | J[ A4,

A, +qal of intervals and | J[Ax, Ai+qalc[A, B]<(0, 1). Suppose

that

f(Ay+ia)= Ay +ia (i=0,....,q) and NND(f|[Ar, Ax+qal)<gN +2 for k=1,...,r,
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where N > 4q. Then there are PL homeomorphisms f, g, and g, such that

f=1il91, 921

and
NND(fli[Ak + (I — l)a, Ak + ia]) < N + 2 (k = 1,---,"; i= 1>'“’q)'

Moreover, if ||[log f"|llz < &, then
lilog(f1) llly < (1 +22717317 1)

and
lllog(g:) llls < max {23 7ge,2%3¢ + 22 Ka/min {4, 1 — B}} (i=1,2)

Proof. Let f|[Ax + (i — 1)a, A, + ia] be a composition of 2% elementary PL homeo-
morphisms. Then

We can decompose A* into a sum of g + 1 non-negative integers
,{2_"} = ll(lk' L ST yfl’" i)
and decompose N into a sum of 4 non-negative integers
N =vd +ofd 40§D 4§D
satisfying the following conditions:

L AP <N, then pg? = 4, p? = - =y = 0.
If 2® > N, then u%? = 24.
2. The sequences

(k, q) (k. q) ik, q—1)

k,q— 1)
HE Dy ug®, pd 2

k, 1
w-wﬂq (1 )

(k, 1)

s MY g

and
W oo ko) yhamD) ham1) (kamh) kD) k1) kD)
coincide after deleting zero terms.
This decomposition can always be done by the following reason. Since N > 4q, if
A® > N, then A% — 2¢g > N — 2q > N/2. We fill up the demands of the parts where A® < N
by the supplies of the part where A¥ > N from the larger index i, then the demand of one

part is supplied by at most 3 parts.
Now, by Lemma 4.2, f|[4x + (i — 1)a, A, + ia] is decomposed as follows:

FIlA+ (i = Da, Ay +ia] = [0 [0 fikd

where 7 is a product of A/* ¥ elementary PL homeomorphisms. Note that the supports of
fEa e, LD, %1 are contained in disjoint intervals.
First we decompose f as follows:

f=fo° Fy

where fo [[Ax + a(i — 1), Ak + ai] = f§*? and F, |[A¢ + a(i — 1), A + ai] = f*? j;k D
Then by Lemma 4.2,

llog (fo)llls < llog f'lll; and 3 Vp(log(f{*?)) < 2V (log /).

ki, j
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We can also write F, in the form of Lemma 4.3:

Fy=[[ T8 (T 0 T I a% T (T [0 T )T %t ffe D ),
k

By the condition (2) the sequence
T ot e et T o Tt D D

can be regrouped into

k, k, k, k,q—1 k,q—1 k,q—1 k1 k, 1 K, 1
g(1 q) ( q),g(s L)) g( q- )’g( q- )g(3 q ),m,g(1 )’g(2 )’g(3 )

by subtracting and adding the identities, where ¢ @ is a product of v elementary PL
homeomorphisms.
Put

Fz - Taq—l g(lk,q) Ta—q+1 Taq—l g(2k, q) Ta—q+1 Tg—l g(3k,q) Ta—q+1 g(lk, 1) g(zk, l)g(ak, 1)‘
Then by Lemma 4.3, we have
Ta Fz =hTa Flh_l

and we can replace T, by t, defined by
0, A, B, 1
PL<0 A+a, B+a, 1)

where (([log(t.) ||l < 2% Ka/min {4, 1 — B} as before.
We have the following estimate on F,:

Velog(F2)') < 22”‘1 Vellog (F2|[Ax + (i — 1)a, Ay +ia])’)

<127 Vyllog(gh? 93" 57))

r

< Y 271 (llilog (g% Y lllg + llilog (g% °Y llls + llilog (g% *Y Ill¥
ki

<) 271371 (H(log (gt 7)) + Vallog (g% PY) + Vallog(g$ P))
ki

<2713 Y Yoog(f*%0Y)

ki, j
<267138°128 P(log f7).
Thus
lIog( F2)'llls < 227131~ 1%|llog f"lls.
Since |||log ( F1)'llls < 2llilog fllls < 2e,
lIlNogk'lils < 2>~ q(Il F1lllg + Il F2lllg) < 2° 7ge.
Hence by putting f; = f, F,,
f=foFi=fots ' h™'t, Foh =fi[(ts F2)™', h71].
Here

og(f1Yllg < (1 +22"'#)e and ||[log(t, F,)llls < 22 Ka/min{4, 1 — B} +223e. O



PIECEWISE LINEAR HOMEOMORPHISMS OF THE REAL LINE 843

5. MAIN THEOREM

In this section, we prove Theorem B. Let K and ¢, be the positive real numbers fixed in
the beginning of Section 2.

THEOREM 5.1. Let g be a positive integer. Let ¢ be a positive real number such that
e <min{A, 1 — B}¢,/23 Let f be a PL homeomorphism of R with support in [A, B]
([% 31 <[4, B] = (0, 1)) such that

lllog £ [Ils < 6> and NND(f) < 4e™9+ 2

where 22976 (1 4+ 2271631~ 1Py §5e < 1. Then

16(q+1)

f= l:[ [g2i-1,92]

where the support of g; (i = 1, ...,32(q + 1)) is contained in [0, 1] and there exists a positive
real number c depending only on q, A, B, and & such that

lilog g:llls < ce.

The following Lemmas 5.2 and 5.3 reduce Theorem 5.1 to Lemma 3.7.

LEMMA 5.2. Let ¢ be a positive real number such that ¢ < min {A, 1 — B} ¢,/2*. Let f,, be
a PL homeomorphism of R with support in [4, B] ([%, 3] = [A, B] = (0, 1)) satisfying the
Jollowing conditions:
1. ||[log fulllg < 8m &>, where 8,, > 1 and 255,,¢ < 1,
2. the support of fn is contained in a disjoint union of intervals of length (3¢/4)™1
(l=B—4),
3. the restriction of f,, to each interval has at most 4™~ + 2 (g — m = 2) non-differenti-
able points, and
4. the minimal distance between the intervals is at least (3s/4)" /3.
Then f,, is written as follows:

Sm =191, 921093, 941095, 961[97, 98] fons1-

Here

(i) the supports of g; (i = 1,...,8) are contained in [0, 1],
(ii) the support of f,,+1 is contained in a disjoint union of intervals of length (3g/4y"*?!
which is contained in [A — (3e/4)™* !, B + (3¢/4)"+1],
(i) the restriction of fu+, to each interval has at most 4e™~9*! + 2 non-differentiable
points, and
(iv) the minimal distance between the intervals is at least (3e/4)"*11/3.
We have following estimates on the norms;

llog (fm+1) lllg < 22(1 + 227131~ 1E) 5, &3
and

(€/2) Ge/4)™1

' K TR
og gillls < max{2° K* o == 5y

+ 22K?*5,,8% 2°7K? §,,6%}.

Proof. Put x; = (T,f)(A) (i =0, ...,i), where
a = (/2) Ge/dy"1
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né€ r L nomeomor p hism given by

X0y X1y e Xp—1 x,,)

/= PL(f(xo), FO00) oo fCenet)y f000))"

Then by Lemma 3.3, we have

liog (f'llls < Illlog f'llls < dme™.

Put f=(f)"! f then we have |||log (f)'ll < 26,,£>. The supports of fand f are contained in

a {‘huninf union of intervals I of !en h

Vi1 U

(Be/d™ 1 + 2a < (1 + &) (3e/)" | < K(3e/4)" | = 2aKJe.

The minimal distance between the intervals is at least

By Lemma 3.4, fis written as a product of two commutators:

F=191,92] [93 ga].
Since log f* < 27V ||llog f'|llp < 27 Y#§,,e3,
|f—idl < |f—id <27 Y K$,e3(3e/4)" | < K, %a.
Hence, if I, = [x;,, X +p ), then

2Ka/e < 2K/e

< 2K%/e.
S T mid S T—Ka2 = KT

Here we used 26,,¢6 < 1. Hence by Lemma 3.4, we obtain the following estimates:

vV 3 2 a 2 1f—
llllog (g:) IHpsmaX{2 K min{A—a (—B—a + 22K ——,
Lf—id]
2718 g log (Tl + 22K = }
(¢/2)(Be/4)™1 Ké, ela
I3 2
SmaX{ZK*——min{A,1~B}+2 K—a ,
) 2
1-1/8 (2K2/£)25m e+ 22K %ﬁ_‘}}
(e/2) Be/4)™1
33 2 2 2 2 2 2
smax{Z K m————~in{A, =B + 2 K?*5,,¢%2%3K?* 5, ¢ .

The restriction of f to each interval I, = (%, Xi+pnJ 18 @ product of at most 4¢™ "¢ +
2K¢™! elementary PL homeomorphisms and we decompose f as follows. Write

f=hhy=hyh
where the support of h; is contained in U"‘m [x2j4i-15 X2;4:1 (=1, 2). Put
hy =(T,) ‘hy T, h,.
Then
f=nhyhy = [hy, (T,)" ' Ths.
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Here we replace T, by t, defined by

0,A—2a, B+a, 1
.=PL
: (0, A—a B+, 1)

where
lilog(t.) |lls < 22 Ka/min {4 — 2a, 1 — B — a} < 22 K?a/min {4, 1 — B}.
For h; (i = 1, 2), we have
llog(h:Y llls < IIllog(f) llls < 26me>.
Hence
liNog(hs) llls < 2% 8me’.

Note that the restriction of h, to each interval I, = [x;,, X;, +p, ] is a product of at most
4¢™ 9 4+ 2Ke™ ! elementary PL homeomorphisms.
In I, = [X;,, Xi, + ), We already know that p, < 2K?/e. For 0 < j < p;, we see that

j-1
[Xisj — X5 — jal < Y |Ta(f = id)xi]
i=1

IA

(j— ) Kdn&%a
< (2K*/e) K d,.e%a

IA

2K36,,€a
27

IA

Here we used 286, < 1.
Now we apply Lemma 4.5 to T, and (h3)~ ', and we obtain PL homeomorphisms g,
and gg such that

h3 = [97’ g8]fm+1

where the support of f,,+, is contained in a disjoint union of intervals of length
a+2-2"% =(3¢/4"*! which is contained in [4 — (3g/4)"*!, B + (3¢/4"*!] and the
minimal distance between the intervals is at least a — 227 2a = (3¢/4)"* ' /3.
We may assume g in Lemma 4.5 is not smaller than ¢ !+ 2. In fact, for
el+2<j<e 43,
Xi 42 — X, — 2ja] < 2(e™ ' + 3)Kdpela

< 2K?%$,ea

<273
and 2ja < (3¢/4)" 1 + 6a. Hence

Xip+1 — Xig+2j = 235a — 6a — a > 33a.

Note also that ¢ in Lemma 4.5 is not greater than K%~ .

Since 4679 + 2K?%e~ ' < 4egm7 9t 1(g7 1 + 2), the restriction of f,, ., to each interval is
a product of at most 4¢™~?*! elementary PL homeomorphisms. For £+, g, and gs, we
have

llog(fm+1) lllp < (1 + 22718 31718)22 5, ¢
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and

lllog(g;) llls < max {2371(28_1225,,,83, 223.225, % 4 22 K2 D B! }

min {4, 1 — B}
(&/2) Be/4™1 .
STR2S o2 94 3 3 —
< max {2 TK*0pme*2*30,,6° + 2°K min {4, 1 — B} i=728). 0O

LeEMMA 5.3. Let ¢ be a positive real number such that ¢ < min {A, 1 — B}eo/2>. Let f,_, be
a PL homeomorphism of R with support in [ A, B] satisfying the following conditions:

L. (llog fo-1llls < 8,—1 €% where 8,_y > 1 and 2°6,_,e < 1,

2. the support of f,—, is contained in a disjoint union of intervals of length (3¢/4y*~'1
(l=B - A),

3. the restriction of f, 1 to each interval has at most 4¢™ ' non-differentiable points, and

4. the minimal distance between the intervals is at least (3¢/4)7~ " 1/3.

Then f,_, is written as follows:

Jo-1=1[91, 921093, 941035, 961097, 981 fo-
Here
(i) the supports of g; (i = 1, ...,8) are contained in [0, 1],
(ii) the support of f, is contained in a disjoint union of intervals of length (3¢/4)",

(iii) the restriction of f, to each interval is a product of 4 elementary PL homeomorphisms,
(iv) the minimal distance between the intervals is at least (3¢/4)?1/3.

We have following estimates on the norms:
log (fo) llls < 2>~ K26, ¢
and

g—1
llloggilll, < max {2“K5 S-16 2°K M?f_/ﬂ__’_}

min {4, 1 — B}

Proof. We go through as in the proof of Lemma 5.2 and we use Lemma 4.4 instead of
Lemma 4.5. O

Proof of Theorem 5.1. For m=0,...,q —2 we use Lemma 5.2, where we put
O =22m(1 4 2271831~ 1EYm5 Then since 2°8,_,¢ < 1, we have

4(q—1)

f= H [G2i-1s gZi]ﬁl—b
i=1
Here, for §,_; =22@~1 (1 4 22~ V31~ lkya~1g

log(fz-1) lllg < 624 &?

and

€/2)!

. 3 3 r————

+22K25, 2, 25TK> 5,,_132} (1<i<8q—8)
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Now by Lemma 5.3, since 26 0,-1€ <1, we have

f= f[l [92i-1, 92i] fq-

Here we have
lIllog (f) llls < 2>~ P K25, &2
and

(¢/2)(3e/4y 11

e < *K36,-162°K ——————
|||108g;|||p-max{2 K*0,-1¢,2 Kmin {4, 1 — B}

} 8g—-7<i<8g).

We can decompose f, = h, ... h, so that h; (j = 1,2,3,4) is a juxtaposition of at most
(3¢/4)"* elementary PL homeomorphisms with support in a disjoint union of intervals of
length (3¢/4)* and the minimal distance between the intervals is at least (3¢/4)?1/3. Now we
apply Lemma 3.7 for h;. Here for §, = 22" 1# K2 §

lIlog(h,)'llls < 8, ¢
Note that
(5e)7* 1 (3)((3e/4) )P < 57% 1 (3)(4/3)%e < 79-5- 3.

Then, since 2d,¢ < 1, h; is written as follows:

3@+1+1

b= T1 [g8-1. 691

i=1
where

(Ge/47/3

MY llls < 33K3¢ + 2K2 -3K? e o )
llog (g )|||p_max{2 3K%e + 2K0.8, 2:3K 50,5, 2K S o T B

25-2BK2(25, 2 + 23795 38)}.

Hence we have

16(g+1)

f= l__ll [g2i-1, g2i]

and we can find a positive real number ¢ depending only on g, A, B and é such that

lIllog gillls < ce.

6. STABLE APPROXIMATIONS

In this section, we stably approximate a 2-cycle of G!**(R) or G-"*(R) by 2-cycles of
PL(R).

A 2-cycle of G} **(R) or GL""*(R) is geometrically represented by a C!** or C1” foliated
R-product with compact support over a closed oriented surface Z, i.e. a foliation of X xR
transverse to the fibers of the projection 2 x R —» X which coincides with the product
foliation with leaves X x {*} outside a compact set. This foliated R-product is determined by
the holonomy homomorphism #,(2) —» G!**(R) or G-”*(R).
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If we fix generators of 7, (2), the topology of the space of foliated R-products is given so
that a sequence of foliated R-products converges if the holonomies along the generators
converge. For C!** foliated R-products, this topology does not depend on the choice of the
generators of #,(2) and in fact this topology is the same as the one given so that a sequence
of foliated R-products converges if for any y € ny(2), the holonomy along y converges. The
reason is that G1**(R) is a topological group, and this topology is the usual topology of
a representation space. But this is not the case for C-”* foliated R-products because
GL”*(R) is not a topological group. However, as we show in Lemma 6.2, the group
operations of GE'*(R) are continuous at the elements of the subgroup G; **(R) for a > 1/8
and to approximate a C! ** foliated R-product by C~”” foliated R-products, we can use the
usual notion of convergence.

For a C! ** foliated R-product # with compact support over a closed oriented surface
Xy of genus N, a stabilization of & is a foliated R-product over the connected sum Zy # 2y,
such that the holonomy homomorphism 7, (Zy# Z ) = G **(R) factors through the holo-
nomy homeomorphism 7,(Zy) = G} **(R) of &, ie. the holonomy of the stabilization
coincides with that of # for the first 2N usual generators and is the identity for the last 2M
usual generators. In other words, the stabilization is the *-sum % *2 of # and the trivial
foliated R-product £ over X,,. The %-sum is similar to that described in [10], and # %2 is
obtained from the disjoint union of foliated products # and £ with a tubular neighbour-
hood of a fiber of each foliated product deleted by identifying along the boundary. The
2-cycle represented by a stabilization is homologous to the original 2-cycle.

As we show in Lemma 6.4, PL.(R) is dense in G!**(R) in the topology of GLZ”*(R)
(B > 1/a). So we can only show that a C!**foliated R-product (0 < « < 1) with compact
support over a surface is stably approximated by a PL foliated R-product with compact
support with respect to the topology of GE”*(R) (8 > 1/a).

For a C!**foliated R-product over the surface X, if we approximate the holonomies
along the usual generators of n,(2) by PL homeomorphisms, then Lemma 6.2 and
Corollary 6.3 show that the product of commutators of them which was originally the
identity becomes a PL homeomorphism close to the identity, and we can apply Theorem 5.1
to it. Then the PL approximations of the holonomies along the generators together with
these PL homeomorphisms defines an approximation of a stabilization of the original
2-cycle. This is the idea of the proof of Theorem D.

For GL”*(R), we also show in Lemma 4.6 that PL.(R) is dense in GI""*(R) in the
topology of GL** (R) (B > B). For C™”*foliated R-products over the surface Xy, we need to
fix the generators of n;(Zy) to fix a topology of the space of foliated products. For
a CL7s foliated R-product over the surface Xy, even if we approximate the holonomies along
the usual generators of n,(XZy) by PL homeomorphisms, the product of commutators of
them might not be close to the identity. Hence we need to modify the notion of stabilization.
This is done in Theorem 6.5.

Now we restate Theorem D.

THEOREM 6.1. Let & be a foliated R-product with support in [ 4, 3] over the closed surface
Zy of genus N of class C' **(0 < a < 1). Let f be a positive real number greater than 1/o. Then
there are a positive integer M and a family of PL foliated R-products &, with support in [0, 1]
over Xy # Xy such that %, converges to the stabilization F %P of F in the CL* topology.
Here the meaning of convergence is that for any y € n\(Xy#Zy), the holonomy along
y converges. In particular, if 1/a < B < 2, the Godbillon—-Vey invariant GV(# ) converges to
GV(F).
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In the following lemma, we show that for f > 1/, the product (composition) in G&*#((0,
1)) is continuous at the elements of G **((0, 1)). Hence if the holonomies along generators of
n(Zy# 2 ) converge to elements of G **((0, 1)), then for any y € n; (Ey# Zy), the holo-
nomy along y converges.

LemMmA 6.2. Let o and B be positive real numbers such that 1 < 1/a < B.

(i) The composition (f1,f>) = fi°f> in GE* is continuous at (f1, f ) with f, of class C* *°.
Moreover, for (g1, g2) € GE7*((0, 1)) x G&"*((0, 1)) such that ||llog (f3(g2) ") llls < €0/2, we
have

llog (91 °92)(f1°£2) 'Y llls < llllog g1 — log fillls
+ 3K*|llog fillc-(llllog g5 — log f31lls)* =" + ||log g — log £l
where

llog fi(x) — log fi(y)|
Ix — yI* '

[log fillc- = sup

(ii) The inversion f — f~' in GL" is continuous at f of class C'**. Moreover, for
g € GE¥3(0, 1)) such that |llog(fg~"Yllls < eo/2, we have

lillog (g~ fYllls < lllog g’ — log f"lils + 3K* [llog f" £~ *llc-(Hllog (fg~*)"lll)* /%

Proof. We follow the argument in Proposition 4.6 of [20]. First note that
llllog ((g1°g2)(f1°£2)" 'Y llls = llllog (g1 °g2)" — log (f1°12) llls
and
|(log (g1°92)" — log (f1°/2)')(x)| < [log g1(g2(x)) — log fi(g2(x))|
+ llog fi(g2(x)) — log fi(f2(x))|
+ [log g2(x) — log f3(x)I.
Put ¢ =log f{ and F = f,(g,)" ! and C = |log f{l|c-- Then
lIllog fi° g2 —log fiefallls =0 °g2 — @ Feogallly = lllo — @ Flll,.
Let A = {x,,...,x,} be a finite subset of R. Since | F — id||co < K277 #||[log F'|ll5,
(o F(x;) — o(x;)) — (@ F(x;—1) — @lx;- 1))l

is always smaller than 2C(K2~'~'#|||log F'l|js)*. For those x;_; and x; such that
[x; — x;—1| = |Illog F'|||s, we use this estimate and we obtain an estimate for the sum over
such x;_; and x;:

Z'((P°F(xi) —0(x;)) — (@ F(x;_y) — (P(xi—l))lﬂ

1
<——— CPK2P-~1(j|llog F'|l|,)**
lliog F [l ’

= 20741 K= C(|log F[[)*~".
Now, since ||F' — 1]lco < K27 Y ||[log F’|lg,
|F'| <1+ K2 Y#||jlog F'llls < K.
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For those x;-; and x; such that |x;—x;_,| <||llog F'||ls, we obtain |F(x;)
— F(x;—1) < K|x; — x;—4], and
(o F(x;) — @(x)) — (@° Fx;i—1) — @(x;- 1)) < CK®|x; — x; 1 |*
The sum for such x;_, and x; is estimated by
Z|((P of (%) — @(x:)) — (@of(xi—1) — (p(xi—l))‘ﬂ < ZC” K*|x; — x;_4 |
<Y CPK*(|ljlog F'lllgy* = 1x; — xi-4 |
< CPK*(||llog F'|llg)**~*.
Thus we obtain
Va@oF — @) < (2°7*71 + 1) C* K*(|lllog Fllly* .
Hence
i F — ollls < 3K*C(llllog F'|||)*~ /2.
For the inversion, we have
llog (g7') —log (f ™'Y =|—logg'og™" +log f'of 7!
<|logg'>g™" —log f'og ™"
+log f'og™! —log f'of 71|.
Here for the second term, by the argument above,
lilog f"og™! —1log f'of ~lllg = llllog f'of "' =(fg~*) —log f'of s
< 3K*|llog f'of " !lic-(llllog (fg~ Yl "2 O

CoroLLARY 6.3. Let a and B be positive real numbers such that 1 < 1/a < B. If fis of class

C'*%, then conjugation on G"*((0, 1)) by fis continuous. If |||log (g1(g2) ™'Y lls < £0/2, then
log(fg: f~*) — log(fg2f~ Y llls = lIllog(fg1) — log(fg.) lils
< |lllog(g,) — log(g2)llls + 3K*||log f' || c=(|lllog(g:) — log(g2) lll)* 7.

Remark. The fact that GL”#(R) is not a topological group can be seen as follows. Put

0,2 6
Ji _PL<0, 4, 6)

and for a real number a (0 < |a} < 1), put
0, 1, 4, 6
= PL .
f2 (0,1+a,4+a,6)
Then

fifa(fy) ' =PL (0’ 2, 4 -2, 4, 5, 6)'

0, 2+aq, 4, 4+a/2, 5+ af2, 6
Since the interval [4 — 2a, 4] is mapped onto [4, 4 + a/2],
ltog(fy £2(f1)" ') lllp = log 4

and f; f, does not converge to f; as a tends to zero (and f, tends to the identity).
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LEMMA 6.4. Let « and B be positive real numbers such that 1 < 1/a < f. Let fbe a C1*¢
diffeomorphism of R with support in [0, 1]. Let A = {ay,...,a,} be a finite subset of [0, 1]
0 =ay < --- < a, = 1) with mesh not greater than ¢. Put

r_pp( G0 G ak>
4 <f(ao), o f @)oo fa))

Then
VQog(ff ~1Y) < (k + 1)2° CPe®® + CPet~1

where C = ||log f'||c=. In particular, if
A= {i/n}i=0,...,n Uf—l({i/n}i=0,...,n)
then we have

liog (f(/)~* llls < TIlog f'llc+(1/my*~ %

and
litog ((F)™" £ llle < Tllog (f =) llc<(1/n)* =12,
Proof. Note that
litog (f(F)™Yllls = llilog f* — log f"lll5-

Let yi €(a;-1, a,) be a point where (fY (y:) =f'(y:). Then if x € (a;-4, a;],

llog f(x) — log (fY (x)| < llog f" (x) — log f* ()|
< lllog f'llc:Ix — yil*
< |llog f'|lc-¢".
Here note that log (f) is the derivative to the left. Hence if Xj-1 < a; < x;, then we have
|(log f'(x;) — log ' (x;) — (log f'(x;- 1) — log F/(x;))| < 2Ce®
and the sum for such x;_; and x; is estimated by
Y. I(log f'(x;) — log f'(x;) — (log f(x;-1) — log F'(x;- )P’ < (k + 1)25C%e.
Ifa,_, <x;-; <x;<a;, then we have
|(log f'(x;) — log F'(x,) — (log f'(x;-1) — log J(x;- )| = [log f'(x;) — log f'(x;- 1)
< Clx;— x4/
and the sum for such x;_, and x; is estimated by
21(log f(x;) — log f'(x;)) — (log f'(x;-1) — log f'(x;- 1)) < Y CPIx; — x;-, |
<Y et x; — x;_4|
< CPerb1,
Thus

Vi(log (ff 1Y) < (k + 1)28CPe™® + CPe*- 1, O
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Proof of Theorem 6.1. Let h:n,(Zy) = G: **(R) denote the holonomy homomorphism
of the R-product & . For the usual generators yy, ..., yax of 71 (Zy), take h-(y,—) with respect to

{i/n}ico..n v (O™ (i/n}izo..n).

Let C be a positive real number bigger than the C* norms of log(h(y)), where y are products
of at most 4N members of {y;, 7%, ...,725 Y2n }- Then by Lemma 6.4, we have

lIog (h(y:)(k(r:) ™Y llls < TC(1/ny=~ V8

and
lllog (h(y:) ™ hGy) llly < TC(1/my .
Since
gi---gnlhy . hy)™t = (g1hy ') (hagahs P hTt)
x((hyhy)gshs ' (hyhy) 1)
X((hy...hy-1)gnhg (g .o hy_ )"
and

H = [h(y,), h(y2)] ... [h(y2n-1), h(y2n)]
= [h(y1), h(y2)] ... [h(yan— 1), B(y2w)] (CR(G1), B(2)] - [h(yan-1)s h(y2y)) ™%

we obtain, by Corollary 6.3,
lllog H'||| < 4N{7C(1/n)*~ /¢ + 3K*C(TC)*~ YE(1 /)~ 107},
Note that
NND(H) < 8Nn.

Let k be a positive integer such that (@ — 1/8)* > 3/(k — 1). Then if n is sufficiently large,
for some positive real number &, we have

lllog H'|llg < 8((1/n)"/®~1)?
and

NND(H) < ((1/n)/%~ D)k,

Thus by Theorem 5.1 this element can be written as a product of 16(k + 1) smalil
commutators of PL homeomorphisms g; with support in [0, 1] such that
lIlog gillls < c(1/my* 1)
where ¢ depends only on k and 9.

Now we put M = 16(k + 1) and define &, to be the foliated R product with the
holonomy homomorphism A: 7, (Ex+ ) — PL.(R) such that

h_(y')_{ h(y;) for i=1,..,2N
! gaoN+2M+1-i for i=2N + 1,...,2N+2M.

Then %, is the desired foliated R-product. O
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We can generalize Theorem 6.1 to the foliated products of class C»"*(8 > 1).

Since the group GL”*(R) is not a topological group as is remarked after Corollary 6.3,
we should be careful. First for a C-”»-foliated R-product, even if we approximate the
holonomies along the usual generators of n;(X) by PL homeomorphisms, the product of
commutators of them might not be close to the identity. Secondly, the convergence of
holonomies along the generators of 7, (Z) does not imply the convergence of the holonomy
along an arbitrary element ye n;(Z).

In order to give the meaning of approximation of foliated products of class C*, we fix
a cell decomposition of the base surface by triangles which has only one vertex. With respect
to such a cell decomposition we can say two foliated products are near if the holonomies
along the edges of this cell decomposition are near.

The theorem is as follows.

THEOREM 6.5. Let ¥ be a foliated R-product of class C=**(B > 1) with support in [%, 3]
over a closed surface Ty of genus N with a cell decomposition by triangles with one vertex. Let f§
be a positive real number greater than f. Then there exist a positive integer M, a closed surface
Zy+m of genus N + M with a cell decomposition by triangles with one vertex, a simplicial map
$:Ly+u — Ly of degree 1 and a family of PL-foliated R-products 9, with support in [0, 1] over
Ly + y such that %, converges to the induced foliated product s*% in the C-** topology. Here the
meaning of the convergence is that the holonomies along the edges of the cell decomposition
converge. In particular, if B < B’ < 2, the Godbillon—Vey invariant GV (4,) converges to GV (%).

We need the following lemma which gives an approximation of an element of GL-"+(R)
by elements of PL.(R) and which replaces Lemma 6.4. We use the notations in [20].

LEMMA 6.6. Let fbe a C™”* diffeomorphism of R with support in [0, 1]. There exists a finite
subset B of [0, 1] such that B = {bg,....,b,} (0 = by < -+ < b, = 1) with k' not greater than
(1 + spllog /') + 3¥~ ' Vy(log f')e + 1, and, for any finite subset A= {ay,...,a}
0=a¢ < -+ <a = 1) containing B and for

F= PL( Goseres  Qiyenn ak)
B f(aO)’ "'9f(ai)7 sees f(ak) ’
V(og(f(f) ~1Y) < (2 + sgllog f') + 3°~ ' Wy(log f)25 +1 P81,
In particular, if B’ is the set defined for f~! and
A=BuUfY(B)

then we have

lllog (S(F) 1) llly < (2 + sgllog f') + 3°~1 Vy(log f))2F *1ef 1P -1

and
log ((f) ™! fYlllg < 2 + spllog f7) + 3271 V(log f'))2F + 1 ef /P71,

Proof. Let fbe an element of G=*(R) with support in [0, 1]. Then by Proposition 2.12
in [20], there is a map

ps:[0, 1 + sz(log /)] — [0, 1]

TOP 34/4-
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such that (log f*),, is continuous and
Vi(og f),,) < 3~ Vyllog f)
by Proposition 2.12 in [20]. Then by Proposition 2.3 in [20], we have a map
h:[0, 1 + sglog f') + 387! Vy(log f/)] = [0, 1 + sp(log f')]
such that (log f’), > h is 1/8 Holder and

IGog £y, hllcw < 1.

Now let ¢ be a positive real number. Let k” be the greatest integer smaller than
(1 + sg(log f) + 3! V(log f'))/e + 1. Then (pgoh) ({je; j =0,...,k"}) contains {xe [0, 1];
|A(og f') (x)|f >¢}. Let B={bg,....by} (bo<--<by) be the image (psoh) ({je;
j=0,..,k"}). Let A ={ag,....,a} (0 =4a9 < - <a,=1) be a finite subset containing
B and let f be the PL homeomorphism defined by

agy.--y ..

F_ - ay
f=PL <f(ao), o f (@ f(ak)>'

We always have

< max logf".

[ai-1, ai]

min log ' < log

[ai-1, a]

fla) — flai-1)
a

t—a;-q

Since A contains B, [a;_, a;] = (pge h) ([(i' — 1)e, i’ €]) for some i’ and we have

<max — min >(logf’)=< max — min )((logf’)p‘oh)gs‘“’.

[a-1, a]  l&-1 @) (- Ne i'e] [ —De Vel

Hence

llog f'(x) — log (f) (x)| < &'/%.
Now we look at the f-variation of log (f(f) ~!). Note that

lilog (£(F)~*Yllls = llllog f* — log f'lls.

Here note that log (f) is the derivative to the left. Let {x;,...,Xn} (x; < --- < X,,) be a finite
subset of R. If x;_; < a; < x;, then we have

|(log f(x;) — log f"(x;)) — (log f"(x;-1) — log f'(x;- )| < 2¢'/#

and the sum for such x;_; and x; is estimated by

Y |(og f'(x;) — log f'(x;)) — (log f'(x;—1) — log f'(x;- )1 < (k" + 1)2°'eP 78
<2+ splog ') + 3F 1 Vy(log )28 # 11,

Ha,_, <x;-, <x; <a;, then we take points y; € [(i' — 1), ' ] such that (ps°h) (y;) = x;
and we have

|(log f'(x;) — log f"(x;)) — (log f"(x;-1) — log f'(x;- 1))l = llog f'(x;) — log f"(x;- 1)l
= |(og )y, ° 1) (y1) — (10g f")p, > B}(p;-1)

<|y;—yj-11"*
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and the sum for such x;_; and x; is estimated by
Y (log f'(x;) — log f'(x;)) — (log f'(x;-1) — log (- ¥ < 3|y = yj-1 /P
<Y &Py =yl

< (1 + sg(log f7) + 3F~ 1 V;(log f))ef P~ 1.
Thus

Vallog (f(f)™')) < (2 + sgllog f') + 37~ 'Wy(log f)) 27 * 1 #7071, O

Proof of Theorem 6.5. We fix a triangulation with one vertex of L. The triangulation of
Xy has 6N —3 wedges. Let C be a positive real number greater than
2 + sg(log h(y)) + 3~ '¥;(log h(y)) for any y which is the edge of the triangulation. For
each 2-simplex of Zy, we may assume that the orientations of its edges are given so that the
holonomies along the three edges 7, y; and y, satisfy

h(y1) = h(y2)° h(yo).

Then we take the sets By, B, and B, given in Lemma 6.6 for h(yo) !, h(y,)~! and h(y;)~?,
respectively, and put

A = h(yo) ™ (Bo) U h(y1) "' (B1) U h(y:)”'(Bs) = {ao, ..., a}.
We define f;, f; and f; by

i -—PL< g, ---» Ay e ak>
07 T\ B0} (@o); ---» (o) (@s), ..., h(yo)(ar)

o g, ---» Aiy oouy a
fi=PL (h(vl)(aox oo B @)y e h(vl)(ak)>
and

Fo_ h(yo)(@o), ..., h(yo)(ai), - .., h(yo) (ar)
f=PL <h()’1)(ao), () @), ...,h(yl)(ak))

respectively. Then we have f; = f;°f, and by Lemma 6.6,
llog (/)™ h(:) lllp < C2#*1 &% for i=0,1,2.

Now for each edge v, there are two adjacent 2-simplices o and ¢’. When we approximate
h(y) by PL homeomorphisms, we obtain two PL homeomorphisms f, and f,- which might be
different because the sets 4, and 4, might be different. However the PL homeomorphism

(f) 7 for = (f) ™ RON(fo) P hey) ™!
is estimated as follows:
Mog (f5) ™' forYlllp < C28'*+2¢F16-1,

If B/8 — 1 = 3/(k — 1) and & is sufficiently small, then we have
og (fo)~* for) lllyr < (V% )3
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and
NND((f,)"' f;) <2C/e < (/%)%

Thus by Theorem 5.1 this element is written as a product of 16(k + 1) small commutators.

We construct a closed oriented surface 2y . jox 4 116n - 3 With a triangulation with one
vertex as follows. Let 2,4 , 1), be a closed oriented surface of genus 16(k + 1) with a disk
deleted. Consider a triangulation with one vertex of X4 . The boundary of
X6k + 1, 1 consists of the vertex and one edge.

First we cut the given closed oriented surface Xy along the interiors of the edges, and to
each resulted pair of edges we paste the two edges (¢, and 0,) of a 2-simplex. Now we paste
acopy of Zyg 4 1, 1 to the third edge (d,) of the 2-simplex and we obtain 2y , 164 + 1) n — 3 With
a triangulation with one vertex.

The simplicial map is defined so that each pasted X\, , |, | is mapped to the vertex and
the added 2-simplices are mapped to the edges. Hence the induced foliated product s*% is
trivial over each pasted Z.; - Let %, be the foliated product over
Zn 16+ 1) on - 3 defined by 7o, f; and f; over the original simplices, (f,)~* f,, f,- and, f, over
the added simplices and the homomorphism given by Theorem 5.1 over the pasted-in
X6 + 1), 1- Then %, converges to s*% in the C’ » topology. 0
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