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Summary

Tissue remodeling in development and disease [1, 2]

involves the coordinated invasion of neighboring territories
and/or the replacement of entire cell populations. Cell guid-

ance, cell matching, transitions from passive to migratory
epithelia, cell growth and death, and extracellular matrix

remodeling all impinge on epithelial spreading. Signifi-
cantly, the extracellular signals that direct these activities

and the specific cellular elements and mechanisms regu-
lated by these signals remain in most cases to be identified.

To address these issues, we performed an analysis of

histoblasts (Drosophila abdominal epithelial founder cells
[3, 4]) on their transition from a dormant state to active

migration replacing obsolete larval epidermal cells (LECs).
We found that during expansion, Decapentaplegic (Dpp)

secreted from surrounding LECs leads to graded path-
way activation in cells at the periphery of histoblast nests.

Across nests, Dpp activity confers differential cellular
behavior and motility by modulating cell-cell contacts, the

organization and activity of the cytoskeleton, and histo-
blast attachment to the substrate. Furthermore, Dpp also

prevents the premature death of LECs, allowing the coordi-
nation of histoblast expansion to LEC delamination. Dpp

signaling activity directing histoblast spreading and inva-
siveness mimics transforming growth factor-b and bone

morphogenetic proteins’ role in enhancing the motility and
invasiveness of cancer cells, resulting in the promotion of

metastasis [5, 6].

Results

Histoblast Nest Expansion
Drosophila histoblasts are born as small groups of cells
specified during embryogenesis that organize as polarized
monolayer epithelium patches (histoblast nests). They are
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embedded in the abdominal larval epidermis and proliferate
and expand during metamorphosis to replace the larval
epithelial cells (LECs). We have found that histoblasts at the
periphery of the nests flatten and move in between LECs,
pushing them apart [4] (Figures 1A and 1B; see also Movie
S1 available online). Furthermore, the area occupied by the
histoblast nests during the expansion phase increases faster
than the number of cells, and mostly at the periphery (see
Figure 1C). The number of cells does not increase at a sufficient
rate to compensate for the increase in nest area, and histo-
blasts become stretched in different directions and flatten as
the nest periphery expands while invading the LEC landscape.
Thus, nests’ spreading is mostly a consequence of cell surface
growth. We have also observed that blocking LEC death
prevents nest expansion and peripheral histoblast flattening
[4]. However, this did not suppress histoblast proliferation or
invasive activity at the periphery (Movie S2). Together, these
data suggest that for abdominal epithelial replacement, histo-
blast proliferation [7] and LEC extrusion, which facilitates his-
toblast nest expansion by ‘‘getting LECs out of the way’’ [4],
are coupled to the invasive activity of leading histoblasts at
the nest periphery.

At the onset of expansion, three key cellular changes took
place in the peripheral histoblasts. First, their actin cytoskel-
eton became highly dynamic and they showed extremely
active, both apical and basal, filopodia and lamellipodia (Movie
S3A). They also extended long, thick actin-rich protrusions,
which intercalated within adjacent LECs [4] (Figure 1D; see
also Figure S1F). All of the hallmarks of leading histoblast
motility—filopodia, lamellipodia, long terminal extensions,
and their invasive capability—are abolished upon interference
with actin dynamics [4]. Second, as expansion proceeded,
histoblasts at the periphery gradually reduced the density of
adherens junction (AJ) and septate junction (SJ) components
(Figure 1E and data not shown). These observations correlate
with the weakening of cell-cell contacts between histoblasts at
the nest periphery visualized in 3D reconstructions of confocal
images (Movie S3B). Finally, b-integrin expression in leading
histoblasts was only found in apical spots, whereas it was
mostly basolateral in the center of nests (Figure 1F). This relo-
cation of b-integrin was temporally associated with the degra-
dation of the basal lamina from 16 hr after puparium formation
(APF) onward (Figures S1A and S1B). The absence of extracel-
lular matrix (ECM) and the loss of basal integrins suggest that
leading histoblasts may not use a basal support as a substrate
for migration. In this scenario, apical integrins might mediate
histoblast apical crawling. To evaluate this possibility, we per-
formed ultrastructural analyses, which revealed that leading
histoblasts are tightly attached apically to the overlaying chitin
layer, as would be expected if they used the pupal cuticle as
spreading substrate (compare Figures S1D and S1G to
Figure S1E). In addition, we found conspicuous apical filopo-
dia and lamellipodia at the front of leading histoblasts as
they spread forward (see Movie S3C).

These observations together show that histoblast invasive-
ness is linked in the leading cells to changes in actin dynamics
and remodeling of cell-cell contacts and cell-substrate
adhesion.
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Figure 1. Histoblast Invasion of Larval Territories Is Carried Out by Peripheral Histoblasts, which Undergo Changes in Actin Dynamics and in Cell-Cell and

Cell-Matrix Adhesion

(A and B) Wild-type anterior and posterior dorsal nests and larval epidermal cells (LECs) at 17–18 and 22–23 hr after puparium formation (APF) expressing

DE-cadherin-GFP (green) (from Movie S1). At these stages, histoblasts invade the larval epidermis by planar intercalation. Cells at the periphery of the nests

become active and penetrate between adjacent LECs, leading to nest expansion and fusion. In contrast, cells in the center of the nests remain passive and

maintain constant relative positions and shapes. Colored lines and dots represent the tracking and relative displacement of peripheral and central histo-

blasts between these two time points.

(C) The area and the number of cells of individual anterior dorsal histoblast nests (n = 3) were examined between w15 and w18 hr APF. Area and cell numbers

were quantified for the whole nests (443–482 cells per nest at T0 [w15 hr APF]) and selected regions (expanding periphery, 39–45 cells per nest at T0, blue;

center, 42–50 cells per nest at T0, red). Upper right: averaged individual cell areas (and standard deviations) were plotted versus time for all (black), central

(red), and peripheral (blue) histoblasts. These measurements showed that individual cell areas increased linearly and at a faster rate at the periphery. Lower

right: histograms showing the ratio of the rate of nest area increase to rate of cell number increase (6 standard deviation). The green line highlights a ratio of

1, which would correspond to equivalent growth rates for nest area and cell numbers. Total nest, periphery, and central region area growth rates are in all

cases higher than the corresponding rate of cell number increase (rate ratios = 1.28 [total], 1.18 [periphery], and 1.15 [center]). These calculations show that

the spreading of the nests is primarily caused by an active expansion of the tissue (mainly at the periphery) and cannot be attributed merely to cell prolif-

eration.

(D) Wild-type anterior and posterior dorsal nests labeled in vivo by actin-GFP (green) driven by the esg-Gal4 driver. Cells at the periphery extend long inva-

sive protrusions.

(E) During expansion of the nests, DE-cadherin (red) density is lowered in flattened histoblasts at the periphery of the nest (arrowhead). DE-cadherin levels

(total accumulated pixel signal intensity per cell) were equal for all histoblasts (1594.29 6 101.75 arbitrary integrated density [ID] units per cell). However,

DE-cadherin density at the cell membrane (ratio of accumulated pixel signal intensity at the membrane to cell perimeter) was significantly reduced (p = 0.01)

in histoblasts at the periphery versus those at the center (6.61 6 0.54 versus 10.38 6 0.80 ID units per perimeter unit, respectively) (n = 11 from four different

individuals for each condition).

(F) Peripheral histoblasts (asterisks) lack b-integrin localization (green) at their basal surface (yellow arrowhead), whereas centrally located cells show abun-

dant b-integrin on matrix attachments (white arrowhead). Nuclei are marked in red with DAPI. See also Figure S1 and Movies S1–S3.
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Dpp Signaling Is Necessary for Histoblast Expansion
The change in histoblast behavior at the onset of spreading
indicates that the triggering and maintenance of motility and
invasiveness are induced by specific temporally and spatially
controlled signals. To test the involvement of discrete sig-
naling modules in instructing histoblast invasiveness, we eval-
uated the ability of cells mutant for key signaling elements to
lead histoblast nest spreading in mosaics. We analyzed clones
homozygous mutant for receptors or downstream effectors for
epidermal growth factor (EGF), insulin/phosphatidylinositol
3-kinase (PI3K), fibroblast growth factor (FGF), Hedgehog
(Hg), Wingless (Wg), Decapentaplegic (Dpp), Jun N-terminal
kinase (JNK), and platelet-derived vascular endothelial growth
factor (PVF) signaling (see Supplemental Experimental Proce-
dures). Wild-type cell clones were found to be compact and
had a tendency to elongate along the dorsoventral axis, and



Figure 2. Dpp Signaling Is Activated in Histoblasts and

Larval Epidermal Cells, and Interference with Dpp Signaling

Abolishes Histoblast Invasiveness

(A) A wild-type mosaic analysis with a repressible cell marker

(MARCM) clone (green) at 22 hr APF induced in the anterior

dorsal nest. This clone shows characteristic dorsoventral

elongation and contributes to the nest leading edge.

(B and C) Clones homozygous mutant for the Dpp receptor

tkv at 22 hr APF in ventral (B) and anterior dorsal (C) nests.

These clones display a condensed round shape, do not

contribute to the expanding periphery, and remain in the

nest center.

(D) Clones of mad show a phenotype identical to tkv (dorsal

nest at 22 hr APF).

(E) dad-LacZ reporter (red) specifically labels the cells at the

periphery of each histoblast nest (18–19 hr APF).

(F) dad-GFP reporter (green) also labels the cells at the

periphery (18–19 hr APF). His2-RFP (red) labels all nuclei.

(G) p-Mad staining highlights the histoblasts at the periphery

of dorsal anterior and posterior nests with a similar pattern

(20–23 hr APF). Remarkably, p-Mad also marks dpp-

expressing LECs.

(H and I) Time-lapse in vivo study of Dpp activity during his-

toblast expansion with His2-RFP (red) to label all nuclei and

dad-GFP (green). Snapshots taken from Movie S4A show

that the expansion of the dorsal anterior and posterior nests

initiates at 18–19 hr APF. From this time onward, cells exhib-

iting higher levels of Dpp signaling are found at the nest

periphery clustering at invading puncta (see Movie S4B).

(J) Clonal expression of a Dpp RNAi construct (GFP-labeled

cells) in LECs and histoblasts (yellow arrowhead). The Dpp

RNAi expression in LECs results in downregulation of Dpp

activity (monitored by the expression of a dad-LacZ reporter,

red) in adjacent histoblasts (white arrowheads). The figure

depicts a spiracular histoblast nest at 17 hr APF.

(K) Control wild-type spiracular histoblast nest at 17 hr APF

showing Dpp signaling activity (dad-LacZ reporter, red) at

the entire periphery.

Nuclei are marked in red in (A)–(D) and in blue in (E), (G), (J),

and (K) with DAPI. See also Figure S2 and Movie S4.

Dpp Control of Histoblast Invasiveness
515
by 22–26 hr APF, 60% of them on average (n = 43) contributed
to the nest periphery (Figure 2A). In sharp contrast, the propor-
tion of clones mutant for tkv (which encodes the Dpp type I
receptor Thick veins) or for mad (which encodes a transcrip-
tional effector of the Dpp pathway [8]) abutting the nest edge
was markedly reduced to 20% (n = 36 and n = 22) (Figures
2B–2D). Importantly, the histoblasts unable to respond to
Dpp proliferated at normal rates and did not delaminate or
die (see below). In summary, histoblasts not responding to
Dpp remained naive and did not invade neighboring territories.
These phenotypes were not observed for any other signaling
pathway (data not shown).

Dpp Is Activated in Histoblasts and LECs at the Onset of
Histoblast Spreading: Paracrine and Autocrine Functions

dpp initiated its expression in dorsal and ventral nests in
a discrete dorsal anterior domain (Figures S2A and S2C).
This pattern, in agreement with previous reports [9], evolved
through metamorphosis to delineate the anterior-posterior
compartment border. In addition to its expression in histo-
blasts, dpp was also expressed in all LECs surrounding each
nest from the midpupal transition onward (Figures S2B
and S2D).
Dpp signaling in histoblasts immediately adjacent to LECs
(but not in those more central) was switched on at a time coin-
cident with the onset of dpp LEC expression and nest expan-
sion. Using a LacZ enhancer trap inserted in dad (a direct tran-
scriptional target of Dpp), we found that the transcriptional
response to the pathway was specifically activated in histo-
blasts at the nest periphery and a few LECs (Figure 2E). We
further monitored Dpp activity in live transgenic flies with
a fluorescent Dpp signaling sensor built by fusing a conserved
minimal dad enhancer [10] to a nuclear GFP reporter (see
Supplemental Experimental Procedures). Again, the dad-
GFP reporter highlighted those cells at the periphery of the
nest first engaged in directional motility and planar intercala-
tion (Figures 2F, 2H, and 2I; Movies S4A and S4B). Strikingly,
we found that the activation of Dpp signaling (dad-LacZ
reporter) in leading histoblasts was abolished by interfering
with Dpp expression in LECs clonally expressing a Dpp RNA
interference (RNAi) construct (Figures 2J and 2K). Together,
these findings suggest a transcriptionally enforced paracrine
instrumental role for Dpp in histoblasts supporting motility
and invasiveness at the nest periphery.

To test the potential paracrine role of Dpp, we clonally
expressed the Dpp signaling inhibitor Dad in combination



Figure 3. Paracrine and Autocrine Functions of

Dpp

(A) Time-lapse analysis of a clone overexpressing

UAS-Dad labeled with GFP (green) in the dorsal

edge of the anterior dorsal nest (from Movie

S5A). Clones were induced via the FLP-OUT/

FRT system. Nuclei were labeled with His2-YFP

(red). At 0 min (15 hr APF), Dad-overexpressing

cells show normal cell morphology and contact

the nest edge (arrowhead). At 190 min, the

expansion of histoblasts has initiated and the

clone loses contact with the edge. At 300 min,

the clone is completely excluded from the edge

and surrounded by wild-type cells. At 405 min,

the clone shows condensed and rounded cell

morphology similar to tkv or mad clones. The

white line delineates the nest edge.

(B) Time-lapse analysis of a TkvQD clone (arrow-

head) in the posterior dorsal nest (Movie S5B)

reveals enhanced cell motility. At 0 min (16 hr

APF), the clone shares the edge with wild-type

cells (asterisks). At 185 min, the nest initiates

expansion in dorsal directions. At 290 min, the

TkvQD cells begin to colonize the expanding tip.

At 375 min, the tip is composed entirely of

TkvQD-expressing cells. Wild-type cells initially

in contact with the edge lag behind (asterisks).

In all panels, the large polyploid nuclei corre-

spond to LECs. A translucent mask defines the

periphery of the clone. Nuclei were labeled in

red with His2-YFP.

(C and D) Mosaic clonal overexpression of TkvQD

in LECs results in a reduction of their delamina-

tion rate. LECs overexpressing TkvQD were

marked with GFP, and their extrusion from the

epithelia (and that of neighboring wild-type [WT]

LECs) was monitored from 15 to 22.5 hr APF.

Nuclei of all cells were labeled by His2-YFP

(red) expression. TkvQD-expressing (blue) and

WT sibling (pink) LEC nuclei were identified and

counted at different time points (lower panels).

Those LEC nuclei that became lost from the field

during the 7.5 hr observation period were dis-

carded from the analysis. The rate of delamina-

tion was calculated as the percentage of LECs

that extruded per hour. TkvQD LECs delaminated

at a rate of 2.6% cells per hour, whereas WT LECs

delaminated at a rate of 7% cells per hour.

(E) A mechanistic model for Dpp signaling. dpp

expression is activated in LECs at the onset of

histoblast spreading, leading to paracrine (in

histoblasts) and autocrine (in LECs) activation

of Dpp signaling. In histoblasts, this activity,

executed at the transcriptional level by Mad, leads to a complex, multifaceted phenotype. At the cellular level (see Figure 4), Dpp signaling results in an

increase of DE-cadherin turnover at the membrane, reduction of DE-cadherin density in leading histoblasts, and a relaxation of cell-cell contacts. Further-

more, Dpp signaling enhances actin microfilament dynamics and modulates the subcellular localization of integrins. On the other hand, autocrine Dpp

signaling in LECs appears to prevent their precocious delamination. See also Figure S3 and Movie S4.
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with a general nuclear YFP marker in histoblasts and followed
the behavior of mutant cells by time-lapse microscopy. We
found that prior to the onset of epithelial expansion, Dad-
expressing cells could form part of the periphery of the nests
and displayed normal shape and size. Upon initiation of
spreading, however, Dad-expressing clones became highly
condensed and were quickly excluded from the periphery
(Figure 3A; Movie S5A). To test whether Dpp signaling activa-
tion can autonomously promote histoblast invasiveness, we
analyzed the motility of histoblasts under hyperactive Dpp
signaling conditions. Clonal overexpression of a constitutively
active Dpp receptor (TkvQD) in histoblasts resulted in
increased predisposition to associate with the periphery,
with 75% of the clones contacting the nest edges (n = 40).
Histoblasts underwent dramatic morphogenetic changes,
became extremely motile, and progressively replaced wild-
type cells at the periphery. occupying leading positions
(Figure 3B; Movie S5B). As described above for tkv and mad
clones, neither TkvQD nor Dad overexpression affected histo-
blast proliferation (Figure S3 and data not shown). In summary,
the relative strength of Dpp signaling activation dictates the
degree of cell motility and plasticity of histoblasts during the
invasion of the larval epidermis.

Remarkably, following the upregulation of dpp expression
detected in LECs (Figures S2C and S2D), we observed that
antibodies against phosphorylated Mad (p-Mad) showed
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a strong signal in LECs, along with expression in peripheral
histoblasts, from 16 hr APF onward (Figure 2G). Thus, Dpp
signaling may be playing an autocrine role in LECs indepen-
dent of Mad-mediated transcriptional activation of dad
expression (see Figures 2J and 2K). This function may lead
to adhesive and cytoskeletal differences between LEC neigh-
bors affecting cell extrusion. To analyze this possibility, we
studied LECs clonally overexpressing TkvQD and found that
hyperactivating the pathway resulted in the slowing of LEC
delamination from 7.0% 6 1.4% (wild-type [WT] siblings) to
2.6% 6 0.2% cells per hour (monitored in the lateral epidermis
between 15 and 22.5 hr APF; n = 4 pupae; Figures 3C and 3D).
Conversely, overexpression of either TkvDN or a TkvRNAi
transgene yielded only a few marked LECs that delaminated
precociously at an average rate of 13% per hour (n = 4 pupae
each). The low number of mutant LECs per animal rendered in
these latter conditions precluded further detailed statistical
analysis. Together, these data suggest that the autocrine func-
tion of Dpp signaling in LECs could be to limit their delamina-
tion rate, eventually preventing precocious elimination.
Remarkably, LEC delamination rates were not affected by
clonal autonomous Dad overexpression, which should only
upset transcriptional events downstream of Mad (6.6% 6
1.3% for Dad-overexpressing LECs and 6.8% 6 0.5% cells
per hour for sibling WT LECs; n = 5 pupae).

Dpp-Dependent Cellular Mechanisms Regulating

Histoblast Invasive Behavior
Transforming growth factor-b (TGF-b) function in motility and
invasiveness in cultured cells and metastatic tumors is linked
to a coordinated sequence of disassembly of cell junctions,
cytoskeletal reorganization, loss of polarity, and remodeling
of cell-matrix adhesions [5]. Likewise, histoblast expansion is
associated with a reduction of cell-cell contacts and cell-
substrate and cytoskeleton remodeling (Figure 1). To test
whether Dpp signaling is required to modulate cell adhesion
or cytoskeleton dynamics, we cell-autonomously interfered
with Dpp activation in histoblasts and analyzed components
involved in these processes.

In contrast to wild-type, leading tkv histoblasts from clones
induced before the onset of expansion failed to emit cellular
protrusions and change shapes (Figure 4A). This phenotype
is equivalent to that observed after interfering with actin
dynamics [4]. Accordingly, filamentous actin was autono-
mously depleted from the cellular apical domains in clones
unable to respond to Dpp (UAS-Dad clones) (Figure 4B). In
contrast, abundant apical short actin-rich membrane protru-
sions were observed in clones of cells expressing the TkvQD

receptor (Figure 4C). Together, these findings show that Dpp
signaling autonomously modulates actin dynamics, which
itself is pivotal for histoblast invasiveness.

During nest expansion, leading histoblasts located at the
periphery show a characteristic flattening associated with low
density at the cell membrane of adhesion molecules such as
DE-cadherin and Discs large (Figure 1 and data not shown).
In fact, fluorescence recovery after photobleaching (FRAP)
analyses showed that DE-cadherin turnover (rate of fluores-
cence recovery 2 t1/2) was significantly faster (p < 0.001) in his-
toblasts at the periphery (t1/2 = 42.29 s) than at the center (t1/2 =
88.01 s). The DE-cadherin mobile fraction (A), however, did not
change (0.698 at the periphery and 0.734 at the center)
(Figure 4D). In addition, we found that histoblasts unable to
respond to Dpp (Dad-expressing clones) at the nest periphery
showed a very much compacted morphology and higher
density of Discs large and b-catenin than neighbors (Fig-
ure 4E and data not shown). To test the possibility that the
decrease of DE-cadherin packing at the periphery could be
functionally significant for cell invasiveness, we clonally over-
expressed a functional DE-cadherin-GFP fusion. Remarkably,
DE-cadherin-expressing clones, like Dpp signaling loss-of-
function clones, were largely excluded from the expanding
front by 22–26 hr APF (with less than 40% of the clones
[n = 26] abutting the nest edge) and remained in the center
of the nest (Figure 4F). Jointly, these observations show
that the decrease of cell adhesion component density at
the periphery of nests (potentially reducing cell-cell contact
strength) is under Dpp control and suggest that this attenua-
tion allows histoblasts to become more plastic and motile.

At the onset of nest expansion, peripheral histoblasts
remodel b-integrin localization and detach from the ECM,
which is being degraded (Figure 1). To determine whether
Dpp controls histoblast-substrate adhesion, we interfered
with Dpp signaling in histoblasts by clonal expression of Dad
or TkvQD. Noticeably, a reduction in Dpp signaling caused
a failure in the remodeling of b-integrin, which became abnor-
mally clumped on the lateral and basal surface of histoblasts
(Figure 4G). In contrast, constitutive activation of Dpp sig-
naling resulted in the almost absolute exclusion of b-integrin
from basal domains, both at the periphery and at the nest
center (Figure 4H). Whether these shifts in the intracellular
localization of b-integrin are necessary for modulating histo-
blast motility remains to be determined.
Discussion

dpp encodes a secreted polypeptide of the TGF-b superfamily
[11], which acts as a secreted autocrine and paracrine
morphogen regulating growth, patterning, and epithelial orga-
nization [12–16] and controlling epithelial movements [17, 18].
We have found that Dpp secreted from LECs leads to para-
crine-graded activation of its signaling pathway at the
periphery of histoblast nests during expansion. Across these
nests, Dpp activity confers differential cellular plasticity and
motility: cells with the highest activity behave as leaders and
intercalate between surrounding LECs, whereas cells that
did not activate the pathway remain passive and immotile
(Figure 3E). Dpp signaling activation in histoblasts is imple-
mented at the transcriptional level by Mad, probably hitting
several effectors simultaneously, and produces a complex,
multifaceted phenotype. Mechanistically, at the cellular level,
Dpp signaling enforces a reduction of DE-cadherin (and other
adhesion molecules) density in the membrane of peripheral
histoblasts, which correlates with an increase in DE-cadherin
turnover and the relaxation of cell-cell contacts. Indeed, over-
expression of DE-cadherin led to a phenotype similar to Dpp
signaling loss-of-function conditions. Furthermore, Dpp sig-
naling also intensifies actin cytoskeleton dynamics, which is
instrumental for leading histoblast invasiveness [4].

The function of Dpp signaling in histoblasts is similar to that
observed in cell flattening in imaginal discs [19], the regulation
of migration of peripheral glia [20], the extension of tracheal
branches [21, 22], and cell shape changes during dorsal
closure [23]. However, Dpp signaling does not mediate cell
invasiveness in any of these cases. On the other hand, the au-
tocrine role of Dpp signaling in LECs, which appears to prevent
their precocious delamination, is mechanistically different and
does not involve Mad-mediated activation of dad expression.



Figure 4. Dpp Promotes Cellular Motility by Modulating Actin Dynamics, Cell-Cell Contacts, and Cell Substrate Adhesion

(A) Left: WT MARCM clone in the posterior dorsal nest at 18 hr APF. Arrowheads point to invasive cellular protrusions at the tip of leading cells. Right: tkv

homozygous MARCM clone in the anterior dorsal nest at 18 hr APF. The cells from the clone are more condensed than WT neighbors, and the leading cells

are blunt and lack cellular protrusions (arrowhead).

(B) Projection of the apical sections of a UAS-Dad-overexpressing clone (green) stained with phalloidin (red) showing a general downregulation of the actin

cytoskeleton. Arrowhead points to remnants of actin filaments in the apical surface of mutant cells.

(C) Projection spanning the apical surface of a UAS-TkvQD clone (red) stained with phalloidin (green) showing abundant apical actin-rich protrusions and

extensions (arrowheads).

(D) Fluorescence recovery after photobleaching (FRAP) experiments were performed on DE-cadherin-GFP-expressing pupae at 18 hr APF. For each FRAP

experiment, three apical focal planes were recorded (n = 21 for central and n = 18 for peripheral histoblasts). Integrated density (ID) of fluorescence was

measured over time for each region of interest. The black curve plots the normalized exponential recovery for peripheral cells (according to Equation 1

in Supplemental Experimental Procedures), with average values t1/2 = 42.29 s and mobile fraction A = 0.698, issued from n = 18 curve fits of FRAP sequences.

The gray shaded area delimits the range of variation described by the standard deviations of the distributions of t1/2 and A (n = 18), i.e., the upper limit is

calculated with t1/2 = 42.29 + 4.09 s (average + D) and A = 0.698 + 0.0395 (average + D), and the lower limit is calculated with t1/2 = 42.29 2 4.09 s and A = 0.698

2 0.0395. The red curve shows the same plots for the central cells with average value of t1/2 = 88.01 s with D 6 6.05 s and A = 0.734 with D 6 0.0305, issued

from n = 21 curve fits of FRAP sequences. The pink shaded area delimits the range of variation described by the standard deviations of the distributions of

t1/2 and A (n = 21) for central histoblasts. Note that mobile fraction A is similar for both cell types, whereas the dynamic recoveries described by t1/2 show

significant differences.

(E) UAS-Dad clone (green) stained for Dlg (red) and captured in the periphery during nest expansion. The cells from the clone show extreme constriction and

display high Dlg signal density in contrast to adjacent WT peripheral histoblasts. The apical area of Dad-expressing cells adjacent to the periphery drops by

61.2% (n = 17 from three different clones, 20 hr APF) when compared to WT peripheral cells (n = 30). Circularity of these cells increases, however, by 27.9%.

Discs large levels were equivalent in Dad-expressing cells and WT peripheral neighbors (627.24 6 87.81 ID units per cell), but its density increased from

10.42 6 0.80 to 18.33 6 0.74 ID units per perimeter unit. These parameters were very similar to those determined for WT histoblasts at the center of the

nests (609.48 6 57.42 ID units per cell and 17.17 6 0.93 ID units per perimeter unit [n = 28]).

(F) Functional UAS-DE-cadherin-GFP-overexpressing clones generated in the blastoderm via the MARCM system. In expanding histoblast nests (24 hr

APF), UAS-DE-cadherin-GFP clones (green) sort toward the center of the nest and are unable to contribute to the invasion of the larval epithelia.

(G) UAS-Dad clones (green) stained for b-integrin (red). The basal surfaces of cells from the clone show clumping of b-integrin (arrowhead). The bottom

panels present a transverse 3D reconstruction revealing enrichment of basolateral b-integrin in mutant cells.

(H) UAS-TkvQD clones (green) stained with anti b-integrin (red). The basal surfaces of cells from the clone (green) show redistribution of b-integrin from the

basolateral surface to ectopic puncta (arrowhead).

Nuclei were labeled in blue (B, E, G, and H) or red (A and F) with DAPI.
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This function may participate in the coordination of LECs’
death with the progression of histoblast expansion.

Interestingly, histoblast locomotion appears to progress
quite differently from other known epithelial cell migratory
events. The degradation of the basal lamina precedes the
spreading of histoblasts, which attach apically to the over-
laying chitinous pupal cuticle. These attachments resemble
those of the spiral limbus and the organ of Corti to the tectorial
membrane in mammals’ inner ear [24] or those found during
embryonic implantation and leukocyte transendothelial migra-
tion [25], where endometrium and endothelium apical sur-
faces serve as anchoring sites for blastocysts or leukocytes.
Strikingly, the ZP protein Piopio, which shares a zona pellucida
domain with mammalian primary components of the inner
layer of the apical ECM [26], including a-tectorin [24], is
apically expressed by histoblasts and LECs (data not shown).
Whether Piopio might act as an anchor to the pupal cuticle
remains to be determined.

In contrast to the limited consequences of the migratory
behavior of single cells, collective cell migration results in
profound changes in tissue morphogenesis [1, 27]. Further-
more, multicellular invasion contributes to cancer spreading
[28, 29]—e.g., the invasive edges of fibrosarcomas and ductal
breast carcinomas commonly develop into multicellular
strands [6]. Notably, the response to TGF-b family ligands
contributing to metastatic carcinoma cell motility is phenotyp-
ically characterized by the downregulation of epithelial
markers at the transcriptional and/or posttranslational levels
and by the reorganization of the actin cytoskeleton. TGF-b

also acts as an important modulator of tumor microenviron-
ment and activates the expression of metalloproteases and
the degradation of the basal lamina [30, 31]. The invasive
behavior of leading histoblasts controlled by Dpp signaling in
Drosophila constitutes an important developmental model
of collective migration where, through the combination of
advanced live microscopy and clonal genetic interference,
the mechanisms controlling active motility and invasiveness
can be studied in vivo.
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