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SUMMARY

Evidence suggests that some nonsteroidal anti-
inflammatory drugs (NSAIDs) possess antibacterial
properties with an unknown mechanism. We
describe the in vitro antibacterial properties of the
NSAIDs carprofen, bromfenac, and vedaprofen, and
show that these NSAIDs inhibit the Escherichia coli
DNA polymerase III b subunit, an essential interac-
tion hub that acts as a mobile tether on DNA for
many essential partner proteins in DNA replication
and repair. Crystal structures show that the three
NSAIDs bind to the sliding clamp at a common bind-
ing site required for partner binding. Inhibition of
interaction of the clamp loader and/or the replicative
polymerase a subunit with the sliding clamp is
demonstrated using an in vitro DNA replication
assay. NSAIDs thus present promising lead scaffolds
for novel antibacterial agents targeting the sliding
clamp.

INTRODUCTION

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used

in the treatment of pain, fever, and inflammation (Vonkeman

and van de Laar, 2010). Their mode of action is predominantly

through inhibition of cyclooxygenases to reduce synthesis of

the pro-inflammatory mediator prostaglandin H2 (Dinarello,

2010). Other known targets of NSAIDs in inflammation include

fatty acid amide hydrolase and phospholipase A2 (Singh et al.,

2004, 2009; Bertolacci et al., 2013). Several off-targets unrelated

to inflammation have been identified, including aldo-ketoreduc-

tase 1C3 and retinoid X receptor-a. Binding to these proteins

may explain some of the antiproliferative effects of NSAIDs

(Zhou et al., 2010; Flanagan et al., 2012). Limited data suggest

that NSAIDs possess antibacterial properties, although these

are confounded by routine use of NSAIDs in combination with

antibiotics (Origlieri and Bielory, 2009), particularly in veterinary

medicine (Elitok and Elitok, 2004; Lopez et al., 2007; Krömker

et al., 2011). Weak in vitro antibacterial activity has been demon-

strated by ibuprofen and indomethacin (Shirin et al., 2006;
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Al-Janabi, 2010), but there has been no report of a mechanism

for this action.

Our studies on the Escherichia coli DNA polymerase III (Pol III)

b subunit led to the discovery that the NSAID carprofen binds to

and inhibits essential interactions of this protein. Pol III b, also

known as the sliding clamp (SC) is a torus-shaped homodimer

that is structurally conserved among all bacterial species (Bur-

nouf et al., 2004; Argiriadi et al., 2006; Gui et al., 2011) and serves

as a protein-protein interaction hub during DNA replication and

repair (Dalrymple et al., 2001; Johnson and O’Donnell, 2005;

Indiani and O’Donnell, 2006). After being loaded onto double-

stranded DNA through interactions with the d subunit of the Pol

III clamp loader complex (composed of Pol III d(g/t)3d
0; Naktinis

et al., 1995; Jeruzalmi et al., 2001; Leu and O’Donnell, 2001),

the SC recruits a diverse range of protein binding partners,

including the a and ε subunits of Pol III; DNA polymerases I, II,

IV, and V; and MutS (Kong et al., 1992; Indiani and O’Donnell,

2006; Jergic et al., 2013). This array of binding partners makes

the SC one of the most trafficked elements in the cell (Bunting

et al., 2003; López de Saro, 2009; Robinson et al., 2012). It con-

fers high processivity upon the Pol III aεq core (the replicase) by

acting as a mobile tether (Beck et al., 2006; Kelch et al., 2011).

A single binding pocket containing two subsites (I and II; Bur-

nouf et al., 2004; Georgescu et al., 2008) located on each of the

SC monomers interacts with short linear clamp-binding motifs

(CBMs) located in flexible C-terminal regions or internal loops

of known protein binding partners (Kong et al., 1992; Shamoo

and Steitz, 1999; Dalrymple et al., 2001). Studies have identified

a consensus CBM sequence QLx1Lx2F/L (where x is any amino

acid; S or D preferred at x1; x2 may be absent) that interacts with

the SC CBM-binding pocket, and isolated peptides based on

this sequence bind the SC with affinities similar to their parent

proteins (Wijffels et al., 2004, 2011). Conversely, when CBMs

are removed from parent proteins, they are observed to lose

affinity for the SC (Dalrymple et al., 2001; Kongsuwan et al.,

2006).

Targeting the bacterial DNA replication machinery is a vali-

dated strategy for producing clinically useful antibiotics, as

evidenced by the highly successful quinolones, DNA gyrase in-

hibitors (Kohanski et al., 2010). The bacterial SC is an emerging

DNA replication target that is yet to be clinically validated (Rob-

inson et al., 2012). Modified peptides based on the consensus

sequence show increased affinity to the clamp (Wolff et al.,

2011; Wijffels et al., 2011). Small molecules have been identified
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Table 1. E. coli SC Binding Properties and Antibacterial Activities of Selected NSAIDs

NSAID

E. coli SC Inhibition

MICa

E. coli A. baylyi S. aureus B. subtilis

IC50 (mM) Ki
b (mM) mM mg/ml mM mg/ml mM mg/ml mM mg/ml

Vedaprofen 222 131 5,000 1,410 2,500 705 156 44 156 44

Bromfenac 328 193 2,500 835 5,000 1,670 2,500 835 1,250 418

Carprofen 481 283 2,500 680 1,250 340 313 85 313 85

Flufenamic acid �1,300 �750 >5,000 >1,400 5,000 1,400 625 175 313 88

Tolfenamic acid �1,500 �900 >5,000 >1,300 5,000 1,300 625 163 313 82

See also Tables S1–S3 and Figure S1.
aMIC was determined as the lowest NSAID concentration giving a background-corrected OD595 < 0.1 after 24 hr of bacterial growth.
bKi is calculated from IC50 values using the Kenakin correction for ligand depletion (Kenakin, 1993).
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that bind to the CBM-binding pocket of the SC and inhibit inter-

actions with polymerases, but no antibacterial activities have yet

been reported (Georgescu et al., 2008; Wijffels et al., 2011).

These are RU7, a thioxothiazolinine derivative (Georgescu

et al., 2008), and a biphenyloxime ether derivative (Wijffels

et al., 2011). Both classes of compound bind in subsite I of the

CBM-binding cleft. Our observation of the ability of the NSAID

carprofen, described below, to bind to the identical site on the

SC spurred us to initiate a broader exploration of the effects of

NSAIDs on the SC. Minimal inhibitory concentrations (MICs)

were measured for a variety of NSAIDs to establish a correlation

between SC binding and inhibition and in vitro antibacterial

potencies. Biochemical assays using a minimal set of compo-

nents for SC-dependent DNA replication were used to demon-

strate inhibitory effects of NSAIDs on this essential process,

and X-ray crystallography provided structural insights into

NSAID-SC binding.

RESULTS

SC Inhibition and Antibacterial Potency
A fluorescence polarization (FP) competition assay (Yin et al.,

2013) was used to assess the E. coli SC binding affinity of

commercially available NSAIDs. A fluorescently labeled tracer

peptide (5-carboxyfluorescein-QLDLF) based on the N-acety-

lated consensus pentapeptide AcQLDLF (Wijffels et al., 2011;

Wolff et al., 2011) was used as the competitor ligand. Inhibition

of tracer binding to the SC at various NSAID concentrations

gave half-maximal inhibitory concentration (IC50) values that

were transformed into inhibition constants (Ki) using the Kenakin

correction for ligand depletion (Kenakin, 1993). Twenty NSAIDs

were tested (Table S1 available online), with five showing Ki

values in the high micromolar range (Table 1; Figure S1). Vedap-

rofen, bromfenac, and carprofen showed the strongest effects

(Ki < 300 mM), while flufenamic and tolfenamic acidswereweaker

binders (Ki values > 700 mM).

NSAIDs were tested for antibacterial activity using standard

MIC assays with four species: E. coli, Acinetobacter baylyi,

Staphylococcus aureus, and Bacillus subtilis. MICs evaluated

as inhibited visible growth with varying concentrations of

NSAIDs are provided in Table S1. The Gram-positive species

(S. aureus and B. subtilis) showed higher susceptibility to

NSAIDs than the Gram-negative species (E. coli and A. baylyi),

a trend also observed with four positive control antibiotics (Table
482 Chemistry & Biology 21, 481–487, April 24, 2014 ª2014 Elsevier
S2). The additional permeability barrier of the outer membrane in

Gram-negative species is likely responsible for these trends

(Rigel and Silhavy, 2012).

The antibacterial testing was repeated for the top-five SC

inhibitors, vedaprofen, bromfenac, carprofen, and flufenamic

and tolfenamic acids. The MICs were determined as lowest

NSAID concentration with background-corrected optical density

of less than 0.1 after 24 hr bacterial growth (Table S3). The result-

ing MICs (Table 1; data derived from Table S3) are consistent

with results from visual inspections. These five NSAIDs that

most potently inhibited E. coli SC binding in the FP assay were

the same compounds that showed the highest level of antibac-

terial activity against Gram-positive species and were the only

NSAIDs to show any activity against the Gram-negative species.

NSAIDs that did not inhibit the E. coli SC all showed very low or

negligible antibacterial activity (Table S1), consistent with inhibi-

tion of the SC giving rise to the antibacterial effects of NSAIDs.

The consensus pentapeptide AcQLDLF (Wolff et al., 2011)

showed high affinity for the E. coli SC (Ki�1 mM), but no antibac-

terial activity (Table S1), likely due to its inability to penetrate

bacterial membranes (Bechara and Sagan, 2013) and/or sus-

ceptibility to aminopeptidase activity (Gonzales and Robert-

Baudouy, 1996).

NSAIDs Inhibit theE. coli SC through Binding to Subsite I
of the CBM-Binding Pocket
The locations of binding of NSAIDs to the E. coliSCwere demon-

strated by X-ray crystallography. NSAID/E. coli SC co-crystal

structures were obtained with each of the best SC binders,

vedaprofen, bromfenac, and carprofen. These complexes are

denoted as SCVedaprofen, SCBromfenac, and SCCarprofen. All three

NSAIDs were found to bind in subsite I of the CBM-binding

pocket (Figure 1). Interestingly, while crystals were soaked in

the presence of racemic mixtures of vedaprofen and carprofen,

the 2mFo-DFc electron density maps suggested that (R)-vedap-

rofen and (S)-carprofen were the favored stereoisomers in the

complexes (Figures 1A and 1C). Superimpositions of the

NSAID-bound structures and their corresponding native crystal

structures (obtained in the same crystal form) are shown in Fig-

ures 1A–1C. Stereo diagrams of these complex structures are

shown in Figure S1.

The cyclohexyl moiety of (R)-vedaprofen occupies a deep hy-

drophobic pocket in subsite I comprising the side chains of

V247, L177, V360, and M362 (Figure 1A). The naphthalene rings
Ltd All rights reserved



Figure 1. X-Ray Crystal Structures Showing NSAIDs Bound to Subsite I of the CBM-Binding Pocket of the E. coli Sliding Clamp

Complexes are represented with the SC and NSAID carbon atoms in shaded light green. (R)-vedaprofen (A), bromfenac (B), and (S)-carprofen (C). All other atoms

are represented in CPK colors. Apo-SC structures (Yin et al., 2013; PDB entries 4K3P chain B in A and 4K3S chain A in B and C, shown in orange) are super-

imposed for comparison. Pairs of H-bonded atoms are indicated with dashed red lines. Electron density maps (2mFo–DFc) contoured at 1s are shown in blue

wire-basket form.

See Figure S1 for stereo views and Table S4 for crystallographic details.
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occupy an adjacent, shallower region near P242. Binding of

(R)-vedaprofenmoved the side chains of R246 andR240 (relative

to the apo-SC structure) toward the (R)-vedaprofen carboxylate,

resulting in formation of a salt bridge between the carboxylate

and the guanidinium moiety of R240. The side chain of V247

adopted a flipped conformation relative to the apo structure,

apparently as a result of steric interactions with the bulky cyclo-

hexane group. Additionally, the cyclohexyl ring caused rotation

of the c2 angle of M362, a residue that acts as a ‘‘gate’’ between

subsites I and II, from�130� to�69�. The side chain of S346was

also rotated in response to movements in M362.

The aryl bromide of bromfenac occupies the deep hydropho-

bic pocket of subsite I, with the aniline group residing in the

adjacent shallower region (Figure 1B). The carboxylate of brom-

fenac makes no direct interactions with the binding site. Binding

of bromfenac caused only minor structural perturbations in

subsite I with the exception of a rotated side chain at S346.

The ‘‘gating’’ residue M362 retained the ‘‘closed’’ conformation

(c2 of �171�), as observed in the apo-SC structure.

In the case of (S)-carprofen, the carbazole ring occupies the

shallower region and the aryl chloride is buried in the adjacent

deep pocket (Figure 1C). The carboxylate group of (S)-carprofen

forms an H-bond with the side chain phenol of Y154. The carba-

zole nitrogen is oriented outward from the binding site and this

pose appears to open the M362 gate, rotating its c2 angle from

�174� to �58�. The only other change observed in subsite I is

the rotation of the side chain of S346.

The E. coli SCCBM-Binding Pocket Is Conserved across
Bacterial Species
Sequence alignments of the SCs (Figure 2A) from the four bacte-

rial species used in the antibacterial assays show that the 15

residues comprising subsites I (yellow) and II (cyan) of their

respective CBM-binding pockets are very well conserved, espe-

cially in subsite I. Sequence alignments of the SCs from a total of

nine bacterial species (five Gram-negative species and four
Chemistry & Biology 21,
Gram-positive species) similarly showed highly conserved

CBM-binding pocket sequences (Figure S2).

The structures of SCCarprofen and the E. coli SC in complex with

the Pol III d subunit (Protein Data Bank [PDB] entry 1JQJ; Jeru-

zalmi et al., 2001) are overlaid in Figure 2B. Similarly, the struc-

tures of SCCarprofen and the SC in complex with the C-terminal

CBM-peptide of the Pol III a subunit (PDB entry 3D1F; Geor-

gescu et al., 2008) are overlaid in Figure 2C. The structures

show that binding of the CBMs of both Pol III d and a subunits

span subsites I and II, with the LxF submotif of each peptide

filling the pocket at subsite I occupied by the NSAIDs (Figures

1A and 1B). High sequence conservation within the CBM-bind-

ing pockets of the various SC homologs suggests that these

NSAIDs most likely bind to subsite I and inhibit the SCs of

many bacterial species.

NSAIDs Inhibit In Vitro DNA Replication
An SC-dependent DNA replication assay using a minimal set of

components required for in vitro DNA replication was developed

to explore inhibition of the E. coli SC by NSAIDs. In this assay,

binding of CBMs from the d and a subunits to the SC are essen-

tial for replication, meaning impaired SC binding due to the

presence of NSAIDs will inhibit DNA synthesis. A synthetically

RNA-primed circular single-stranded (ss) DNA coated with ss

DNA-binding protein (SSB) was used as a template. The reaction

system (Jergic et al., 2013) contained the SC, the Pol III a sub-

unit, and a reconstituted clamp loader complex (g3dd
0) to load

the SC at the primer terminus (Figure 3A). The a subunit bound

to the SC catalyzes extension of the primer through incorpora-

tion of deoxyribonucleoside triphosphates (dNTPs) using the

ssDNA as template. Formation of double-stranded DNA was

tracked by agarose gel electrophoresis and is dependent on

the SC concentration (Figures S3A and S3B).

As a positive control, the pentapeptide AcQLDLF (Ki �1 mM;

used as a model inhibitor) showed dose-dependent inhibition

of replication over the range of 1–10 mM (Figure 3B), when added
481–487, April 24, 2014 ª2014 Elsevier Ltd All rights reserved 483



Figure 2. NSAIDs at the CBM Binding Site of the E. coli SC

(A) Sequence alignments of SCs from the four bacterial species. Residues

comprising subsites I (yellow) and II (cyan) of the CBM-binding pockets

(numbering based on the E. coli sequence) are highlighted. See also Figure S2.

(B and C) Superimposition of the structures of the E. coli SC in complex with

(B) (S)-carprofen and the CBM of Pol III d (PDB entry 1JQJ; Jeruzalmi et al.,

2001) and (C) (S)-carprofen and the C-terminal CBM peptide of Pol III a (PDB

entry 3D1F; Georgescu et al., 2008). The SC and (S)-carprofen carbon atoms

are in shaded light green. The SC carbon atoms in PDB entries 1JQJ and 3D1F

are in blue with the carbon atoms of the Pol III d and a subunits in orange and

pink, respectively. All other atoms are represented in CPK colors. Only the

residues of the d and a subunits that interact with subsites I and II are shown for

clarity.

Figure 3. NSAIDs Inhibit In Vitro DNA Replication

(A) Components of the replication assay.

(B–E) Inhibition of DNA synthesis by AcQLDLF (B), and NSAIDs vedaprofen (C),

bromfenac (D), and carprofen (E). The ssDNA template is converted to a

double-stranded circular product, as indicated.

See also Figure S3.
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to the complete replication system. A titration was also carried

out by pre-incubating the reaction system before the addition

of the a subunit and the AcQLDLF pentapeptide, hoping to

distinguish the inhibition of DNA synthesis from the inhibition of

clamp loading (Figure S3C). However, two experiments yielded

similar inhibition profiles, suggesting that ongoing synthesis by

a from a preloaded SC is at least as sensitive to inhibition as

clamp loading. The reversible nature of clamp-loading (Leu

et al., 2000) also provides a plausible explanation for the similar

profiles—the addition of an inhibitor followed by equilibration of
484 Chemistry & Biology 21, 481–487, April 24, 2014 ª2014 Elsevier
the clamp-loading and unloading process erases the effects of

pre-incubation.

NSAIDs were titrated into the total reaction system at concen-

trations up to 1mM (Figures 3C–3E). Vedaprofen and bromfenac

completely inhibited replication at 500 mM, while showing no

effects below 63 mM. Carprofen showed weaker effects consis-

tent with its weaker affinity for the SC (Table 1), producing com-

plete inhibition at 1 mM. Inhibitory potencies of NSAIDs in the

DNA replication assay were approximately 100-fold less than

those for AcQLDLF, consistent with their �100-fold weaker
Ltd All rights reserved



Chemistry & Biology

Antibacterial Mechanism of NSAIDs
SC-binding affinities. Assays carried out with the less potent SC

binders flufenamic and tolfenamic acids and the non-SC binding

NSAID ibuprofen showedmuch weaker effects or no inhibition of

DNA replication (Figures S3D and S3E).

DISCUSSION

There is a pressing need for new classes of antibiotics (Bassetti

et al., 2013). The bacterial SC is an emerging target for the devel-

opment of new antibacterial agents (Georgescu et al., 2008;

Wijffels et al., 2011). Its structure is highly conserved: studies

indicate that clamps from several bacterial species have similar

overall structures and CBM-binding sites (Burnouf et al., 2004;

Argiriadi et al., 2006; Gui et al., 2011). This study demonstrates

that some NSAIDs are able to block subsite I, preventing SC

binding to Pol III d and/or a subunits and causing inhibition of

DNA replication in vitro. Bacterial DNA replication in vivo is highly

complex and involves many interacting components (Kelman

and O’Donnell, 1995; Pomerantz and O’Donnell, 2007). By

simplifying replication to a requirement for just four essential

components, the SC, the clamp loader complex, the Pol III a

subunit, and SSB (Jergic et al., 2013), we were able to directly

link inhibition of SC-mediated interactions by NSAIDs to inhibi-

tion of DNA replication in vitro, thus providing an explanation

for the apparent correlation between E. coli SC inhibition and

antibacterial effects. Because the CBM-binding pocket is well

conserved across bacteria, E. coli SC inhibitors like vedaprofen,

bromfenac, and carprofen would also be expected to bind SCs

from other species. All three were shown to be relatively weak

inhibitors of the E. coli SC, consistent with their modest antibac-

terial activity compared to standard antibiotics. It is noteworthy

that bromfenac demonstratedmuchweaker antibacterial activity

against Gram-positive species than vedaprofen and carprofen.

Furthermore, flufenamic and tolfenamic acids exhibited similar

antibacterial effects to carprofen despite apparent weak SC

affinity. These observations could be explained in part by

differing membrane permeability and differences in the SC affin-

ities of those compounds in the different species. While vedap-

rofen and carprofen have been used as adjuvants to antibiotics

for their anti-inflammatory effects in the treatment of veterinary

bacterial infections (Elitok and Elitok, 2004; Lopez et al., 2007;

Krömker et al., 2011), the current work suggests that their co-

administration may actually contribute independent (or perhaps

synergistic) antibacterial effects.

The X-ray structures here, showing that the three NSAIDs bind

in subsite I, should provide valuable insights into the design of

more potent small-molecule SC inhibitors, potentially leading

to the discovery of new classes of antibiotics with a novel mech-

anism of action. The conserved nature of the SC across bacterial

species suggests potent SC inhibitors might show broad-spec-

trum activity. All three NSAIDs were shown to bury a hydropho-

bic moiety into the deep pocket of subsite I while positioning an

aromatic ring(s) in the adjacent and shallower region. The three

NSAIDs all contained carboxylic acids, which can form salt-

bridges or H-bonds with adjacent residues; however, these in-

teractions appeared to be confined to the edge of subsite I

and did not seem to be a prerequisite for binding. Whereas all

three NSAIDs fully occupied subsite I, their relatively weak bind-

ing suggests there is only limited potential for designing more
Chemistry & Biology 21,
potent SC inhibitors that target subsite I alone. Of the three

NSAIDs, only carprofen adopted a binding pose that ‘‘opened’’

the M362 gate separating the two subsites, inducing a CBM-

binding pocket structure similar to that observed upon binding

of peptide CBMs. It was also noted that the carbazole nitrogen

of carprofen is directed toward subsite II, suggesting it might

be a useful synthetic handle for projecting extra functionality

toward this subsite in searching for nonpeptidic SC-binders

with higher affinity.

SIGNIFICANCE

New classes of antibiotics operating through novel targets

are of great interest. The sliding clamp represents an

emerging target for new antibacterial agents—interactions

between DNA polymerases and sliding clamps are essential

to ensure DNA replication and cell proliferation. Sliding

clamp inhibitors have been reported, but none are yet used

therapeutically. We report antibacterial activity of members

of an established drug class, the nonsteroidal anti-inflam-

matory drugs (NSAIDs) against Gram-negative and Gram-

positive bacteria, and link those activities to inhibition of

sliding clamps.

EXPERIMENTAL PROCEDURES

Compounds and Peptides

NSAIDs (purity > 95%) were purchased from Vitas-M Laboratory, Labotest, or

Sigma-Aldrich. Peptides were custom synthesized byGLBiochem (China) and

showed >95% purity, as confirmed by high-performance liquid chromatog-

raphy-mass spectrometry.

Protein Expression and Purification

Expression and purification of the E. coli SC, Pol III a subunit, SSB, and the

clamp loader complex g3dd
0 were carried out as described previously (Wijffels

et al., 2004; Mason et al., 2013; Jergic et al., 2013).

Crystallization and X-Ray Data Collection

Crystals of the E. coli SC were grown at 285 K by the hanging-drop vapor

diffusion method. The drop was composed of 1 ml of sliding clamp

(53 mg/ml in 10 mM Tris-HCl pH 7.2, 1 mM dithiothreitol, 1 mM EDTA, and

15% glycerol) mixed with an equal volume of reservoir solution consisting of

100 mM 2-(N-morpholino) ethanesulfonic acid buffer pH 6.5, 100–150 mM

CaCl2, and 25%–30% (v/v) PEG400.The reservoir volume was 1 ml. SC crys-

tals were transferred to a CaCl2-free reservoir solution and ligands were

soaked into the crystal at 2–5 mM in reservoir solution with <10% DMSO. All

crystals were mounted using MiTeGen loops on pins with magnetic caps.

For in-house data collection, crystals were flash-frozen to 100 K using an

Oxford Cryo-stream. Diffraction data were collected using a MAR345 desktop

beamline using CuKa X-rays from a Rigaku 007HF rotating anode generator

with Varimax optics. For synchrotron data collection, the SSRL automated

mounting system (SAM)was used.Mounted crystals were flash-frozen in liquid

nitrogen and placed in the SAM cassettes. Diffraction data were collected at

100 K at the Australian Synchrotron, BeamlineMX1 using X-rays of wavelength

0.95 Å.

Data Processing, Structure Solution, and Refinement

Crystal data sets were integrated, merged, and scaled with either HKL2000

(Otwinowski and Minor, 1997) or MOSFLM and SCALA (Winn et al., 2011)

The structures were solved by molecular replacement with CCP4 using the

PDB entry 1MMI (Oakley et al., 2003) or 4K3S (Yin et al., 2013) as the starting

model. Iterative cycles of model building and refinement were performed in

COOT (Emsley and Cowtan, 2004) and REFMAC5 (Skubák et al., 2004).
481–487, April 24, 2014 ª2014 Elsevier Ltd All rights reserved 485
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Bioinformatics

Sequence alignment of bacterial sliding clamps (Gene Expression Onmibus

IDs: YP_859300.1, WP_004930066.1, ZP_05582848.1, ZP_08441263.1, NP_

064722.1, NP_373240.1, WP_003242509.1, YP_815419.1, and AAF98349.2)

was carried out using COBALT (Papadopoulos and Agarwala, 2007).

Fluorescence Polarization Assay

FP experiments followed the published protocol (Yin et al., 2013). Brifely, All

FP experiments were conducted using a POLARstar Omega plate reader

with nontreated black sterile 96-well plates (Greiner). The buffer contained

10 mM HEPES pH 7.4, 1 mM EDTA, 1 mM dithiothreitol, 0.07% Nonidet

P-40, and 5% DMSO. The fluorescent tracer used was N-fluorescein (FAM)-

QLDLF-OH (GL Biochem), which has a Kd of 70 nM for SC monomers. For

the competition assay, 10 nM peptide and 50 nM sliding clamp monomers

were used. Blank control (buffer), negative control (buffer and the peptide),

and positive control (buffer, peptide, and the sliding clamp) were used for

data standardization. Experiments were carried out in duplicate. Curves

were fit using GraphPad Prism v5.01 (GraphPad Software). Binding-saturation

curve fitting was applied to tracer binding. Dose-response curve fitting was

applied to competition assays with variable slope.

Antibacterial Activity

Determination of MICs was carried out with the four bacterial strains

Acinetobacter baylyi ADP1, Escherichia coli K12 MG1655, Staphylococcus

aureus NCTC8325, and Bacillus subtilis 168. Experiments followed the

Clinical and Laboratory Standards Institute broth microdilution method

(CLSI, 2009). Briefly, bacteria were grown overnight and inoculated at

5 3 104 colony-forming units/ml into cation-adjusted Mueller Hinton II

broth. Serial 2-fold dilution of NSAID compounds or antibiotics was carried

out in sterile 96-well plates. Controls of the growth medium only (blank

controls), inoculated medium (negative controls), and inoculated medium

with antibiotics (as positive controls) were used. Tests were carried out

with 20 NSAIDs and four antibiotics, where MICs were defined as the

lowest concentration of compound to inhibit visible growth after incubation

for 24 hr at 37�C. For vedaprofen, bromfenac, carprofen, and flufenamic

and tolfenamic acids, optical density values of inoculated cultures were

measured at wavelength 595 nm (OD595) as the background using a plate

reader (Tecan Infinite M200 Pro). The plates were incubated for 24 hr at

37�C and then the OD595 values were measured again; MICs were defined

as the lowest compound concentration with background-subtracted

OD595 < 0.1.

DNA Replication Assay

The RNA-primed DNA template was prepared in advance by mixing

35 nM wild-type M13 ssDNA (Jergic et al., 2013) with 1 mM oligoribonucleo-

tide (50-UAUGUACCCCGGUUGAUAAUCAGAAAAGCCCCA; GeneWorks) in

30 mM Tris-HCl pH 7.6, 15 mM MgCl2, 130 mM NaCl, and 0.1 mM EDTA

for 10 min at 55�C and cooling to room temperature over 8 hr. DNA

replication assays contained 20 mM Tris-HCl pH 7.6, 10 mM MgCl2,

0.8 mM ATP, 8.4 mM dithiothreitol, 0.6 mM of each dNTP, 211 nM Pol III

a subunit, 700 nM SSB (as tetramers), 210 nM Pol III b subunit (as dimers),

42 nM g3dd
0 clamp loader complex, 120 mM NaCl, and 3 nM RNA primed

DNA template, in a volume of 6.8 ml. Compounds/peptide were dissolved

in DMSO and diluted in series 2-fold (in 50% v/v DMSO) before being

added (0.5 ml) to the assay mixture at 0�C. The final DMSO concentration

was 3.4% (v/v) in all assays. The assay mixtures were treated at 30�C
for 60 min before being quenched by the addition of EDTA to 150 mM

and SDS to 1% (w/v). The DNA products were separated by 0.7% agarose

gel electrophoresis in TAE buffer (80 mM Tris, 40 mM acetic acid, and

4 mM EDTA) and then stained with 10,000-fold diluted SYBR Gold (Life

Technologies) for 60 min. The DNA products were visualized using a UV

transilluminator.

ACCESSION NUMBERS

The PDB accession codes for the atomic coordinates and structure factors

for SCVedaprofen, SCBromfenac, and SCCarprofen are 4MJP, 4MJQ, and 4MJR,

respectively.
486 Chemistry & Biology 21, 481–487, April 24, 2014 ª2014 Elsevier
SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and four tables and can

be found with this article online at http://dx.doi.org/10.1016/j.chembiol.2014.

02.009.

AUTHOR CONTRIBUTIONS

A.J.O., N.E.D., E.J.H., L.R.W., M.J.K., and J.L.B. supervised the project; Z.Y.,

Y.W., and A.J.O. designed the experiments; Z.Y. performed the fluorescence

polarization-based assays, X-ray crystallography experiments, and antibacte-

rial testing with assistance by M.L.; Y.W. and S.J. prepared proteins and per-

formed replication assays; and Z.Y. and Y.W. drafted themanuscript with input

from all co-authors.

ACKNOWLEDGMENTS

We thank the staff at Beamline MX1, Australian Synchrotron. This research

was supported by an Australian Research Council (ARC) Discovery Project

(DP110100660) and National Health and Medical Research Council (Australia)

Project Grant (1021479). A.J.O. acknowledges support from the ARC for his

Future Fellowship (FT0990287).

Received: December 11, 2013

Revised: February 3, 2014

Accepted: February 13, 2014

Published: March 13, 2014

REFERENCES

Al-Janabi, A.A.H.S. (2010). In vitro antibacterial activity of ibuprofen and acet-

aminophen. J Glob Infect Dis 2, 105–108.

Argiriadi, M.A., Goedken, E.R., Bruck, I., O’Donnell, M., and Kuriyan, J. (2006).

Crystal structure of a DNA polymerase sliding clamp from a gram-positive bac-

terium. BMC Struct. Biol. 6, 2.

Bassetti, M., Merelli, M., Temperoni, C., and Astilean, A. (2013). New anti-

biotics for bad bugs: where are we? Ann. Clin. Microbiol. Antimicrob. 12, 22.

Bechara, C., and Sagan, S. (2013). Cell-penetrating peptides: 20 years later,

where do we stand? FEBS Lett. 587, 1693–1702.

Beck, J.L., Urathamakul, T., Watt, S.J., Sheil, M.M., Schaeffer, P.M., and

Dixon, N.E. (2006). Proteomic dissection of DNA polymerization. Expert Rev.

Proteomics 3, 197–211.

Bertolacci, L., Romeo, E., Veronesi, M., Magotti, P., Albani, C., Dionisi, M.,

Lambruschini, C., Scarpelli, R., Cavalli, A., De Vivo, M., et al. (2013). A binding

site for nonsteroidal anti-inflammatory drugs in fatty acid amide hydrolase.

J. Am. Chem. Soc. 135, 22–25.

Bunting, K.A., Roe, S.M., and Pearl, L.H. (2003). Structural basis for recruit-

ment of translesion DNA polymerase Pol IV/DinB to the b-clamp. EMBO J.

22, 5883–5892.

Burnouf, D.Y., Olieric, V., Wagner, J., Fujii, S., Reinbolt, J., Fuchs, R.P.P., and

Dumas, P. (2004). Structural and biochemical analysis of sliding clamp/ligand

interactions suggest a competition between replicative and translesion DNA

polymerases. J. Mol. Biol. 335, 1187–1197.

CLSI (2009). Methods for dilution antimicrobial susceptibility tests for bacteria

that grow aerobically; approved standard. (Wayne, PA: CLSI).

Dalrymple, B.P., Kongsuwan, K., Wijffels, G., Dixon, N.E., and Jennings, P.A.

(2001). A universal protein-protein interaction motif in the eubacterial DNA

replication and repair systems. Proc. Natl. Acad. Sci. USA 98, 11627–11632.

Dinarello, C.A. (2010). Anti-inflammatory agents: Present and future. Cell 140,

935–950.

Elitok, B., and Elitok, O.M. (2004). Clinical efficacy of carprofen as an adjunct to

the antibacterial treatment of bovine respiratory disease. J. Vet. Pharmacol.

Ther. 27, 317–320.

Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular

graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.
Ltd All rights reserved

http://dx.doi.org/10.1016/j.chembiol.2014.02.009
http://dx.doi.org/10.1016/j.chembiol.2014.02.009


Chemistry & Biology

Antibacterial Mechanism of NSAIDs
Flanagan, J.U., Yosaatmadja, Y., Teague, R.M., Chai, M.Z., Turnbull, A.P., and

Squire, C.J. (2012). Crystal structures of three classes of non-steroidal anti-

inflammatory drugs in complex with aldo-keto reductase 1C3. PLoS ONE 7,

e43965.

Georgescu, R.E., Yurieva, O., Kim, S.S., Kuriyan, J., Kong, X.P., and

O’Donnell, M. (2008). Structure of a small-molecule inhibitor of a DNA polymer-

ase sliding clamp. Proc. Natl. Acad. Sci. USA 105, 11116–11121.

Gonzales, T., and Robert-Baudouy, J. (1996). Bacterial aminopeptidases:

properties and functions. FEMS Microbiol. Rev. 18, 319–344.

Gui, W.J., Lin, S.Q., Chen, Y.Y., Zhang, X.E., Bi, L.J., and Jiang, T. (2011).

Crystal structure of DNA polymerase III b sliding clamp from Mycobacterium

tuberculosis. Biochem. Biophys. Res. Commun. 405, 272–277.

Indiani, C., andO’Donnell, M. (2006). The replication clamp-loadingmachine at

work in the three domains of life. Nat. Rev. Mol. Cell Biol. 7, 751–761.

Jergic, S., Horan, N.P., Elshenawy, M.M., Mason, C.E., Urathamakul, T.,

Ozawa, K., Robinson, A., Goudsmits, J.M., Wang, Y., Pan, X., et al. (2013). A

direct proofreader-clamp interaction stabilizes the Pol III replicase in the poly-

merization mode. EMBO J. 32, 1322–1333.

Jeruzalmi, D., Yurieva, O., Zhao, Y., Young, M., Stewart, J., Hingorani, M.,

O’Donnell, M., and Kuriyan, J. (2001). Mechanism of processivity clamp open-

ing by the d subunit wrench of the clamp loader complex of E. coli DNA poly-

merase III. Cell 106, 417–428.

Johnson, A., and O’Donnell, M. (2005). Cellular DNA replicases: components

and dynamics at the replication fork. Annu. Rev. Biochem. 74, 283–315.

Kelch, B.A., Makino, D.L., O’Donnell, M., and Kuriyan, J. (2011). How a DNA

polymerase clamp loader opens a sliding clamp. Science 334, 1675–1680.

Kelman, Z., and O’Donnell, M. (1995). DNA polymerase III holoenzyme: struc-

ture and function of a chromosomal replicating machine. Annu. Rev. Biochem.

64, 171–200.

Kenakin, T. (1993). Radioligand binding experiments. In Pharmacologic

Analysis of Drug-Receptor Interaction, Second Edition (San Diego: Raven

Press), pp. 385–410.

Kohanski, M.A., Dwyer, D.J., and Collins, J.J. (2010). How antibiotics kill

bacteria: from targets to networks. Nat. Rev. Microbiol. 8, 423–435.

Kong, X.-P., Onrust, R., O’Donnell, M., and Kuriyan, J. (1992). Three-dimen-

sional structure of the b subunit of E. coli DNA polymerase III holoenzyme: a

sliding DNA clamp. Cell 69, 425–437.

Kongsuwan, K., Josh, P., Picault, M.J., Wijffels, G., and Dalrymple, B. (2006).

The plasmid RK2 replication initiator protein (TrfA) binds to the sliding clamp b

subunit of DNA polymerase III: implication for the toxicity of a peptide derived

from the amino-terminal portion of 33-kilodalton TrfA. J. Bacteriol. 188, 5501–

5509.

Krömker, V., Paduch, J.H., Abograra, I., Zinke, C., and Friedrich, J. (2011).

[Effects of an additional nonsteroidal anti-inflammatory therapy with carprofen

(Rimadyl Rind) in cases of severe mastitis of high yielding cows]. Berl. Munch.

Tierarztl. Wochenschr. 124, 161–167.

Leu, F.P., andO’Donnell, M. (2001). Interplay of clamp loader subunits in open-

ing the b sliding clamp of Escherichia coli DNA polymerase III holoenzyme.

J. Biol. Chem. 276, 47185–47194.

Leu, F.P., Hingorani, M.M., Turner, J., and O’Donnell, M. (2000). The delta sub-

unit of DNA polymerase III holoenzyme serves as a sliding clamp unloader in

Escherichia coli. J. Biol. Chem. 275, 34609–34618.

Lopez, S., Pertuy, S., Horspool, L., van Laar, P., and Rutten, A. (2007).

Vedaprofen therapy in cats with upper respiratory tract infection or following

ovariohysterectomy. J. Small Anim. Pract. 48, 70–75.

López de Saro, F.J. (2009). Regulation of interactions with sliding clamps dur-

ing DNA replication and repair. Curr. Genomics 10, 206–215.

Mason, C.E., Jergic, S., Lo, A.T.Y., Wang, Y., Dixon, N.E., and Beck, J.L.

(2013). Escherichia coli single-stranded DNA-binding protein: nanoESI-MS

studies of salt-modulated subunit exchange and DNA binding transactions.

J. Am. Soc. Mass Spectrom. 24, 274–285.

Naktinis, V., Onrust, R., Fang, L., and O’Donnell, M. (1995). Assembly of a

chromosomal replication machine: two DNA polymerases, a clamp loader,
Chemistry & Biology 21,
and sliding clamps in one holoenzyme particle. II. Intermediate complex be-

tween the clamp loader and its clamp. J. Biol. Chem. 270, 13358–13365.

Oakley, A.J., Prosselkov, P., Wijffels, G., Beck, J.L., Wilce, M.C., and Dixon,

N.E. (2003). Flexibility revealed by the 1.85 Å crystal structure of the b
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