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Abstract

An induced matching M of a graph G is a set of pairwise non-adjacent edges such that their end-vertices induce a 1-regular
subgraph. An induced matching M is maximal if no other induced matching contains M . The MINIMUM MAXIMAL INDUCED

MATCHING problem asks for a minimum maximal induced matching in a given graph. The problem is known to be NP-complete.
Here we show that, if P 6= NP, for any ε > 0, this problem cannot be approximated within a factor of n1−ε in polynomial
time, where n denotes the number of vertices in the input graph. The result holds even if the graph in question is restricted to
being bipartite. For the related problem of finding an induced matching of maximum size (MAXIMUM INDUCED MATCHING),
it is shown that, if P 6= NP, for any ε > 0, the problem cannot be approximated within a factor of n1/2−ε in polynomial time.
Moreover, we show that MAXIMUM INDUCED MATCHING is NP-complete for planar line graphs of planar bipartite graphs.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider only finite, undirected graphs without loops and multiple edges and use standard graph-theoretic
terminology; see for example Bondy and Murty [3]. For concepts related to approximability, we follow Ausiello
et al. [1].

Let G be a graph with vertex set V (G) and edge set E(G). For a graph G, a subset M ⊆ E(G) of edges is called
an induced matching if (i) set M is a matching in G (a set of pairwise non-adjacent edges) and (ii) there is no edge in
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E(G) \ M connecting two edges of M . In other words, the degrees of all vertices of the subgraph of G induced by
the end-vertices of edges of M are equal to 1, i.e., the subgraph is 1-regular. An induced matching M is maximal if
no other induced matching in G contains M . Let IM(G) be the set of all maximal induced matchings in G. We define
minimum maximal and maximum induced matching numbers, respectively, as follows:

σ(G) = min{|M | : M ∈ IM(G)}

and

Σ (G) = max{|M | : M ∈ IM(G)}.

A minimum maximal induced matching is a maximal induced matching that contains σ(G) edges and a maximum
induced matching is an induced matching that contains Σ (G) edges.

Induced matchings, also known as 2-separated matchings, see Stockmeyer and Vazirani [35], and strong matchings,
see Fricke and Laskar [17], have received much attention lately because of the growing number of applications. The
importance of induced matchings has been recently demonstrated by Golumbic and Lewenstein [20] in connection
with applications for secure communication channels, VLSI design and network flow problems. It is interesting to
note that there is an immediate connection between the maximum size of an induced matching and the irredundancy
number of a graph; see Golumbic and Laskar [19] for details. Finally, finding largest induced matchings is connected
with the important problem of finding a strong edge-colouring considered by Erdös [15], Steger and Yu [34], Liu and
Zhou [28] (finding largest induced matchings can be used as one of the heuristics for strong edge-colouring).

In this paper, we investigate the problem of approximating the size of a minimum maximal (maximum) induced
matching of a given graph and consider some complexity results for induced matching problems.

First, we introduce some definitions. A set S ⊆ V (G) is called independent if no two vertices in S are adjacent.
An independent set S is maximal if no other independent set in G contains S. A set D ⊆ V (G) is a dominating set
if each vertex in V (G) \ D is adjacent to some vertex in D. An independent dominating set is a vertex subset that is
both independent and dominating.

Consider the following decision problem.

MINIMUM MAXIMAL INDUCED MATCHING

Instance: A graph G and an integer k.
Question: Is σ(G) 6 k?

Recently, Orlovich and Zverovich [30] have proved that MINIMUM MAXIMAL INDUCED MATCHING is an NP-
complete problem even for bi-size matched graphs. A graph G is bi-size matched if there exists k > 1 such that
|M | ∈ {k, k + 1} for every maximal induced matching M in G.

Cameron [6] observed that induced matchings in a graph G correspond to independent sets in the square of the line
graph of G. Maximal induced matchings in G correspond to maximal independent sets in the square of the line graph
of G. On the other hand, any maximal independent set is an independent dominating set, and vice versa [2]. Thus,
a minimum maximal induced matching in a graph G corresponds to a minimum independent dominating set in the
square of the line graph of G.

For many classes G of graphs (e.g., chordal and weakly chordal graphs, circular-arc graphs, and AT-free graphs),
it is proved that if a graph G is in the class G , then the square of the line graph of G is also in G ; see Cameron and
Cameron et al. [6,8], Golumbic and Laskar [19], Chang [9], and Cameron [7]. Since finding the minimum independent
dominating set for the most above mentioned classes can be done in polynomial time (see Farber [16], Chang [10],
Broersma et al. [5]), we can obtain polynomial time algorithms for the MINIMUM MAXIMAL INDUCED MATCHING

problem for chordal graphs, circular-arc graphs, and AT-free graphs. Notice that the latter class contains trapezoid
graphs, interval graphs, permutation graphs, and co-comparability graphs. For definitions of these graph classes see
Brandstädt et al. [4].

Recall that an algorithm is an f (n)-approximation algorithm for a minimization (respectively maximization)
problem if for each instance x of the problem of size n, it returns a solution y of value m(x, y) such that
m(x, y)/opt(x) 6 f (n) (respectively opt(x)/m(x, y) 6 f (n)), where opt(x) is the value of the optimum solution of
x . An algorithm is a constant approximation algorithm if f (n) is a constant. If an NP optimization problem (i.e., its
decision version is in NP) admits a polynomial time f (n)-approximation algorithm we say that it is approximable
within a factor of f (n).
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In Section 2, we show that MINIMUM MAXIMAL INDUCED MATCHING is NP-complete for bipartite graphs even
of maximum degree 4. Note that the NP-completeness of the problem for bipartite graphs can be derived also as part
of a general framework for establishing NP-completeness results for a family of graph parameters in bipartite and
chordal graphs; see the McRae PhD thesis [32]. In Section 3, we turn to approximability results by showing that, if
P 6= NP, MINIMUM MAXIMAL INDUCED MATCHING cannot be approximated for bipartite graphs in polynomial
time within a factor of n1−ε for any constant ε > 0, where n is the number of vertices in the input graph. (Note that in
Sections 3 and 4 we use the notation p for the number of vertices in the input graph.) As an immediate consequence
we obtain that there is no polynomial time constant approximation algorithm for the MINIMUM MAXIMAL INDUCED

MATCHING problem even when restricted to bipartite graphs, unless P = NP.
Consider now the maximum induced matching decision problem.

MAXIMUM INDUCED MATCHING

Instance: A graph G and an integer k.
Question: Is Σ (G) > k?

Stockmeyer and Vazirani [35] proved that finding a maximum induced matching is NP-hard even for bipartite
graphs of maximum degree 4. An alternate proof for bipartite graphs was presented later by Cameron [6]. This result
was improved by Ko and Shepherd [26]: the NP-completeness was shown for planar bipartite graphs of maximum
degree 4 with one side of the bipartition consisting only of degree 2 vertices and with each cycle having length
≡ 0(mod 2k) for any k > 1. Further strengthening was done by Orlovich and Zverovich [30] for some classes of
planar bipartite graphs of maximum degree 3 which are defined by finite lists of forbidden subgraphs. Additionally,
Kobler and Rotics [27] proved that the MAXIMUM INDUCED MATCHING problem is NP-complete within the classes
of Hamiltonian graphs and line graphs. Recently, Orlovich and Zverovich [31] generalized the result of Kobler and
Rotics showing the NP-completeness even if the input is restricted to Hamiltonian line graphs of well-matched graphs
(i.e., graphs with equal minimum maximal and maximum induced matching numbers).

In Section 2, we show that the MAXIMUM INDUCED MATCHING problem is NP-complete for planar line graphs
of planar bipartite graphs with maximum degree 4. Thereby, the MAXIMUM INDUCED MATCHING problem is NP-
complete for {K1,3, K4 − e, C2n+1 : n > 2}-free graphs. Here K1,3 is a claw (a star on four vertices), K4 − e is a
graph obtained from the complete graph K4 by deleting an edge, and C2n+1 is a simple cycle on 2n + 1 vertices.

Duckworth et al. [13] present an approximation algorithm with asymptotic performance ratio d − 1 for the
MAXIMUM INDUCED MATCHING problem in d-regular graphs, for each d > 3. Some inapproximability results
for the problem of finding a maximum induced matching in bounded degree graphs are given in [11]. Gotthilf and
Lewenstein [21] give a (0.75d + 0.15)-approximation algorithm for the MAXIMUM INDUCED MATCHING problem
in d-regular graphs. It is interesting whether there exists a constant approximation algorithm for maximum induced
matching in general graphs. We give the negative answer. In fact, in Section 4 we show that, for any ε > 0, the
problem of finding a maximum induced matching in a given graph with n vertices is not approximable in polynomial
time within a factor of n1/2−ε, unless P = NP.

2. NP-completeness

An interesting special case of the MINIMUM MAXIMAL INDUCED MATCHING problem arises when the input
graph is bipartite. We prove that this special case is NP-complete by presenting a polynomial time reduction from
the well-known NP-complete problem 3-SATISFIABILITY, abbreviated as 3-SAT (Cook [12]; see also Garey and
Johnson [18]).

3-SAT
Instance: A collection C = {c1, c2, . . . , cm} of clauses over a set X = {x1, x2, . . . , xn} of 0 − 1 variables such that
|c j | = 3 for j = 1, 2, . . . , m.
Question: Is there a truth assignment for X that satisfies all the clauses in C?

Theorem 1. MINIMUM MAXIMAL INDUCED MATCHING is NP-complete for bipartite graphs and this remains valid
even for bipartite graphs with maximum degree 4.
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Fig. 1. Graph Fi .

Proof. Clearly the problem is in NP. To show that it is NP-complete, we establish a polynomial time reduction from
3-SAT. Let C = {c1, c2, . . . , cm} and X = {x1, x2, . . . , xn} be an instance of 3-SAT. We construct a bipartite graph
G in the following way:

• For each variable xi , we construct a graph Fi as follows. First, take a path on nine vertices P i
=

(xi , yi , zi , vi , wi , vi , zi , yi , x i ), where the end-vertices xi and x i of P i are called literal vertices. Then add new
vertices ui and ui and join ui to zi and ui to zi , respectively. See Fig. 1 for the graph Fi .

• For each clause c j , we construct a graph H j on two vertices c j and d j with the unique edge c j d j , where c j is
called the clause vertex.

• Edges connecting V (Fi ) and V (H j ) are defined as follows: a clause vertex c j is connected to the three literal
vertices corresponding to literals in the clause c j .

It is easy to see that the graph G can be constructed in polynomial time in m = |C | and n = |X |. Also, G is clearly
a bipartite graph. A bipartition of G is given by sets

V1 = {xi , x i , zi , zi , wi : i = 1, 2, . . . , n} ∪ {d j : j = 1, 2, . . . , m},

V2 = {yi , yi , ui , ui , vi , vi : i = 1, 2, . . . , n} ∪ {c j : j = 1, 2, . . . , m}.

To complete the proof, it now suffices to show the following.

Claim 1. There exists a satisfying truth assignment for C if and only if G has an induced matching of size k = 2n.

Proof. First, suppose that there exists a truth assignment satisfying C . We construct an induced matching M in G as
follows. If xi is assigned the value 1, then include the edges xi yi and vi zi into M ; otherwise, the edges x i yi and vi zi
are included into M . Clearly, M is a maximal induced matching of size 2n.

Conversely, suppose that M is an induced matching with |M | = 2n. Note that each maximal induced matching in
G contains at least two edges of each subgraph Fi (in particular, the edges ui zi and ui zi are introduced into graph Fi
in order to provide this property). Since |M | = 2n, we have |M ∩ E(Fi )| = 2 for each i = 1, 2, . . . , n, and no other
edge of G is in M . Since the edge c j d j is not in M , then either c j is adjacent to xi and xi yi ∈ M , or c j is adjacent
to x i and x i yi ∈ M . It follows that we can define a satisfying truth assignment to C setting a literal to be true if and
only if the corresponding edge is in M . The edge corresponding to a literal xi (respectively, x i ) is xi yi (respectively,
x i yi ). Note that the condition |M | = 2n implies that M cannot contain both xi yi and x i yi , since otherwise viwi ∈ M
or viwi ∈ M . This completes the proof of Claim 1 and shows that Theorem 1 is valid for bipartite graphs. �

Let us show that MINIMUM MAXIMAL INDUCED MATCHING remains NP-complete for bipartite graphs with
maximum degree 4. For demonstrating this, we can use the following modified version of 3-SAT in the proof above:
every clause contains at most three literals and every variable in C appears, negated or not, at most three times. Note
that this modified version of 3-SAT is also NP-complete; see Garey and Johnson [18]. Then for the degrees of vertices
of graph G, we have deg xi 6 4 and deg c j 6 4 for all i = 1, 2, . . . , n and j = 1, 2, . . . , m (rather than deg xi 6 m+1
and deg c j = 4). This completes the proof of Theorem 1. �

Remark 1. As pointed out by one of the referees, the NP-completeness of MINIMUM MAXIMAL INDUCED

MATCHING can be shown also for planar bipartite graphs of maximum degree 4 by noting that PLANAR EXACT

COVER BY 3-SETS is NP-complete even if each element of finite set X (see formulation of the problem below)
occurs in two or three subsets of X [14], and using a reduction of McRae [32] to MINIMUM MAXIMAL INDUCED

MATCHING which preserves planarity.

Turning now to the MAXIMUM INDUCED MATCHING problem we show that it is NP-complete for planar line
graphs of planar bipartite graphs. We denote by G(U ) the subgraph of G induced by a subset of vertices U ⊆ V (G).

Let us consider the following decision problem.
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Fig. 2. Graph H j .

Fig. 3. An example of graph G.

PARTITION INTO ISOMORPHIC SUBGRAPHS

Instance: Graphs G and H with |V (G)| = q|V (H)| for some positive integer q.
Question: Is there a partition V1 ∪ V2 ∪ . . . ∪ Vq = V (G) such that G(Vi ) contains a subgraph isomorphic to H for
all i = 1, 2, . . . , q?

It is well known that this problem is NP-complete for any fixed H that contains a connected component of three or
more vertices (Kirkpatrick and Hell [24,25]; see also Garey and Johnson [18]). Consider a special case of PARTITION

INTO ISOMORPHIC SUBGRAPHS when H is a graph P3: the problem PARTITION INTO SUBGRAPHS ISOMORPHIC

TO P3. Recall that P3 = (u, v, w) is a 3-path, i.e., the graph with edge set {uv, vw}. Vertex v is the central vertex and
u, w are the end-vertices of this 3-path.

We will show that the problem PARTITION INTO SUBGRAPHS ISOMORPHIC TO P3 is NP-complete for bipartite
graphs. Notice that this result follows from the proof given by Kirkpatrick and Hell [24,25] on NP-completeness of
the problem for general graphs. We offer another proof which can be directly used for proving NP-completeness of
the problem for planar bipartite graphs of maximum degree 4 (see Remark 2 below).

Lemma 1. PARTITION INTO SUBGRAPHS ISOMORPHIC TO P3 is an NP-complete problem for bipartite graphs.

Proof. We shall use a polynomial time transformation from the following NP-complete problem; see Garey and
Johnson [18].

EXACT COVER BY 3-SETS (X3C)
Instance: A finite set X = {x1, x2, . . . , x3q} of cardinality 3q, for some positive integer q, and a set C =

{C1, C2, . . . , Cm} of 3-element subsets of X .
Question: Does C contain an exact cover for X , that is, a subset C ′

⊆ C such that every element of X occurs in
exactly one 3-element subset of C ′?

Given an instance of X3C, we construct the following graph G. For each element xi ∈ X , we create a vertex xi in
V (G). For each 3-element subset C j = {x1

j , x2
j , x3

j } in C , we create a graph H j on fifteen vertices uk
j , vk

j , wk
j , where

1 6 k 6 5, as shown in Fig. 2. Then we add communication edges x1
j u1

j , x2
j v

1
j and x3

j w
1
j between the vertices u1

j , v1
j ,

w1
j and the three vertices corresponding to the 3-element subset C j = {x1

j , x2
j , x3

j } (see dashed edges in Fig. 2).
An example of graph G for X3C with q = 2, m = 3, X = {x1, x2, x3, x4, x5, x6} and C = {{x1, x2, x5},

{x2, x5, x6}, {x3, x4, x6}} is shown in Fig. 3. One of the partitions of G into P3 is shown with thick lines.
Note that G is a bipartite graph. A bipartition of G is given by sets

V1 = {xi : i = 1, 2, . . . , 3q} ∪ {uk
j , v

k
j , w

k
j : j = 1, 2, . . . , m; k = 2, 4, 5},

V2 = {uk
j , v

k
j , w

k
j : j = 1, 2, . . . , m; k = 1, 3}.
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To complete the proof, it now suffices to show the following.

Claim 2. The set C contains an exact cover for X if and only if the bipartite graph G has a partition into P3.

Proof. Suppose the set C has an exact cover C ′ for X . Then we can construct the following partition of G into P3. If
C j ∈ C ′ then 3-paths

(x1
j , u1

j , u5
j ), (x2

j , v
1
j , v

5
j ), (x3

j , w
1
j , w

5
j ), (u2

j , u3
j , u4

j ), (v2
j , v

3
j , v

4
j ), (w2

j , w
3
j , w

4
j )

belong to the partition of G; if C j 6∈ C ′ then 3-paths

(u2
j , u1

j , u5
j ), (v2

j , v
1
j , v

5
j ), (w2

j , w
1
j , w

5
j ), (u3

j , u4
j , v

3
j ), (v4

j , w
3
j , w

4
j )

are in this partition.
Conversely, suppose graph G has a partition into P3. Note that a vertex xi , i = 1, 2, . . . 3q, of graph G cannot

be a central vertex of any 3-path of the partition into P3. Indeed, if xi is a central vertex of some 3-path, e.g. 3-path
(u1

j , x1
j , y), then the vertex u5

j cannot belong to any 3-path of the partition. The idea of the proof is to show that (i)
if a communication edge for any subgraph H j of G belongs to one of the 3-paths of the partition into P3, then the
other two communication edges associated with H j are also included into some 3-paths of this partition, and (ii) if a
communication edge for a subgraph H j of G does not belong to a 3-path of the partition into P3, then the other two
communication edges associated with H j are not included into 3-paths of this partition.

Then an exact cover C ′ for X can be constructed from the partition of G into P3 as follows. For each j =

1, 2, . . . , m, consider the communication edge x1
j u1

j and include the 3-element subset {x1
j , x2

j , x3
j } into C ′ in case

of (i). For an example of Fig. 3, the exact cover C ′ includes 3-element subsets {x1, x2, x5} and {x3, x4, x6}.
Let Q be some partition of G into P3 and E(Q) be an edge set of 3-paths of Q. To complete the proof of Claim 2,

we have to consider the six following cases for the communication edges associated with each subgraph H j : (1)
x1

j u1
j ∈ E(Q), (2) x2

j v
1
j ∈ E(Q), (3) x3

j w
1
j ∈ E(Q), (4) x1

j u1
j 6∈ E(Q), (5) x2

j v
1
j 6∈ E(Q), (6) x3

j w
1
j 6∈ E(Q) (cases

1–3 correspond to the situation (i), and cases (4)–(6) to the situation (ii), respectively).
We will prove only cases 1 and 4 (proofs of the other cases can be done in the similar manner and are omitted).
CASE 1. If x1

j u1
j ∈ E(Q), then u1

j u
5
j ∈ E(Q) and (x1

j , u1
j , u5

j ) is a 3-path of Q. Hence (u2
j , u3

j , u4
j ) is also a 3-path

of Q. First we show that the vertex v3
j cannot be an end-vertex of any 3-path of Q. Indeed, if (v3

j , v
2
j , v

1
j ) is a 3-path

of Q then vertex v5
j cannot be covered by Q. If (v3

j , v
4
j , w

3
j ) is a 3-path of Q then the vertex w2

j is an end-vertex of

3-path of Q, and either w4
j or w5

j cannot be covered by Q. So, v3
j is a central vertex of 3-path (v2

j , v
3
j , v

4
j ) and, as

a consequence, (x2
j , v

1
j , v

5
j ) is in Q. The vertex w3

j cannot be an end-vertex of any 3-path of Q. Since otherwise w5
j

cannot be covered by Q. Hence (w2
j , w

3
j , w

4
j ) and (x3

j , w
1
j , w

5
j ) are in Q. Thus, x1

j u1
j ∈ E(Q) implies x2

j v
1
j ∈ E(Q)

and x3
j w

1
j ∈ E(Q).

CASE 4. The vertex u5
j is not an end-vertex of (u4

j , u1
j , u5

j ) since otherwise the vertices u2
j and u3

j are not covered

by Q. Therefore, 3-paths (u2
j , u1

j , u5
j ) and (u3

j , u4
j , v

3
j ) are in Q. The vertex v5

j is not an end-vertex of (v4
j , v

1
j , v

5
j )

or (x2
j , v

1
j , v

5
j ) since otherwise v2

j cannot be covered by Q. Thus, 3-path (v2
j , v

1
j , v

5
j ) is in Q and x2

j v
1
j 6∈ E(Q). If

(v4
j , w

3
j , w

4
j ) is in Q, then (w2

j , w
1
j , w

5
j ) is also in Q and x3

j w
1
j 6∈ E(Q). If (v4

j , w
3
j , w

2
j ) is in Q, then (w4

j , w
1
j , w

5
j ) is

also in Q and x3
j w

1
j 6∈ E(Q). Thus, x1

j u1
j 6∈ E(Q) implies x2

j v
1
j 6∈ E(Q) and x3

j w
1
j 6∈ E(Q). �

The proof of Lemma 1 is complete.

Remark 2. Note that PARTITION INTO SUBGRAPHS ISOMORPHIC TO P3 remains NP-complete for planar bipartite
graphs of maximum degree 4. For demonstrating this, instead of the reduction from X3C we can use, without changing
the scheme of the proof of Lemma 1, the reduction from PLANAR EXACT COVER BY 3-SETS, which is NP-complete
even if each element of X appears in at most three 3-element subsets of X [14].

This lemma together with Remark 2 yields our final conclusion.

Theorem 2. MAXIMUM INDUCED MATCHING is NP-complete for planar line graphs of planar bipartite graphs with
maximum degree 4.
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Proof. Let G be a planar bipartite graph of maximum degree 4 with |V (G)| = 3q for some positive integer q. Kobler
and Rotics [27] remark that an induced matching in line graph L(H) of an arbitrary graph H corresponds precisely to
a set of vertex-disjoint 3-paths (not necessarily induced) in H . Thus, G has a partition into P3’s if and only if L(G)

has an induced matching of size at least q . Sedláček [33] proves that the line graph L(H) of planar graph H is planar
if and only if the maximum degree of H is 4 and every vertex of degree 4 is a cut-vertex. Note that the vertices of
degree 4 in graph G from Lemma 1 are cut-vertices. Now the conclusion of the theorem follows from Lemma 1 and
Remark 2. �

Remark 3. As pointed out by one of the referees, the NP-completeness of MAXIMUM INDUCED MATCHING can
be shown also for line graphs of bipartite graphs with maximum degree 3 by using the fact that PARTITION INTO

SUBGRAPHS ISOMORPHIC TO P3 is NP-complete for bipartite graphs of maximum degree 3 [29].

Remark 4. Theorem 2 strengthens the result of Kobler and Rotics [27] on NP-completeness of the MAXIMUM

INDUCED MATCHING problem for line graphs. Obviously, Theorem 2 holds for the class of line graphs of bipartite
graphs. This class can be characterized in terms of forbidden induced subgraphs: graph G is a line graph of a bipartite
graph if and only if G does not contain K1,3, K4 − e and C2n+1 (n > 2) as induced subgraphs; see Harary and
Holzmann [22]. Thus, Theorem 2 shows that the MAXIMUM INDUCED MATCHING problem is NP-complete for
{K1,3, K4 − e, C2n+1 : n > 2}-free graphs.

3. Hardness of approximating MINIMUM MAXIMAL INDUCED MATCHING

In this section, we show that the MINIMUM MAXIMAL INDUCED MATCHING problem is hard to approximate
within bipartite graphs. First we prove the following fact.

Lemma 2. For each instance (C, X) of 3-SAT with a set C of m clauses and a set X of n variables, and for each
integer t > 1, there exists a bipartite graph G = G(C,X),t on 3n+2tn(n+m) vertices such that the following property
holds for the minimum maximal induced matching number:

σ(G)

{
6n, if C is satisfiable,
>tn, if C is not satisfiable.

Proof. Let C = {c1, c2, . . . , cm} and X = {x1, x2, . . . , xn} be an instance of 3-SAT, and let t > 1 be an integer.
We construct a graph G(C,X),t with vertex set C ′

∪ D ∪ X ′
∪ Y ∪ U ∪ V , where X ′

= {xi , x i : i = 1, 2, . . . , n},
Y = {yi : i = 1, 2, . . . , n},

C ′
= {c j,k : j = 1, 2, . . . , m, k = 1, 2, . . . , tn},

D = {d j,k : j = 1, 2, . . . , m, k = 1, 2, . . . , tn},

U = {ui,k : i = 1, 2, . . . , n, k = 1, 2, . . . , tn},

V = {vi,k : i = 1, 2, . . . , n, k = 1, 2, . . . , tn}

are disjoint sets. The edges of G(C,X),t are such that:

• The set X ′
∪ Y induces n 3-paths P i

= (xi , yi , x i ) with edges xi yi and yi x i .
• The set C ′

∪ D induces a matching {c j,kd j,k : j = 1, 2, . . . , m, k = 1, 2, . . . , tn}.
• The set U ∪ V induces a matching {ui,kvi,k : i = 1, 2, . . . , n, k = 1, 2, . . . , tn}.
• For each variable xi (or, rather, vertex yi ), introduce tn edges yi ui,k , k = 1, 2, . . . , tn, between Y and U in G.
• For each clause c j = (l1

j ∨ l2
j ∨ l3

j ), introduce three edges c j,kl1
j , c j,kl2

j , c j,kl3
j , k = 1, 2, . . . , tn, between C ′ and

X ′ in G.

The graph G associated with an instance (C, X) of 3-SAT, where X = {x1, x2, x3, x4, x5} and C = {c1 =

(x1 ∨ x2 ∨ x3), c2 = (x2 ∨ x3 ∨ x4), c3 = (x1 ∨ x3 ∨ x5), c4 = (x3 ∨ x4 ∨ x5)}, and integer t = 1 is shown in
Fig. 4.

It is easy to see that graph G(C,X),t is bipartite with parts C ′
∪ Y ∪ V and D ∪ X ′

∪ U .
Now, suppose that there exists a truth assignment φ satisfying C . We construct an induced matching M ⊆

{xi yi , yi x i : i = 1, 2, . . . , n} choosing the n edges that correspond to true literals under φ. That is, if φ(xi ) = 1,
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Fig. 4. An illustration to the construction.

the edge xi yi is included in M , otherwise yi x i ∈ M . It is straightforward to verify that M is a maximal induced
matching of size n in G. In particular, σ(G) 6 n.

On the other hand, suppose that C is not satisfiable. Assume for a contradiction that σ(G) 6 tn. Let M be a
minimum maximal induced matching in G. If c j,kd j,k ∈ M for some c j,k ∈ C ′ and d j,k ∈ D, then c j,kd j,k ∈ M for
all k (1 6 k 6 tn) by maximality of M . It is easy to see that in any case M contains at least one edge different from
c j,kd j,k , 1 6 k 6 tn, so that |M | > tn, a contradiction.

Similarly if c j,k xi ∈ M for some c j,k ∈ C ′ and xi ∈ X ′ then ui,kvi,k ∈ M for all k (1 6 k 6 tn) by maximality of
M , so that |M | > tn, a contradiction. A similar argument suffices if c j,k x i ∈ M for some c j,k ∈ C ′ and x i ∈ X ′.

Hence M contains no edge incident to a vertex in C ′
∪ D. For each j (1 6 j 6 m), we claim that either xi yi ∈ M

for some xi ∈ X ′ from clause c j or x i yi ∈ M for some x i ∈ X ′ from c j . For otherwise c j,kd j,k ∈ M for all k
(1 6 k 6 tn) by maximality of M , a contradiction. We thus construct a truth assignment φ by setting φ(xi ) = 1
if xi yi ∈ M , and φ(xi ) = 0 otherwise. Similarly to the proof of the first part of the lemma, φ is a satisfying truth
assignment and hence C is satisfiable, a contradiction. Thus σ(G) > tn as required. �

We are now in a position to present the following theorem.

Theorem 3. Assuming that P 6= NP, MINIMUM MAXIMAL INDUCED MATCHING for bipartite graphs cannot be
approximated in polynomial time within a factor of p1−ε for any constant ε > 0, where p denotes the number of
vertices in the input graph.

Proof. For a constant ε > 0, we define k = max{2, d3/εe}. Given an instance (C, X) to 3-SAT with |C | = m and
|X | = n, we set t = nk−2. Now we construct the graph G = G(C,X),t as in the proof of Lemma 2. First we show the
following.

Claim 3. Approximating σ(G) for G = G(C,X),t within a factor of nk−2 is NP-hard.

Proof. Suppose that there exists a polynomial time nk−2-approximation algorithm ALG for MINIMUM MAXIMAL

INDUCED MATCHING within the class of graphs G = G(C,X),t . Then we can use ALG to solve 3-SAT in polynomial
time. Applying ALG to G produces an induced matching M . If C is satisfiable, then σ(G) 6 n by Lemma 2, and
therefore |M | 6 nk−2σ(G) 6 nk−1. If C is not satisfiable, |M | > σ(G) > nk−1 by Lemma 2.

Thus, comparing the size of the matching found by ALG with nk−1 resolves the satisfiability of C in polynomial
time, implying the result. �

Now we estimate t = nk−2 in terms of p = |V (G)| = 3n + 2nk−1(n + m). We may assume that n > 5 and n > m.
Indeed, 3-SAT remains NP-complete under these additional restrictions. We have p > nk . Using the assumption
n > m, we obtain

nk−2
=

p − 3n

2n(n + m)
>

p − 3n

4n2 >
p − 3n

4p2/k
.
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Since k > 2 and n > 5, we have p > 15n and therefore

p − 3n

4p2/k
>

1
5

p1−2/k > p1−3/k .

According to Claim 3, approximating σ(G) within a factor of p1−ε is NP-hard, since nk−2 > p1−3/k > p1−ε. The
proof of Theorem 3 is complete. �

4. Hardness of approximating MAXIMUM INDUCED MATCHING

In this section, we show that the MAXIMUM INDUCED MATCHING problem is hard to approximate for arbitrary
graphs by a reduction from the STABLE SET problem.

Recall that a stable or independent set in a graph G is a set of pairwise non-adjacent vertices. The stability number
of a graph G, denoted by α(G), is the maximum cardinality of a stable set in G. A stable set S ⊆ V (G) is maximum
if |S| = α(G).

STABLE SET

Instance: A graph G and an integer k.
Question: Is there a stable set S in G with |S| > k?

Håstad [23] proved that STABLE SET cannot be approximated in polynomial time within a factor of |V (G)|1−ε for
each constant ε > 0, unless NP = ZPP. Here, ZPP denotes the class of languages decidable by a random expected
polynomial time algorithm that makes no errors. In view of the recent paper by Zuckerman [36], “unless NP = ZPP”
in the above approximability result for STABLE SET can be changed to “unless P = NP” and we can pass to the
following theorem.

Theorem 4. Assuming that P 6= NP, MAXIMUM INDUCED MATCHING cannot be approximated in polynomial time
within a factor of p1/2−ε for any constant ε > 0, where p is the number of vertices in the input graph.

Proof. We construct a polynomial time reduction from STABLE SET problem for arbitrary graphs. Given an instance
(G, k) to STABLE SET with V (G) = {v1, v2, . . . , vn}, we construct a new graph H by adding to G a new vertex
ui and making it adjacent to vi , i = 1, 2, . . . , n. The following property was mentioned (without proof) by Ko and
Shepherd [26].

Claim 4. The size of a maximum induced matching of H is equal to the size of a maximum stable set of G,
i.e., Σ (H) = α(G).

Proof. If M is a maximum induced matching in H , then at least one vertex we of each edge e ∈ M belongs to V (G).
The set S = {we : e ∈ M} is stable in G, so Σ (H) = |S| 6 α(G). Conversely, if S is a maximum stable set of G,
then the set M = {vi ui : vi ∈ S} is an induced matching in H , and therefore Σ (H) > |M | = |S| = α(G). �

Since p = |V (H)| = 2|V (G)| and, unless P = NP, STABLE SET cannot be approximated in polynomial time
within a factor of |V (G)|1−ε for each constant ε > 0, we have that the MAXIMUM INDUCED MATCHING problem
cannot be approximated in polynomial time within a factor of (p/2)1−ε and therefore within a factor of p1/2−ε. �
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