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In this paper we consider analytic vector fields X0 having a non-degenerate center point e.
We estimate the maximum number of small amplitude limit cycles, i.e., limit cycles that
arise after small perturbations of X0 from e. When the perturbation (Xλ) is fixed, this
number is referred to as the cyclicity of Xλ at e for λ near 0. In this paper, we study the
so-called absolute cyclicity; i.e., an upper bound for the cyclicity of any perturbation Xλ

for which the set defined by the center conditions is a fixed linear variety. It is known that
the zero-set of the Lyapunov quantities correspond to the center conditions (Caubergh and
Dumortier (2004) [6]). If the ideal generated by the Lyapunov quantities is regular, then
the absolute cyclicity is the dimension of this so-called Lyapunov ideal minus 1. Here we
study the absolute cyclicity in case that the Lyapunov ideal is not regular.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Cyclicity problem and center conditions

The existential part of Hilbert’s 16th problem asks whether there exists a uniform upper bound for the number of limit
cycles that appear in a planar polynomial vector field, only depending on its degree n. By the so-called Roussarie reduction
this global problem is reduced to the investigation of local ‘cyclicity problems’; in this reduction one looks for ‘limit periodic
sets’, from which limit cycles can arise when slightly perturbing the vector field (cf. [15]). Let (Xλ)λ be an analytic family
of vector fields, such that Γ is a limit periodic set of Xλ0 ; then, the cyclicity of Xλ at (Γ,λ0) is defined by

Cycl
(

Xλ,
(
Γ,λ0)) = lim

λ→λ0
sup
γ →Γ

{# limit cycles γ of Xλ},

where the limit γ → Γ is taken in the sense of the Haussdorf distance. If for every given limit periodic set of an analytic
family of vector fields, the cyclicity is finite, then there exists a uniform upper bound for the number of limit cycles of (Xλ).

There exist several (equivalent) techniques to study this number. Poincaré reduced the study of limit cycles to the study
of zeroes of maps (δλ)λ , associated to the family of vector fields (Xλ)λ near the limit periodic set Γ . These maps are called
displacement maps. In this paper we only consider analytic families of vector fields and isolated singularities; then, by
Poincaré–Bendixson’s theorem, a limit periodic set is one of the following compact invariant sets: a singularity, a periodic
orbit or a graphic. The cyclicity in the first two cases corresponds to the local study of zeroes of an analytic family of maps;
it is theoretically well understood. For instance, the cyclicity is finite; knowing a non-identically zero jet of finite order of
the maps δλ0 at the limit periodic set, an explicit upper bound for the cyclicity is known and given in terms of the order
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of the first non-zero jet of δλ . This result is often referred to as the theorem of Melnikov–Pontryagin and is obtained by
a division–derivation algorithm. In fact, in this case, the bifurcation diagram can completely be described by use of the
Weierstrass Preparation Theorem.

When all jets of the map δλ0 at r = 0 vanish identically, then the vector field is called to be of center type near Γ . This
means that the vector field near Γ consists of a disc or annulus of non-isolated periodic orbits. In this case, the division–
derivation algorithm cannot be applied in a straight forward way. One first has to remove the degeneracy caused by the
center type; this is done by dividing the displacement maps δλ in the Bautin ideal, i.e. the ideal generated by the (analytic)
coefficients in the asymptotic expansion of (δλ)λ . By Hilbert’s base theorem, we know that this ideal is finitely generated,
and the division of (δλ)λ in a so-called minimal set of generators provides the upper bound for the cyclicity in the center
case [15]. The parameter values λ at which the generators of the Bautin ideal vanish, correspond to vector fields Xλ of
center type, and give the center conditions.

In general, it is a difficult problem to calculate the asymptotic expansion of the maps δλ of infinite order; often only a
finite number of coefficients in this expansion can be calculated. In practice, only the first non-zero coefficient can be cal-
culated, and this is sufficient to draw conclusions. Therefore, one restricts the calculations of these coefficients to parameter
values for which the previous coefficients vanish. If at some order the coefficient is not identically zero for all parameter
values, one can give an upper bound for the cyclicity.

In [6] it is proven that the Bautin ideal coincides with the so-called Lyapunov ideal; furthermore, they coincide at each
order of asymptotic expansion. There exist algorithms in computer-algebra packages to calculate the Lyapunov quantities
(cf. [11]).

The definition and properties of Lyapunov quantities can for instance be found in [6,7,11]. Among specialists it is well
known that for classical Liénard equations, the Lyapunov ideal corresponding to the singularity at the origin, are given by
the ‘odd’ coefficients (Cherkas). Using the theory developed in [6], an asymptotic expansion of the maps (δλ)λ is provided
in [7], and the cyclicity is thus calculated, see also [10,16]. However, no such explicit center conditions can be given for the
generalized Liénard equation in terms of its coefficients.

In general, there does not exist any theory to determine the order of non-vanishing coefficient, nor of stabilizing of the
Bautin ideal in terms of the coefficients of the vector field (Xλ)λ . Knowing this order enables us to bound the cyclicity of
the family [15].

When the center condition is generated by merely a 1-dimensional parameter, say ε = 0, then the technique based on
the Bautin ideal corresponds to the technique of computing Melnikov functions (Abelian integrals).

By the difficulty of calculating all Lyapunov quantities that make the Bautin ideal stabilize, the question arised to apply
this 1-parameter technique to estimate the cyclicity in the multi-parameter family. When the center conditions are gener-
ated by a multi-dimensional parameter, say ϕ1, . . . , ϕl , then we know from [3] that the cyclicity of the multi-dimensional
family can be studied by means of a 1-dimensional parameter subfamily. More precisely, there always exists an analytic
curve in parameter space on which the cyclicity is attained, a so-called curve of maximal cyclicity (mcc). As a consequence,
the 1-dimensional technique can be applied as soon as we know an mcc. Under certain generic conditions the existence
of an algebraic mcc is guaranteed (cf. [5]). In general, there does not exist a linear mcc and we only know the existence
of an mcc. If the Bautin ideal is regular, then there exists a linear curve of maximal multiplicity (mmc); this is the case of
the classical Liénard equations. If the Bautin ideal is principal, there always exists a linear curve of maximal index (mic).
As a consequence, if the Bautin ideal is regular or principal, an upperbound for the cyclicity can be found by calculating
Melnikov functions in 1-parameter subfamilies induced by a straight line through λ0 (cf. [5]).

To verify the conditions for existence of linear mcc, mmc or mic, one has to compute the Bautin ideal; hence, their
existence cannot always be ensured. Now the question arises how to estimate the cyclicity at a center by the knowledge of
only a few number of Lyapunov quantities. This is the subject of this paper.

1.2. Results

In this paper, we suppose that for a given analytic family (Xλ)λ , the center conditions can be found by a geometric
argument; suppose that the vector field is of center type for parameter values that satisfy { f (λ) = 0}, where f : (Rm, λ0) →
(Rn,0) is an analytic function, that is not identically zero. Without loss of generality, we can assume that λ0 = 0.

If m = 1, then the Bautin ideal is principal, hence there exists a linear mic (cf. [5]). So the 1-parameter technique can be
applied. If, e.g., the first Lyapunov quantity is given by ( f (λ))5, then, using standard techniques, one finds that the cyclicity
is at most 4. Furthermore, there exist examples for which the cyclicity is exactly 4 (cf. [9,15]). In [9], a precise description
of the bifurcation diagram of limit cycles is given in case that the Bautin ideal is an arbitrary ideal of dimension 1; there
the approach is based on Lyapunov quantities (which is an equivalent approach, cf. e.g., [6]).

Here, we investigate the case that the Bautin ideal is not principal; i.e., the case when the dimension of the Bautin
ideal is at least 2. Throughout this paper, we will often deal with the 2-dimensional case in order to simplify the reading;
however, the results can be generalized in a natural way to any dimension. When the dimension of the Bautin ideal is
greater than 2, the bifurcation diagram becomes more complicated: besides Hopf bifurcations also boundary bifurcations
can occur (cf. [6]). This extra complexity is also reflected in the analysis of the bifurcation diagram of the 2-dimensional
case study in Section 3.2.
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Suppose that the mapping(
R

m,0
) → R

2 : λ �→ (
f1(λ), f2(λ)

)
is a local submersion at λ = 0.

Then, the absolute cyclicity for a class of analytic families for which the first Lyapunov quantity takes the form f1(λ) f2(λ)

is infinite (Theorem 3). Recall that by absolute cyclicity we mean the maximal cyclicity for an analytic family of vector
fields, satisfying a given property; here the absolute cyclicity concerns the maximal cyclicity taken over all analytic families
having a center in the origin with centers generated by either f1(λ) = 0 or f2(λ) = 0, and first Lyapunov quantity given by
f1(λ)k1 f2(λ)k2 .

More generally, if we suppose that the first Lyapunov quantity is given by λ
k1
1 λ

k2
2 · · · · · λ

km
m , where ki ∈ N, 1 � i � m,

k1 + · · · + km � 1. Then, the study of the maximal possible cyclicity is reduced to a problem of estimating the maximum
number of small positive zeroes in analytic families of functions (δλ)λ , λ = (λ1, . . . , λm), satisfying

δλ|λ=0 ≡ 0 and δλ(r) = rn(λk1
1 λ

k2
2 · · · · · λkm

m + O (r)
)
, (1)

for r → 0, ‖λ‖ → 0, and for certain n,ki ∈ N, 1 � i � m. For m = 1, the answer is contained in the Weierstrass Preparation
Theorem. As far as we know, for m � 2, there does not exist an analogue of the Weierstrass Preparation Theorem, where the
standard family (δ̄λ)λ is a family of multivariate polynomials δ̄λ . Furthermore, we point out that the property (1) is too wild
to find a uniform upperbound for the maximal number of small positive zeroes of δλ , ‖λ‖ ↓ 0; in other words, the absolute
cyclicity is infinite (Theorem 3).

However, if, instead of (1), the derivatives of δλ(r) with respect to r satisfy

δλ|λ=0 ≡ 0 and δ
(2 j−1)
λ (0) = λ

k j

j , 1 � j � m, (2)

for ‖λ‖ → 0, ∀1 � j � m, for certain n j,k j ∈ N, 1 � j � m, with n1 < n2 < · · · < nm , then by a division–derivation algorithm,
the absolute cyclicity C abs

m (k1, . . . ,km) is shown to be finite (Theorem 4):

C abs
m (k1, . . . ,km) � k1 · · · · · km + m − 2, (3)

where

C abs
m (k1, . . . ,km) = sup

{
Cm

(
δλ,

(
0+,0

))
: (δλ)λ satisfies (2)

}
,

and

Cm
(
δλ,

(
0+,0

)) = lim
λ→0

sup
r↓0

{# positive zeroes r of δλ}.

Notice that the result in (3) can be generalized in a trivial way for families δλ satisfying

δλ|λ=0 ≡ 0, δ
(p)
λ (0) = 0, ∀0 � p � nm − 1, n 
= n j and δ

(n j)

λ (0) = λ
k j

j .

In particular, from [9], we obtain Theorem 2:

C abs
1 (k) = k − 1,

and for m = 2, we find the following finer bounds (Theorem 6):

C abs
2 (k1,1) = k1 and for k1 � 2,

[
3k1 + 1

2

]
� C abs

2 (k1,2) � 2k1,

where [s] denotes the integer part of s. Furthermore, in Section 3.2, we investigate the germ of the bifurcation diagram for
‖λ‖ → 0, r ↓ 0 for m = k1 = k2 = 2 in more detail; in general it corresponds to the case where the first (respectively second)
Lyapunov quantity is given by

f1(λ)2 (
respectively f2(λ)2).

Our results seem to indicate that in this case the absolute cyclicity would be 3.
The paper is organized as follows. In Section 2, we investigate the existence of upper bounds for the absolute cyclicity

with respect to (1) as well as (2); if it exists, we provide an upper bound. Next, in Section 3, we concentrate on the case
that the Bautin ideal is 2-dimensional; as such, we obtain finer estimates.

In the analysis of the bifurcation diagram of the zeroes of the analytic function δ, we use standard tools, such as the
Bautin ideal (cf. [15]), Newton’s diagram (cf. [1]), discriminant (cf. [13]) and Descartes’ Rule.

Let us finally remark that for a given analytic family of functions δ(r, λ) with δ(r, λ) = δ(−r, λ), we can construct the
analytic family of vector fields
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Xλ =
(

x
∂

∂ y
− y

∂

∂x

)
+ δλ(r)

(
x

∂

∂x
+ y

∂

∂ y

)
,

where r = √
x2 + y2 and δ(r, λ) = δλ(r). Then, the function δλ is a displacement map for Xλ , up to a non-zero analytic factor.

However, in the study of limit cycles, these functions play the same role and have the same properties as the traditional
displacement map. In particular, by symmetry with respect to the center in the origin, if we have locally the following
asymptotics:

δ(r, λ) =
t∑

i=1

αi(λ)ri + O
(
rt+1), r ↓ 0,

then it is well known that there exist analytic functions Aij(λ) such that locally

α2i(λ) =
i∑

j=1

Aij(λ)α2 j−1(λ)

(cf. [4]). This is the reason why we provide with examples that are even with respect to r.

2. Upper bounds for the absolute cyclicity

We first study analytic families of functions satisfying (1). For m = 1, the absolute cyclicity can be calculated exactly.
This result has been proven in [9]. For sake of completeness, we here include the precise result – rephrased in terms of
zeroes of analytic functions – and its proof. In particular the proof provides insight in the multi-dimensional case (m > 1).
Its proof relies on the curve selection lemma for subanalytic sets, which we state below:

Lemma 1. (See [2,8,14].) Suppose that V is an open subanalytic set in R
p , and λ0 is an accumulation point of V , then there exists an

analytic curve γ : [0,1] → R
p such that γ (]0,1[) ⊂ V and γ (0) = λ0 .

Theorem 2. (See [9].) Consider any analytic family (δλ)λ of functions with λ ∈ R, such that

δλ(r) = r p(
λk + λg(r, λ)

)
, (4)

for p ∈ N with

g(r, λ) = O (r), r ↓ 0. (5)

Then, C abs
1 (k) = k − 1.

Proof. Let (δλ)λ be a fixed analytic family of maps satisfying (4) and (5); then there exists 1 � i � k, such that

δλ(r) = δ(r, λ) = λir p δ̂(r, λ),

for an analytic map δ̂ with

δ̂(r, λ) = λk−i + O (r), r → 0.

First we show that

Cm
(
δλ,

(
0+,0

))
� k − i � k − 1;

then, by providing an example in which Cm(δλ, (0+,0)) = k−1, the result follows. Suppose that the cyclicity Cm(δλ, (0+,0)) >

k − i. As a consequence of the curve selection lemma (Lemma 1), there exist continuous functions ξ j : [0, A] → R,
1 � j � k − i + 1 (that are even analytic outside λ = 0) such that for 0 < λ < A:

0 < ξ1(λ) < ξ2(λ) < · · · < ξk+1(λ) (6)

with ∀1 � j � k + 1,

δ̂
(
ξ j(λ),λ

) ≡ 0 and ξ j(0) = 0

(cf. [4]). From the Intermediate Value Theorem for continuous functions, it follows that for any r small enough and any
0 < A0 < A small enough, i.e., r ∈ ⋂k−i+1

j=1 ξ j(]0, A0[), we find (k − i + 1) values λ, say λ1, . . . , λk−i+1, such that ξ j(λ j) = r.

By (6), these λ1, . . . , λk−i+1 are disjoint zeroes of δ̂(r, ·) in [0, A0]. However, by Rolle’s theorem, for r and A0 small enough,
the map δ̂(r, ·) has at most k − i zeroes in [0, A0]. Contradiction.
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Consider now the analytic family of functions defined by

δ̄λ(r) = δ̄(r, λ) = rλ
(
λk−1 + ν1λ

k−2r + ν2λ
k−3r2 + · · · + νk−2λrk−2 + νk−1rk−1),

where ν = (ν1, . . . , νk) ∈ R
k , λ ∈ R, r > 0. For an appropriate choice of ν = (ν1, . . . , νk), we have

Cm
(
δ̄λ,

(
0+,0

)) = k − 1. �
In particular, from this result it follows that the absolute cyclicity of an analytic family of functions δλ cannot be bounded

for the class of functions defined by (1), as soon as m � 2.

Theorem 3. Let m � 2 arbitrary but fixed. Consider analytic families of functions satisfying (1) such that
∑

1�i1<i2�m(ki1ki2 )
2 
= 0

(i.e., at least two indices are non-zero). Then, the absolute cyclicity is infinite. In particular, let 1 � i1 < i2 � m be integers such that
ki1ki2 
= 0. Then, ∀M ∈ N, there exists an analytic family ( δ̂λ)λ of the above form with

Cm
(
δ̂λ,

(
0+,0

)) = M.

Proof. Write K = ∑m
i=1,i 
=i2

ki − 1, then we can choose q ∈ N such that N = K + q(ki2 − 1) − 1 � M . Choose real constants
α1, . . . ,αN such that

1 + α1ρ + α2ρ
2 + α3ρ

3 + · · · + αK ρK + · · · + αNρN

has exactly N positive zeroes. Let 1 � i1 < i2 � m be the smallest integers for which ki1ki2 
= 0. Then, define ( δ̂λ)λ by

δ̂λ(r) = λ
k1
1 λ

k2
2 . . . λ

km
m + α1λ

N+1
i1

λi2 r + α2λ
N
i1
λi2 r2 + · · · + αK−1λ

N+3−K
i1

λi2 rK−1

+ αK λi1λ
ki2
i2

rK + αK+1λ
N+1−K
i1

λi2 rK+1 + · · · + αNλ2
i1
λi2 rN .

Consider the 1-parameter subfamily defined by the curve ζ(C) = (ζ1(C), . . . , ζm(C)), C > 0 with

ζi(C) = C, ∀i 
= i2 and ζi2(C) = Cq;
this yields to the 1-parameter family

δ̂ζ(C)(r) = Cq+1[C N+1 + α1C Nr + α2C N−1r2 + · · · + αK−1C N+2−K rK−1αK Cq(ki2 −1)rK

+ αK+1C N−K rK+1 + · · · + αN−1CrN]
.

Next we perform the rescaling r = Cρ , and we can factorize δ̂λ as follows:

δ̂ζ(C)(λ1ρ) = C N+q+2(1 + α1ρ + α2ρ
2 + · · · + αN−1ρ

N−1 + αNρN)
.

This map has N positive zeroes ρ . As a consequence, for parameter values λ that belong to the curve ζ , the map δ̂λ has N
positive zeroes r, that tend to zero when ‖λ‖ → 0. The result follows. �

If
∑m

i=1 ki 
= 0, but for every 1 � i1 < i2 � m, ki1ki2 = 0, then without refining the class of analytic families of functions
(δλ)λ in (1), the absolute cyclicity also is infinite. This fact is illustrated by the following family of analytic functions (δλ)λ ,
in case m = 2:

δλ(r) = λ1 + α1λ
l
2r + α2λ

l−1
2 r2 + · · · + αlλ2rl.

For an appropriate choice of the constants αi , 1 � i � l, the cyclicity of this family, N2(δλ, (0+,0)), is l. If we now refine this
class of analytic families of functions (δλ)λ to the class determined by (2), then we have the following absolute finiteness
result:

Theorem 4. Suppose that (δλ)λ is an analytic family of functions with asymptotic expansion for r ↓ 0,

δλ(r) =
m∑

i=1

Āiλ
ki
i rni + O

(
rnm+1) (7)

for λ = (λ1, λ2, . . . , λm) ∈ R
m, λ near 0, ki ∈ N \ {0}, Āi 
= 0, ∀1 � i � m, and ni ∈ N with n1 < n2 < · · · < nm. Then, its cyclicity at

(0+,0) is bounded by k1k2 . . .km + m − 2. As a consequence,

C abs
m (k1,k2, . . . ,km) � k1k2 . . .km + m − 2.

In particular, C abs(k, l) � kl.
2
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Proof. The Taylor expansion of δ(·, λ) at r = 0, defines analytic functions α j(λ), j � nm + 1, in a neighbourhood of λ = 0,
where α j(λ) is the coefficient corresponding to the power r j . Then, in the local ring of germs of analytic functions at λ = 0,
we consider the ideal generated by{

λ
k1
1 , λ

k2
2 , . . . , λ

km
m ,α j(λ): j � nm + 1

};
this ideal is called the Bautin ideal associated to the analytic family of functions (δλ)λ . By Hilbert’s base theorem, the Bautin
ideal is finitely generated; in particular, we can choose a set of generators of the form:{

λ
k1
1 , λ

k2
2 , . . . , λ

km
m ,αn j (λ): m + 1 � j � L

}
,

such that n1 < n2 < · · · < nL and ∀nm + 1 � j < nt :

α j ∈ {
λ

k1
1 , λ

k2
2 , . . . , λ

km
m ,α j(λ): nm+1 � j < nt

}
.

As a consequence, by a regrouping of the terms, we can write:

δ(r, λ) =
m∑

i=1

λ
ki
i h̄i(r, λ) +

L∑
i=m+1

αni (λ)h̄i(r, λ), (8)

such that the factor functions h̄i have the following asymptotics for λ → 0, r ↓ 0:

h̄i(r, λ) = Air
ni + o

(
rni

)
, 1 � i � L,

for non-zero constants Ai , 1 � i � L. Next, by the multi-variate Taylor’s theorem at λ = 0, we find for each αni , m+1 � i � L
a polynomial ϕi(λ) in the parameter variable λ1, λ2, . . . , λm such that

αni − ϕi ∈ I
(
λ

k1
1 , . . . , λ

km
m

); (9)

i.e., the analytic function αni − ϕi can be divided in the ideal generated by λ
k1
1 , . . . , λ

km
m and ϕ is a polynomial of degree

k j − 1 with respect to λ j , 1 � j � m. By again regrouping the terms in (8), we find the local division:

δ(r, λ) =
m∑

i=1

λ
ki
i hi(r, λ) +

L∑
i=m+1

ϕi(λ)hi(r, λ), (10)

with ∀1 � i � L:

hi(r, λ) = Air
ni + o

(
rni

)
, 1 � i � L. (11)

By the division–derivation algorithm, we find a compact neighborhood W of λ = 0 in R
2 × R

n and a neighborhood V of
r = 0 in R

+ such that the function δ(·, λ) has at most L − 1 zeroes in V , ∀λ ∈ W .
In other words,

Cabs
m (k1, . . . ,km) � L − 1.

By Newton’s diagram in N
m , (9) and the fact that the family (δλ)λ is not identically 0, it follows that

L − m � k1k2 · · · · · km − 1,

and the result follows. �
Remark 5. Using a division–derivation argument, Theorem 4 can be generalized to e.g., a displacement map δλ having an
asymptotic expansion given by

δ(λ)(r) =
m∑

i=1

Āi(λ)λ
ki
i rni + λl

1 f (r, λ) + O
(
rnm+1), r ↓ 0,

for λ = (λ1, λ2, . . . , λm) ∈ R
m , ‖λ‖ → 0, ni ∈ N with n1 + 1 < n2 < · · · < nm and for analytic functions Āi : (Rm,0) → R with

Āi(0) 
= 0, 1 � i � m, and l ∈ N1 = N \ {0}, f an analytic function such that

f (r, λ) = A(λ)rn1+1 + o
(
rn1+1), r ↓ 0,

and A(0) 
= 0. Then,

Cabs
m � k1k2 · · · · · km + m − 1.



M. Caubergh, A. Gasull / J. Math. Anal. Appl. 366 (2010) 297–309 303
3. Bounds for the absolute cyclicity for λ ∈ RRR
2

3.1. Lower bounds

We now investigate the absolute cyclicity in the case that the Bautin ideal is 2-dimensional, and we look for lower
bounds for the absolute cyclicity. In the 2-dimensional case the parameter λ ∈ R

m can be expressed by analytic coordinates
(a,b, ν), where (a,b) ∈ R

2 and ν ∈ R
m−2. In what follows we will forget about the parameter variable ν , and we will simply

write λ = (a,b). However, all the results can evenly be stated for λ = (a,b, ν).

Theorem 6. Suppose that (δλ)λ is the analytic family of functions, λ = (a,b), that satisfy

δλ(r) = Ā1akrn̄1 + Ā2blrn̄2 + O
(
rn̄2+1), r ↓ 0,

for λ → 0, for certain positive integers n̄1 < n̄2 and certain analytic functions Āi : R
2 → R, i = 1,2 with Ā1(0) Ā2(0) < 0. Then,

(k + 1)(l + 1) − gcd(k, l) − 1

2
� C abs

2 (k, l) � kl.

In particular C abs
2 (k,1) = k and [ 3k+1

2 ] � C abs
2 (k,2) = 2k.

Proof. What needs to be proved is the lower bound. As for any lower bound, it suffices to construct an example realizing it.
Therefore, we look for a ‘standard polynomial’ in λ = (a,b) with given highest order terms and with coefficients that are
powers of r2,

δ(r,a,b) = ak + blr2 + g(r,a,b),

where g(r,a,b) = O (r3), r → 0, and the function vanishes when a = b = 0. Generalizing the 1-parameter case, where the
proof is based on the Preparation Theorem, we construct a polynomial g in powers aib j , 0 � i � k, 0 � j � l and i + j 
= 0.
To this end we use Newton’s diagram exhibiting two leading monomials, which define some natural quasi-homogeneous
degree for the problem. Joining them with a line yields to a finite number of monomials below that line, with lower quasi-
homogeneous degree. These correspond to the degrees of freedom available to produce the limit cycles. Then one needs
to find a natural ordering of these monomials with respect to quasi-homogeneous degree so that each monomial can be
used to create a limit cycle. Further in the article – after Remark 7 – we illustrate the ideas and notations in this proof in a
concrete example (cf. also Fig. 1).

First we select a maximal number of powers aib j , that are independent in the following sense; a set {ais b js , s = 1,2,

. . . , L} is independent if there exist a vector (K , L) such that the straight lines perpendicular to (K , L) and through the
points (is, js), s = 1,2, . . . , L, all are different. The set is ordered by the following ordering with respect to (K , L):

ais b js ≺ air b jr ⇐⇒ K is + L js > K ir + L jr;
geometrically, the powers ais b js are identified with the vectors (is, js); if the vector perpendicular to (K , L) through the
point (ir, jr) lies below the one through the point (is, js), then the corresponding powers receive the reverse ordering.

We choose (K , L) such that the cardinality of the corresponding independent set S is maximal, K , L � 1, and such that
ak,bl ∈ S with

Kk > Ll > K i + L j, for all aib j ∈ S.

Now we construct the set S by considering the corresponding set of vectors, the so-called ‘admissible’ exponents. Let us
denote by K and H the following sets: K = {(i, j): 1 � li + kj � kl} and

H =
{

j2 − j1

i2 − i1
: (i1, j1), (i2, j2) ∈ K, i2 � i1 and j2 � j1

}
.

Geometrically, H corresponds to the set of all rational numbers that appear as slope of the line between two points in K.
We consider the straight line through (0,k) and (l,0); then, we rotate this line clockwise through the point (0, l) slightly,
in such a way that we do not pass through another point of K. Notice that the slope, say −μ, of the rotated line can be
chosen to be any rational number different from l/k such that

l

k
<

K

L
= μ and

K

L
/∈ H. (12)

Furthermore, we can suppose that

Kk > Ll + 2. (13)
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Condition (13) is not restrictive but a sufficient condition to end up with an analytic map δ with respect to r2, at r = 0;
indeed, this condition can be obtained after replacing K resp. L by nK resp. nL, where n ∈ N1. In particular, we can suppose
that K and L are even integers.

Set K1 = K \ {(i, j): li + kj = kl}, N = #K1 and denote the elements of K1 by (is, js), 1 � s � N , using the order
introduced above with respect to (K , L):

(iN , jN) ≺ (iN−1, jN−1) ≺ · · · ≺ (i1, j1). (14)

Now we define the corresponding powers ns , 1 � s � N . Denote σ(is, js) = σs := K is + L js; by construction, by (14), (12)

and (13), we have

Ll > σ1 > σ2 > · · · > σN .

Next, define ns = lL − σs + 2, then

2 < n1 < n2 < · · · < nN .

Notice that the integers ns , s = 1 . . . N , can be supposed to be even (because K and L can be taken to be even).
Then we define the ‘standard polynomial’ with respect to (k, l) by

δ±(r,a,b) = ak ± blr2 +
N∑

s=1

αsrns ais b js . (15)

For a good choice of the coefficients αs , 1 � s � N , this polynomial δ has cyclicity N + 1 for (a,b) → (0,0). More concretely,
this cyclicity will be attained along an algebraic curve (an mcc) of the form

a = C K , b = α0C L, r = Cρ,

where C is the regular parameter, and α0 a real constant to be determined now.
Choose real constants αs , 0 � s � N , such that the polynomial map

ρ �→ αl
0 +

N∑
s=1

αis
0 αsρ

ns−2

has exactly N disjoint, strictly positive simple zeroes ρ∗
1 < ρ∗

2 < · · · < ρ∗
N . Then, by the implicit function theorem,

CkK−lL−2 + ρ2

(
αl

0 +
N∑

s=1

αis
0 αsρ

ns−2

)
has N + 1 disjoint zeroes ρ0(C) < ρ1(C) < · · · < ρN (C) that depend smoothly on C , for C sufficiently small, with

ρ0(0) = 0, ρs(C) = ρ∗
s , ∀1 � s � N.

To end we prove that

N = (k + 1)(l + 1) − gcd(k, l) − 3

2
, (16)

and the theorem follows.
Recall that N = #K1. If d(k, l) represents the number of integer couples on the segment joining (0,k) and (l,0), then N

can be expressed as

N = #{integer couples in [0,k] × [0, l]} − d(k, l)

2
− 1 = (k + 1)(l + 1) − d(k, l)

2
− 1, (17)

where the ‘minus one’ corresponds with the point (0,0) that is not in the set K1. Now we are left with finding the number
d(k, l); by definition,

d(k, l) = {
(x, y) ∈ N

2: lx + ky = kl, 0 � x � k, 0 � y � l
}
.

Therefore we look for points (x, y) with integer coordinates satisfying the diophantine equation

lx + ky = kl, with 0 � x � k.

Its solutions are

x = 0 + k

gcd(k, l)
t, y = l − l

gcd(k, l)
t, with t = 0,1, . . . ,gcd(k, l).

Hence d(k, l) = gcd(k, l) + 1 and formula (16) follows. �
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Fig. 1. Illustration for the proof of Theorem 6 in case k = 3 and l = 5.

Remark 7. The number N can also be obtained using the celebrated Pick’s formula. Consider a simple polygon constructed
on a grid of the plane whose coordinates are integers and such that all its vertices are points of the grid. Then

A = i + b

2
− 1,

where A is the area of the polygon, i is the number of points of the grid located in its interior and b is the number of
points of the grid on the polygon’s perimeter, see [12]. By applying it to the triangle A with vertices at (0,0), (0,k) and
(l,0), the expression in (16) also follows.

To illustrate the ideas and notations of the above proof we develop a concrete example (cf. Fig. 1). Consider the case
l = 5 and k = 3. Then if we take K = 9 and L = 5, conditions (12) are satisfied, i.e., 5

3 < K
L < 2, but condition (13) is

not satisfied because Ll = 25 and Kk = 27. So we can consider K = 18 and L = 10. With these values the set K \ {(i, j):
li + kj = kl} consists of the points

(0,1), (0,2), (0,3), (0,4), (1,0), (1,1), (1,2), (1,3), (2,0), (2,1).

Note that there are precisely N = 6×4−4
2 = 10 points. These ten points, together with (0,5) and (3,0), give the twelve points

which we use in the construction of the map δ± . On each of these points the weight σ(i, j) = 18i + 10 j gives a different
value, and they range between σ(0,1) = 10 and σ(3,0) = 54, giving rise to twelve different parallel lines 18x + 10y =
18i + 10 j. By ordering the twelve points according to σ(is, js) and by defining the corresponding ns we get that the
polynomial (15) is:

δ±(r,a,b) = a3 ± b5r2 + α1ab3r4 + α2a2br6 + α3b4r8 + α4ab2r14 + α5a2r16 + α6b3r22

+ α7abr24 + α8b2r32 + α9ar34 + α10br42.

This polynomial on the algebraic curve

a = C18, b = α0C10,

writes as

δ±(r,a,b) = C54 ± α5
0 C50r2 + α1α

3
0 C48r4 + α2α0C46r6 + α3α

4
0 C40r12 + α4α

2
0 C38r14 + α5C36r16

+ α6α
3
0 C30r22 + α7α0C28r24 + α8α

2
0 C20r32 + α9C18r34 + α10α0C10r42.

By substituting r = Cρ in the expression of δ±(r,a,b) it is not difficult to see that for suitable αs it has N + 1 = 11
positive roots that go to zero when C ↓ 0.
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Remark 8. The method used to prove Theorem 6 can also be used to give a lower bound for the cyclicity C abs
m (k1,k2, . . . ,km)

of the family of functions (7) studied in Theorem 4. This lower bound is∏m
j=1(k j + 1) − d(k1,k2, . . . ,km)

2
+ m − 2,

where d(k1,k2, . . . ,km) counts the number of points with non-negative integer coordinates that belong to the hyperplane

m∑
j=1

k1k2 · · ·k j−1̂k jk j+1 · · ·kmx j =
m∏

j=1

k j .

Note that this formula comes from the natural extension of (17) to R
m . The above linear diophantine equation can be

studied to get more explicit expressions of d(k1,k2, . . . ,km).

3.2. Detailed analysis of C abs
2 (2,2)

As a corollary of Theorem 6, we get:

Corollary 9. Suppose that δ is an analytic map with asymptotics

δ(r, λ) = δλ(r) = r
(
a2 + K1b2r2 + O

(
r4)), r → 0, (18)

where λ = (a,b) and K1 is a non-zero real constant and δ(r,0) ≡ 0. Then,

3 � C abs
2 (2,2) � 4.

This section gives several results that seem to indicate that the absolute cyclicity is 3.
Using Taylor’s theorem with respect to (a,b, r) at (0,0,0), we can distinguish the study of families (δ(·, λ))λ , satisfy-

ing (18), in between the following 4 types: for r → 0,

δ(r,a,b) = r
(
a2 + K1b2h1(r,a,b) + K2abh2(r,a,b) + K3ah3(r,a,b) + K4bh4(r,a,b)

)
, (19)

δ(r,a,b) = r
(
a2 + K1b2h1(r,a,b) + K2abh2(r,a,b) + K3bh3(r,a,b) + K4ah4(r,a,b)

)
, (20)

δ(r,a,b) = r
(
a2 + K1b2h1(r,a,b) + K2ah2(r,a,b) + K3bh3(r,a,b)

)
, (21)

δ(r,a,b) = r
(
a2 + K1b2h1(r,a,b) + K2bh2(r,a,b) + K3ah3(r,a,b)

)
, (22)

where K2, K3, K4 are real constants and h1,h2,h3,h4 are analytic functions with the following asymptotics for r → 0:

h1(r,a,b) = r2 + O
(
r3), h2(r,a,b) = rn2 + O

(
rn2+1),

h3(r,a,b) = rn3 + O
(
rn3+1), h4(r,a,b) = rn4 + O

(
rn4+1),

for some integers 2 < n2 < n3 < n4.
By the theory based on Bautin ideal, the map δ of either type (21) or (22) can have at most 3 positive zeroes r shrinking

to zero with the parameter (a,b). From the ideas of the proof of Theorem 6, we can easily construct examples of type (21)

or (22) having 3 positive zeroes r shrinking to zero with the parameter. Clearly, a map of type (19) or (20) has at most 4
small positive zeroes shrinking to zero with the parameter (a,b).

In the rest of this section we study a particular case of the subcases (19) respectively (20) in which the functions hi are
monomials r2i , 1 � i � 4, and call the maps δλ by (Fλ) and (Gλ) respectively; if we write S = r2 and λ = (a,b), then

Fλ(S) = F (S, λ) = a2 + K1b2 S + K2abS2 + K3aS3 + K4bS4, (23)

respectively

Gλ(S) = G(S, λ) = a2 + L1b2 S + L2abS2 + L3bS3 + L4aS4. (24)

In Section 3.2.1 (respectively 3.2.2), we investigate what are the regions adhering at (0,0), existing of parameter values
λ = (a,b), for which the map Fλ (respectively Gλ) has a fixed number of positive zeroes. Next, we prove that for any
sequence of parameters (λn)n∈N with λn → (0,0), n → ∞, the map Fλn (respectively Gλn ) have at most 2 positive zeroes,
∀n sufficiently large. If one of the constants Ki , 1 � i � 4 (respectively Li , 1 � i � 4) vanishes, then the maximal number of
zeroes of Fλ and Gλ is strictly smaller than 4.

In what follows we show that for any choice of the constants Ki , 1 � i � 4, there are at most 3 positive zeroes shrinking
to 0 with the parameter (a,b). By use of the Newton polygon, we describe the bifurcation diagram of F and G near
λ = (0,0). In this way, the study of the 2-parameter family (Fλ)λ (respectively (Gλ)λ) can be reduced to the study in a
1-parameter family (Fζ(ε))ε (respectively (Gζ(ε))ε); using again Newton polygons on these 1-parameter families, we find the
following result:
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Theorem 10. For any fixed choice of the real constants Ki , Li , 1 � i � 4, the maximal number of positive zeroes S = ξ(a,b) of the
polynomial F(a,b) (resp. G(a,b)) defined in (23) (resp. (24)) with ξ(a,b) ↓ 0 when (a,b) → (0,0), is strictly smaller than 4.

Applying Descartes’ Rule, we notice that the map Fλ (respectively Gλ) can only have 4 positive zeroes for parameter
values λ = (a,b) that satisfy

K1 < 0, K2ab > 0, K3a < 0, K4b > 0,

respectively

L1 < 0, L2ab > 0, L3b < 0, L4a > 0. (25)

In particular, it is necessary that

sgn(K1 K3) = sgn(a), (26)

respectively

sgn(L1L3) = sgn(b) and sgn(L4) = sgn(a). (27)

Hence, in the search for 4 positive zeroes we can assume that the constants Ki , 1 � i � 4 (respectively Li , 1 � i � 4) are
non-zero and that K1 < 0 (respectively L1 < 0).

3.2.1. Type (23)
The bifurcation diagram of the number of positive zeroes of Fλ with respect to the parameter λ = (a,b) is determined

by the following three curves, L1, L2, and L3:

L1 ↔ b = 0, L2 ↔ a = 0, L3 ↔ D(a,b) = 0,

where D(a,b) is the discriminant of the polynomial F(a,b) (cf. [13]):

D(a,b) = −27K 4
3a8 − 4K 3

3 K 3
1a3b6 − 6K4 K 2

3 K 2
1a4b5 − 192K 2

4 K3 K1a5b4 + (
256K 3

4 + 18K 3
3 K1 K2

)
a6b3

+ 144K4 K2 K 2
3a7b2 + 18K4 K3 K 3

1 K2a2b8 + 144K 2
4 K 2

1 K2a3b7 + K 2
2 K 2

3 K 2
1a4b6 − 80K4 K3 K1 K 2

2a5b5

− 128K 2
4 K 2

2a6b4 − 4K 3
2 K 2

3a7b3 − 27K 2
4 K 4

1b10 + 16K 4
2 K4a6b5 − 4K 3

2 K4 K 2
1a3b8.

For parameter values (a,b) belonging to L1, the polynomial F(a,b) , looses at least one degree; therefore, when we let the
parameter value cross L1 a zero can disappear (or appear). For parameter values (a,b) belonging to L2, the polynomial F(a,b)

has a zero located in the origin; as such a positive zero can disappear, when we let the parameter value pass through L2.
The zero-set of the discriminant, L3, determines the parameter values (a,b) for which F(a,b) has multiple zeroes. Since
multiple zeroes are unstable, the bifurcation of zeroes is possible when crossing L3.

Therefore we study the behaviour of the graph D(a,b) = 0 near (a,b) = (0,0); in particular, we determine the asymp-
totics of its branches, using Newton’s polygon (see [1]). The Newton polygon P is constructed from the set of points:

P = {
(8,0), (7,2), (7,3), (6,3), (6,4), (6,5), (5,4), (5,5), (4,5), (4,6), (3,6), (3,7), (3,8), (2,8), (0,10)

}
.

Hence, there are two ‘feasible lines’ (cf. [1]), that bound the Newton polygon from below: the line through the points
(8,0) and (3,6), and the line through the points (3,6) and (0,10). The slopes of the feasible lines are respectively −6/5
and −4/3. Therefore, the graph of D(a,b) = 0 has two branches adhering at the origin, say γ1 and γ2; their asymptotic
behaviour near the origin is given by

γ1 ↔ a = AC6, b = BC5 + O
(
C6), C → 0,

γ2 ↔ a = EC4, b = F C3 + O
(
C4), C → 0,

for some non-zero constants A, B, E, F . In fact, these constants are determined by D(γ1(C)) = 0 and D(γ2(C)) = 0; as a
consequence,

−K 3
3 A3(27K3 A5 + 4K 3

1 B6)C48 + O
(
C49) = 0,

−K 3
1 F 6(27K 2

4 K1 F 4 + 4K 3
3 E3)C30 + O

(
C31) = 0

or equivalently,

A5 = −4K 3
1 B6

27K
and E3 = −27K 2

4 K1 F 4

4K 3
.

3 3
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Fig. 2. Graph of D(a,b) = 0, near (0,0), taking K1 = K3 = −1 and K2 = K4 = 1.

From these expressions, it follows that the curves γ1 and γ2 lay in the half plane {K1 K3a < 0}, see Fig. 2. Now, by (26), the
map F (·,a,b) has strictly less than 4 positive zeroes for (a,b) in this half plane. As a consequence, the half plane giving rise
to possibly 4 positive zeroes, does not intersect L3 in a sufficiently small neighborhood of (0,0). Furthermore, it follows
that the distribution of the zeroes (positive, negative, imaginary) in a sufficiently small neighborhood of the origin, is stable
at each of the quadrants in the half plane {K1 K3a > 0}.

Hence, to find out whether a region in parameter space realizes 4 positive zeroes, it suffices to investigate the maximum
number of zeroes of F (·,a,b) induced by an arbitrary linear curve in each of the two quadrants {K1 K3a > 0, b > 0}, and
{K1 K3a > 0, b < 0}.

For a = εā, b = εb̄, ε ↓ 0, ā 
= 0, b̄ 
= 0, the map F (·,a,b) writes as

F (S,a,b) = ε
(
εā2 + εK1b̄2 S + εK2āb̄S2 + K3āS3 + K4b̄S4).

Using next lemma we find that F (·, εā, εb̄) has 2 positive zeroes, for sufficiently small ε > 0.

Lemma 11. Let p1 > 0, p2 < 0, p3 > 0 and p4 < 0 be fixed real constants. Then, for each sufficiently small ε > 0, the polynomial Pε

defined by

Pε(S) = ε
(

p1 + p2 S + p3 S2) + p4 S3 + S4,

has exactly 2 real zeroes which are simple and positive.

Proof. By Descartes’ Rule, the map Pε has no negative zeroes; as a consequence, all real zeroes are positive. When ε is zero
the polynomial has a triple root at 0 and a simple positive one at S = −p4. When ε > 0 is small we can find the number of
positive zeroes of the polynomial Pε by studying it as an algebraic curve in two variables (ε, S) in a neighborhood of (0,0).
By using again the Newton polygon we get that this curve has only one branch passing through the origin and it is given
by

ε = At3 + O
(
t4), S = Bt, t → 0,

where t ∈ R is a parameter and A and B satisfy Ap1 + B3 p4 = 0. So, for ε > 0 small, Pε has only two real roots, which are
positive and tend to 0 and −p4 when ε ↓ 0, as we wanted to prove. �
3.2.2. Type (24)

The bifurcation diagram of the number of positive zeroes of Gλ with respect to the parameter λ = (a,b) is determined
by the following two curves, L1 and L2:

L1 ↔ a = 0, L2 ↔ D′(a,b) = 0,

where D′(a,b) is the discriminant of the polynomial G(·,a,b). For parameter values (a,b) belonging to L1, the polynomial
G(·,a,b), looses at least one degree and has a zero fixed at the origin; for parameter values (a,b) belonging to L2, the
polynomial G(·,a,b) has multiple zeroes. Therefore, when the parameter value crosses the set L1 ∪ L2, the number of
positive zeroes can change. An analogous study as in Section 3.2.1 based on the Newton polygon, shows that the graph L2
in a sufficiently small neighborhood of (0,0) is formed by two curves γ1 and γ2. Their asymptotics are given by

γ1 ↔ a = AC4, b = BC5 + O
(
C6), C → 0,

γ2 ↔ a = EC5, b = F C4 + O
(
C5), C → 0,
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Fig. 3. Graph of D′(a,b) = 0, near (0,0), where L1 = L3 = −1 and L2 = L4 = 1. The continuous curve is γ1 and the dotted one γ2. The dashed lines are not
in D′(a,b) = 0, and are used to get the number of real roots in the corresponding connected components.

for some non-zero constants A, B, E, F such that

A5 = 27

256

L4
3

L3
4

B4 and E4 = −4F 5L3
1

27L3
. (28)

From (28), it follows that γ1 lies in the half plane {L4a > 0} and γ2 lies in the half plane {L1L3b < 0}. Now, by (27), the map
G(·,a,b) has strictly less than 4 positive zeroes for (a,b) in the half plane {L1L3b < 0}. As a consequence, the half plane
giving rise to possibly 4 positive zeroes, i.e., {L1L3b > 0}, does not contain γ2 in a sufficiently small neighborhood of (0,0).
Furthermore, it follows that the distribution of the zeroes (positive, negative, imaginary) in the half plane {L1L3b > 0}, in a
sufficiently small neighborhood of the origin, is stable in the regions bounded by γ1 and L1 = {a = 0}. As in the previous
case it suffices to study the number of real zeroes on a line on each of the three connected components of the half-plane
{L1L3b > 0}, minus the sets {a = 0} and γ1, see Fig. 3. Indeed, in one of the three zones, viz. the smallest one between the
two branches of γ1, there are strictly less than four real zeroes, because it lies in the same connected component as the
points which are in {L1L3b < 0}. In short it suffices to find the number of positive real zeroes of G(S,a,b) given in (24)
moving along the two lines:

(a,b) = (−1,−1) sgn(L3)ε and (a,b) = (1,−1) sgn(L3)ε (29)

for ε > 0, small enough.
On these lines, G(S,a,b) writes as

G(S,a,b) = ε
[
ε
(
1 + L1 S ± L2 S2) − |L3|S3 ∓ sgn(L3)L4 S4].

By using similar reasonings as in the proof of Lemma 11, we can conclude that G , restricted to these lines, has at most two
positive real roots for ε > 0 small enough, as we wanted to prove.
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