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Abstract

Background: R117H is a frequent missense mutation included in most CF7R mutation panels. However knowledge about the residual function of
R117H-CFTR channels in cystic fibrosis-affected organs, e.g. airways, intestines and sweat glands is presently lacking.

Methods: We evaluated clinical CF symptoms and assessed CFTR function by sweat tests, nasal potential difference and intestinal current
measurements in 2 homozygous R117H individuals (7T variant).

Results: The CFTR activity in airways and intestine was within the normal range. However both individuals presented with a borderline sweat test
and the male patient was infertile.

Conclusions: The lack of impact of the R117H mutation on chloride secretion in intestine and nose contrasts with the ~80% loss of CFTR activity
reported in patch clamp studies. Apparently CFTR activity is not rate-limiting for chloride secretion in both tissues at levels >20% of normal, or

compensatory factors may operate that are absent in heterologous host cells in vitro.
© 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Since the discovery of the cystic fibrosis transmembrane
conductance regulator (CFTR)-gene, approximately twenty
years ago, over 1600 mutations have been identified. These
mutations can be classified as severe (typical) or mild (atypical).
Recent publications suggest a correlation between the type of
CFTR mutations and the clinical impairment in (later) life [1,2].
This suggestion is based on genotype—phenotype associations
in epidemiological studies where clinical outcome was
compared with genotype. However, some atypical mutations,
such as R117H, are less suitable for this classification because
their phenotypical manifestations are more sensitive to
variations in other genetic and epigenetic factors or environ-
mental factors such as a certain lifestyle [3].

* Corresponding author. Tel.: +31 88 755 6180.
E-mail address: r.denooijer@umcutrecht.nl (R.A. de Nooijer).

The R117H mutation is a relatively frequent mutation in cystic
fibrosis (CF) patients worldwide [4]. It is included in most
mutation panels for newborn screening and in CF carrier
screening in couples seeking genetic counseling. This missense
mutation has mixed conductance (class IV) and gating (class III)
abnormalities which lead to severe loss of CFTR channel function
[5]. R117H can occur in cis with either the polypyrimidine stretch
T5 or T7 [6]. The TS5 variant in intron 8 of the CFTR gene leads to
improper splicing, removing exon 9 from 90% of the CFTR
protein produced. Therefore only 10% of the CFTR protein
produced by an allele with the 5T variant may be functional, and
the combined effect of R117H and TS5 on the same chromosome,
with e.g. a F508del mutation on the other allele, results in classic
CF. This splicing defect is less severe and more variable in the T7
variant and can either result in CF or in congenital bilateral
absence of the vas deferens (CBAVD) [7].

Whereas much is known about the phenotypic variation
among compound heterozygotes for F508del and RI117H,
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present information about the phenotype of the individual
R117H mutation is restricted to expression studies in heterol-
ogous host cells [5,8]. Extrapolation of such data to native
human tissues is questionable because tissue-specific factors
may affect the open probability and even the permeability of the
forskolin-activated CFTR channel in vivo [9]. This report
describes 2 rare index cases of individuals who are homozygous
for the R117H-7T CFTR mutation. In vivo and ex vivo assays to
measure residual CFTR function in both patients, i.e. the sweat
test, the nasal potential difference (NPD), and intestinal current
measurements (ICM) in freshly excised rectal suction biopsies
were applied to gain insight into the phenotype of the R117H
mutation.

2. Methods
2.1. Subjects

A 35-year old male presented with infertility and appeared to
have CBAVD. A 33-year old female had no clinical symptoms
but was recognized by mutation analysis after her son was
identified with F508del/R117H by newborn screening. Both
individuals were homozygous for the R117H-7T CFTR
mutation, diagnosed on the basis of mutation analysis at the
CFTR locus. They were examined for clinical CF symptoms
including determination of pancreatic elastase in the stool as an
index for the exocrine pancreatic status, lung function tests
(spirometric measurements of FVC and FEV)), bacteriology of
sputum, and a history of meconium ileus or diabetes mellitus.

2.2. CFTR mutation analysis

Mutation detection was performed using a line probe assay
(INNO-LiPA CFTR19 and CFTR17+Tn, Innogenetics, Ghent,
Belgium) for simultaneous detection and identification of 36
CFTR sequence variants and identification of the T alleles in
intron 8 of CFTR (5T, 7T and 9T). The presence of a mutation
was confirmed using direct sequence analysis (ABI 3730xl
system, Applied Biosystems) [10].

2.3. Nasal potential difference measurements (NPD)

In vivo potential-differences across the nasal epithelium were
measured in principle according to Knowles et al. [11,12]. In
short, an exploring catheter was positioned against the inferior
turbinate in the nose, and a subcutaneous needle in the forearm,
functioning as reference electrode. Both the exploring catheter
and the subcutaneous needle were connected to a high-
impedance voltmeter by Ag/AgCl electrodes and agar/saline-
filled salt bridges, connected to a Powerlab (8/30, ADInstru-
ments) for signal digitalization and registration using LabChart
software. The superfusion solutions were applied via the
exploring double-barreled catheter. The nasal turbinate was
superfused (5 mL/min) for periods of three minutes with the
following solutions (mM): Solution A (for measurements of
basal PD): Custom Ringer’s. 135 NaCl; 1.2 MgCl,; 2.25 CaCly;
2.4 K,HPOy; 0.4 KH,PO,. Solution B (for measurements of

amiloride-sensitive sodium absorption by the epithelial sodium
channel, ENaC): 0.1 amiloride hydrochloride (HCI) in Ringer’s
solution. Solution C (for measurements of basal chloride
conductance): Cl -free solution (+amiloride):135 sodium
gluconate, 1.2 MgSQOy, 2.2 calcium gluconate, 2.4 K,HPOy,,
0.4 KH,POy, 0.1 amiloride HCI. Solution D (for measurements
of cyclic adenosine monophosphate (cAMP)-stimulated CFTR
conductance): 0.01 isoproterenol HCI in solution C. Solution E
(for measurements of Ca**-activated chloride conductance): 0.1
ATP in solution D. Measurements were performed in duplicate
in both nostrils. The NPD tracing of the nostril with the highest
Cl" secretory response, ie., with the largest capacity to
transport Cl, was assessed for the calculations performed in
this report.
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Fig. 1. Representative in vivo recordings of nasal potential difference (mV).
(A) Non-CF control showing hyperpolarization of the nasal epithelium, i.e.
changes towards a more negative PD, in response to a Cl -free solution (CI -free),
and the B-agonist isoproterenol (Iso) which induces cAMP-dependent chloride
secretion. The depolarizing response to amiloride, indicating the activity of
epithelial Na" channels (ENaC), is relatively modest. (B) F508del homozygous CF
patient showing a comparatively larger amiloride-induced depolarization, and the
lack of a hyperpolarizing response to C1 -free solution and isoproterenol, indicative
for ENaC hyperactivity and/or a lack of CFTR activity.
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Examples of crude NPD tracings obtained in a non-CF and
homozygous F508del CF patient are shown in Fig. 1A and B
respectively.

2.4. Intestinal current measurement (ICM)

ICM was performed on freshly excised rectal suction
biopsies as outlined in detailed published protocols [13—16].
In short, electrogenic transport of ions across the intestinal
epithelium was measured as a short-circuit current (Isc). The
biopsy specimens were preserved in phosphate-buffered saline
on ice and directly mounted in adapted micro-Ussing
chambers (aperture, 1.13 mm?). After equilibration, the
following compounds were added in a standardized order to
the mucosal (M) or serosal (S) side of the tissue: (a) amiloride
(0.01 mM, M), to inhibit amiloride sensitive electrogenic Na"
absorption; (b) indomethacin (0.01 mM, M+S), to reduce
basal CI secretion caused by endogenous production of
prostaglandins; (c) carbachol (0.1 mM, S), to initiate the
cholinergic Ca**- and protein kinase C-linked CI~ secretion;
(d) DIDS (0.2 mM, M), to inhibit DIDS-sensitive, non-CFTR
CI™ channels like the Ca®*-dependent CI~ channels (CaCCs);
(e) histamine (0.5 mM, S), to reactivate the Ca*"-dependent
secretory pathway and to measure the DIDS-insensitive
component of Ca®"-dependent Cl~ secretion; (f) forskolin
(0.01 mM, S)+8-Br-cAMP (1 mM, M +S), to further activate
cAMP-dependent Cl™ channels such as CFTR and the
outwardly rectifying Cl° channel (ORCC). Four rectal
biopsies were obtained in both R117H-7T homozygous
individuals. The ICM tracing belonging to the biopsy with the
highest Cl secretory response was included in the calculations in
order to facilitate a comparison with historical data (Table 1).
Crude Isc values (LA) were converted to pA/cm” based on the
0.011 cm? surface area of the aperture.

Table 1
Summary of electrophysiological measurements in a non-CF group versus a
group of F508del homozygotes given as mean (SD).

Control group (non-CF) CF group
NPD'? APD (mV) APD (mV)

n=25 n=23
Basal PD =24 (11) —45 (10)
Amiloride +10 (6) +21 (9)
Gluconate (CI™-free) —15 (10) -1(5)
Isoproterenol -8 (4) -23)
ATP -1(3) -1(3)
IcM'™® Alsc (nA/em?) Alsc (nA/cm?)

n=50 n=51
Amiloride -8.7(11) —8.7 (11)
Carbachol 38.5(23) —5.3(10)
Histamine 33.0 (26) =5.0 (10)
Forskolin/cAMP 7.1 (8.2) 3.0 (2.9)
Cumulative CI” secretion 81.4 (36) 2.3 (3.5

(= Acarbachol+ Ahistamine
+ Aforskolin/cAMP)

ICM Tracin

A g

0,6
<
= 0,4
£
2 Amil
P
=
© o2

& T
-0,0 DIDS Hist
Fors + cAMP
0 10 20 30 40 50 60
Time (minutes)

B ICM Tracing

-0,0

Fors + cAMP

Current (pA)

0 5 10 15 20 25 30
Time (minutes)

Fig. 2. Representative recordings of short circuit currents in human rectal
biopsies. (A) Non-CF control showing a large increase in Isc upon addition of
carbachol (carb), histamine (hist) and forskolin/cAMP (fors/cAMP) representing
apical Cl secretion. (B) F508del homozygous CF patient showing a lack of C1™
secretory response to carbachol, histamine and forskolin/cAMP. The reversed
current observed in response to carbachol and histamine (reflecting net K"
secretion) and the absence of a Cl™ secretory response to forskolin/cAMP are
indicative of classical CF.

Examples of crude ICM tracings obtained in a non-CF
control and a homozygous F508del CF patient are shown in
Fig. 2A and B respectively.

The electrophysiological findings in upper airways and distal
intestine were compared with that of a large cohort of non-CF
individuals and F508del CF homozygotes who had been studied
previously by the same protocol and by the same team of
investigators (Table 1) [17,18].

2.5. Sweat test

Sweat was collected after pilocarpine iontophoresis accord-
ing to Gibson and Cooke for 30 min on gauze pads [19].
Determination of the sweat sodium and chloride concentra-
tions was accomplished using a flame photometer (IL 943,
Instrumentation Laboratory) and a coulometer (Marius,
Netherlands), respectively.
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3. Results
3.1. CFTR mutation analysis

Both subjects were tested homozygous for the R117H-7T
CFTR mutation by INNO-LiPA which was subsequently con-
firmed by direct sequence analysis.

3.2. Clinical features

Both subjects were screened for symptoms compatible with
CF disease. As mentioned above, our male patient presenting
with infertility was subsequently diagnosed with CBAVD
which was demonstrated by physical examination and ultra-
sound in which no vasa deferentes were found. Our female
subject, the mother of 2 children, was evidently fertile and did
not show any indication of subfertility.

A lung function test was performed in our male patient and
showed a FVC of 6.87L (114% predicted) and a FEV; of
5.75 L (117% predicted).

Both individuals were free of nasopharyngeal or sinus
problems. The pancreatic elastase values in their stools as an
index for the exocrine pancreatic status were also normal (male
subject: 221 ng/g; female subject: >500 pg/g). No pathogenic
microorganisms were found in sputum cultures. Both in-
dividuals had a negative history for meconium ileus or a (CF-
related) diabetes mellitus. In summary, the clinical features of
both persons were normal and not indicative of CF disease.

3.3. NPD results

In NPD measurements, the basal and amiloride-sensitive PD
can be used as a marker for the activity of epithelial sodium
channels, ENaC, but is also influenced by the presence of other
ion conductances in the apical membrane, in particular CFTR
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Fig. 3. NPD tracings of the R117H-7T homozygotes. (A) Male: The baseline potential difference was —25 mV which is within the normal range (see Table 1).
Superfusion with the ENaC inhibitor amiloride caused a 12 mV depolarization, i.e. within the normal range (see Table 1). The hyperpolarizing response to zero
chloride solution (—5 mV) and isoproterenol (—6 mV) was also in the normal range, indicating a normal Cl™ conductance in the nasal epithelium. (B) Female: The
baseline potential difference was —12 mV and superfusion with amiloride caused a depolarization of 9 mV, both values within the normal range (see Table 1). The
large hyperpolarizing response to a zero chloride solution (—18 mV) and isoproterenol (—6 mV) was indicative of a normal CI" conductance.
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[20]. In contrast the hyperpolarizing response to Cl -free
perfusion in the presence of amiloride and in the absence or
presence of a CFTR activator isoproterenol, solely reflects the
activity of the CFTR chloride channel. As is clear from a
comparison between the data in Fig. 3 and Table 1, none of the
electrophysiological parameters measured were different from
the control values obtained in non-CF patients. Therefore, both
R117H-7T homozygotes showed a normal electrophysiological
phenotype in their upper airways, not indicative of CF disease.

3.4. ICM results

Transepithelial chloride secretory currents in the intestine are
carried mainly or exclusively by CFTR in the apical membrane
of the colonocyte, as evidenced by the absence of such currents
in individuals with classical CF (¢f. Fig. 2B versus 2A).
The cumulative chloride secretory response (=Alsc®®aehol+
AlscorskoliveAMP 4 A [gehistaminey g recently identified as the
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Fig. 4. ICM tracing of the R117H-7T homozygotes. Numbers above the crude
tracing indicate normalized Isc values (A/cm?). (A) Male: The cumulative C1~
secretion defined as a summation of the Isc response (in nA/em?) to carbachol
(31.9), histamine (6.2), and forskolin/cAMP (13.3), amounted to 51.4, i.e. fell
into the normal range (see Table 1). (B) Female: The cumulative Cl secretion
(72.6 pA/em?) calculated from the Isc response to carbachol (33.6), histamine
(36.3), and forskolin/cAMP (2.7) was likewise in the normal range. The
unusually large Isc response to histamine was not observed in the three other
biopsies taken from this individual.

most discriminative ICM marker with a clear cut-off value of
34 nA/cm? between pancreatic sufficient (PS) CF patients and
control subjects [21].

In both R117H-7T individuals the Isc responses to se-
cretagogues (Fig. 4), and the cumulative value of the Cl™ se-
cretory responses (: AISCcarbach01+AISCforskolill/cAMP+AIschistamine)
were normal and far above the CF range (Fig. 4, legend; Table 1).
According to the new criterium [21], both R117H homozygotes
would therefore belong to the “CF unlikely” group.

3.5. Sweat test results

The sweat test of our male patient was CI~ 34 mmol/L and
Na" 57 mmol/L. Our female subject showed a Cl~ value of
42 mmol/L and Na™ of 50 mmol/L.

Both sweat tests are in the borderline range with a Cl™ value
between 30 and 60 mmol/L and different from most non-CF
healthy controls. This indicates that CFTR activity is reduced
but not absent in at least one tissue, the sweat duct, in line with
the substantial loss of CFTR conductance of the R117H mutant
(70—85%) reported in heterologous expression systems in vitro
[5,8].

4. Discussion

In this study we describe both clinical and electrophysio-
logical findings in two R117H-7T homozygous subjects. Based
on their electrophysiological signature in both NPD and ICM,
these two individuals were not distinguishable from non-CF
controls. Because these assays measure the basic defect in CF,
i.e. abnormalities in CFTR-mediated chloride transport in
epithelial tissues, there is a clear discrepancy between the
apparently normal CFTR chloride channel function in airways
and intestine reported here and the findings in patch clamp
studies of the R117H CFTR channel in heterologous host cells
in vitro, showing a loss of Cl" conductance of ~70—85% [5,8].
This loss of function results for a minor part from a small
reduction in pore conductance for C1™ (14%) but is mainly due
to a strong reduction in channel open probability (~72%),
indicating that the R117H mutation affects both the pore prop-
erties and the gating of the CFTR channel, i.e. it has mixed class
III and class IV properties [5]. The intracellular processing of
the R117H channel, and its trafficking to the cell surface are not
affected by the mutation, ensuring normal levels of mature
CFTR protein in the apical membrane of the epithelial tissues.

In addition, the normal bioelectrical phenotype in the nasal
epithelium of the R117H homozygous subjects contrasts with
the elevated sodium absorption and minimal CI” conductance
reported in NPD measurements for CF patients carrying the
A455E mutation [22]. This mutant channel has normal Cl™
conducting and regulatory properties but is severely mispro-
cessed (class II), resulting in an ~90% loss of Cl™ current in
heterologous epithelial cells [5]. These combined data show that
two different mutations in CFTR, both resulting in an ~85-90%
loss of conductive Cl channel transport in heterologous cell
types, and both associated with absent or mild pulmonary dis-
ease [23], pancreatic sufficiency, borderline sweat tests and
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CBAVD in males [24], have distinct effects on the bioelectrical
phenotype of the airways, ranging from normal (R117H) to
severe (A455E). This comparison illustrates that the loss of
function observed for rare CFTR missense mutations in
heterologous epithelial cells is not a reliable predictor for the
residual CFTR function in native airway epithelium and is only
of limited prognostic value [25].

Why the in vitro and in vivo phenotypes do not match is not clear
but several mechanisms could be involved: first, rescue mecha-
nisms may operate in native epithelium which are completely or
partially lacking in the heterologous host cells i vitro. For example,
functional rescue of a class III regulatory mutant including R117H
may depend on the expression of stimulating co-factors such as the
IRBIT (Inositol 1,4,5-triphosphate receptor-binding protein re-
leased with Inositol 1,4,5-triphosphate) that reduces channel mean
close time or the NHERF1 (Na"/H" exchange regulatory factor 1)
scaffolding protein that drives CFTR dimerization and is known to
increase the open probability of the CFTR channel [26,27].
Secondly, other CFTR-dependent Cl conductances such as the
recently identified SLC26-A9 chloride channel [28] or the ORCC
[29] may be expressed in nasal epithelium but not in cultured cell
models. Thirdly, compensatory overexpression of a mutant CFTR
protein with some residual function may occur in some individuals
and rescue the CF phenotype.

The lack of an intestinal bioelectrical phenotype in both
R117H homozygous individuals may likewise result from
intestine-specific rescue mechanisms but is also readily explained
by the known insensitivity of the intestinal current measurements
to a partial loss of CFTR function [30-32]. Western blot analysis
of CFTR in intestinal membranes combined with ICM analysis of
the Cl secretory current in CF mouse models and CF patients
(e.g. homozygous for the 3272-26A>G splice mutation) that
express variable amounts of fully functional CFTR protein in the
apical membrane showed that the CFTR conductance is no longer
rate-limiting for transepithelial CI  transport at CFTR protein
levels above ~20% of non-CF controls (H.R. de Jonge,
unpublished observations). Consequently, CFTR mutations
associated with less than ~80% loss of CFTR expression or
function in the colon would escape detection by the ICM
technique. The R117H (and the A455E) CFTR mutants may
therefore behave as borderline cases in which the homozygous
expression is associated with a normal ICM pattern (=20%
residual CFTR conductance) whereas compound heterozygotes
carrying a second more severe mutation (e.g. F508del) show a
more variable residual CFTR CI' current in the intestine ranging
from normal to severely reduced, but not absent [24,33].

Still another explanation can be given for the lack of
pancreatic insufficiency noted in both R117H homozygotes and
compound heterozygotes for this mutation. Despite the severe
loss of C1 channel function of the R117H mutant CFTR, its
bicarbonate transport function is not impaired [8] or even
enhanced [34], in clear contrast to all known mutations
associated with pancreatic insufficiency [8]. The finding of
pancreatic sufficiency in both R117H homozygous subjects
therefore confirms the notion that the loss of HCOj3 transport
function is of more importance for the pathogenesis of CF in the
pancreas than the loss of Cl transport function.

In conclusion, the only CFTR-associated abnormalities
found in the R117H-7T homozygous subjects in this study
were a slightly elevated sweat CI and CBAVD in the male
individual. The latter confirms the extreme susceptibility of the
epididymis to defective Cl transport, resulting in early
regression of the mesonephric duct [24]. The abnormal sweat
chloride illustrates the high sensitivity of the sweat test to detect
partial loss of CFTR function in patients in which the NPD and
ICM bioelectrical assays fail to monitor any abnormalities in
CFTR chloride transport function.
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