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Abstract

Let Ω be a measurable subset of a compact group G of positive Haar measure. Let μ :π �→ μπ be a
non-negative function defined on the dual space Ĝ and let L2(μ) be the corresponding Hilbert space which
consists of elements (ξπ )π∈suppμ satisfying

∑
μπ Tr(ξπ ξ∗

π ) < ∞, where ξπ is a linear operator on the
representation space of π , and is equipped with the inner product: ((ξπ ), (ηπ )) = ∑

μπ Tr(ξπη∗
π ). We

show that the Fourier transform gives an isometric isomorphism from L2(Ω) onto L2(μ) if and only if the
restrictions to Ω of all matrix coordinate functions

√
μππij , π ∈ suppμ, constitute an orthonormal basis

for L2(Ω). Finally compact connected Lie groups case is studied.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω be an open connected domain of finite volume in Rn. Let 1
i

∂
∂xj

be the partial deriv-

atives with domain C∞
c (Ω), the space of smooth functions on Ω with compact support con-

tained in Ω . With some regularity conditions on Ω , Fuglede showed that the partial derivatives
1
i

∂
∂x1

, . . . , 1
i

∂
∂xn

can be extended to n commuting self-adjoint operators H1, . . . ,Hn on L2(Ω) is

equivalent to the existence of a subset Λ of Rn such that the restrictions of the exponentials eiλx ,
λ ∈ Λ, to Ω form an orthogonal base for L2(Ω) [2, Theorem I]. And this result was further stud-
ied by several authors in the cases of certain domains in Rn or in abelian groups [2,5,6]. More
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generally, when Ω is a measurable subset of a locally compact abelian group M and Ω has finite
and positive measure, in [6, Corollary 1.11] Pedersen showed that if μ is a positive regular Borel
measure on the dual group M̂ of M and put Λ = suppμ, then the following are equivalent:

(i) Fourier transform yields an isometric isomorphism from L2(Ω) onto L2(M̂,μ);
(ii) μ({λ}) = 1 for all λ ∈ Λ and the restrictions λ|Ω ’s, λ ∈ Λ, form an orthonormal basis for

L2(Ω).

This paper is motivated by their works. We are going to study in the case of compact groups.
Throughout the paper G will denote a compact group with normalized Haar measure dx and Ω

will denote a measurable subset of G of positive Haar measure. For a Borel subset E of G, write
|E| for its measure. The inner product on L2(Ω) is given by

(f, g)L2(Ω) =
∫
Ω

f ḡ dx,

where f,g ∈ L2(Ω). By regarding L2(Ω) as a subspace of L2(G), i.e. put f ≡ 0 outside Ω for
f ∈ L2(Ω), we note that ‖f ‖L2(Ω) = ‖f ‖L2(G) for f ∈ L2(Ω). Let Ĝ be the dual space of G.
It is well known that Ĝ is a discrete space under the hull-kernel topology. For f ∈ L1(G), we
recall that the Fourier transform of f is defined by

f̂ (π) =
∫
G

f (x)π
(
x−1)dx, π ∈ Ĝ.

For π ∈ Ĝ, put dπ the multiplicity of π and if {ei} is an orthonormal basis for Hπ , the matrix
coordinate functions of π are given by πij (x) = (π(x)ej , ei), x ∈ G, i, j = 1, . . . , dπ . From now
on, π̃ij always denotes the restriction to Ω of πij . Notice that for f ∈ L2(Ω) and π ∈ Ĝ, the
(ij)th entry of f̂ (π) is equal to [

f̂ (π)
]
ij

= (f, π̃ji)L2(Ω). (1.1)

For a non-negative function μ on Ĝ, we associate a Hilbert space L2(μ) as follows (see [3,
28.24]): for π ∈ Ĝ, write μπ = μ(π) and let Λ be the support of μ, i.e. Λ = {π | μπ 
= 0}.
Let B(Hπ) be the space of bounded operators on the (finite-dimensional) Hilbert representation
space Hπ . We define

L2(μ) =
{
(ξπ ) ∈

∏
π∈Λ

B(Hπ)

∣∣∣ ∑
π∈Λ

μπ Tr
(
ξπξ∗

π

)
< ∞

}
.

And the inner product on L2(μ) is given by

(
(ξπ ), (ηπ )

)
L2(μ)

=
∑
π∈Λ

μπ Tr
(
ξπη∗

π

)
.

Then L2(μ) becomes a Hilbert space. The following is an analogue of the Pedersen’s definition
[6, Definition 1.3] for non-abelian compact groups.
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Definition 1.1. A measurable subset Ω of G of positive measure is called a spectral set if there
exists a non-negative function μ on Ĝ satisfying the following two conditions:

(α) for each f ∈ L2(Ω), its Fourier transform f̂ ∈ L2(μ), namely,

∑
π∈Λ

μπ Tr
(
f̂ (π)f̂ (π)∗

)
< ∞;

(β) Fourier transform “ ·̂ ” yields an isometric isomorphism from L2(Ω) onto L2(μ).

In this case, (Ω,μ) is called a spectral pair and μ is called an exponent for Ω .

One of the main results in this paper, Theorem 3.3 gives a characterization of a spectral set.
On the other hand, the notion of “integrability property” for open subsets of locally compact

groups was described by Fuglede [2], Jorgensen [4] and Pedersen [6, Definition 1.1]. Recall that
an open subset Ω of a locally compact group G is said to have “integrability property” if there
exits a unitary representation π of G on L2(Ω) satisfying the following condition: for every x

in Ω , there exist an open neighborhood E of x and an open neighborhood F of the identity of G

such that yt ∈ Ω for all (y, t) ∈ E × F , in addition, for any t ∈ F and f ∈ L2(Ω) we have(
π(t)f

)
(y) = f (yt) a.e. for y in E.

For convenience, we shall call such representation (π,L2(Ω)) locally right regular. Suppose
further that G is a second countable connected Lie group and Ω is an open subset of G.
In [6, Proposition 1.2], Pedersen claimed that Ω has the integrability property if and only if
there exits a unitary representation π of G on L2(Ω) satisfying Xϕ(z) = d

dh
ϕ(z exphX)|h=0 =

d
dh

π(exphX)ϕ|h=0(z), for ϕ ∈ C∞
c (Ω), z ∈ Ω and X in the Lie algebra of G. But there is no

detailed proof in his paper. Indeed, if (π,L2(Ω)) is a locally right regular representation, then it
is easy to see that for X in the Lie algebra of G,

Xϕ(z) = lim
h→0

1

h

(
π(exphX)ϕ(z) − ϕ(z)

)
a.e. for z ∈ Ω

because G is second countable. But it seems that it is not clear whether ϕ ∈ Domdπ(X) for
ϕ ∈ C∞

c (Ω), where the domain of dπ(X) is given by

{
ξ ∈ L2(Ω)

∣∣∣ dπ(X)ξ = lim
h→0

1

h

(
π(exphX)ξ − ξ

)
exists in L2(Ω)

}
.

We shall show that it is in this case for a certain representation U (see (2.1)) which is associated
with a spectral pair in a compact Lie group. Indeed we obtain that ϕ is a C∞ vector for this
associated representation U , for any ϕ in C∞

c (Ω). Furthermore, we show that if (Ω,μ) is a
spectral pair in a compact Lie group, then the restrictions π̃ab’s of all matrix coordinate functions
for π ∈ supp μ are C∞ vectors for U .

Remark 1.2. In view of the present results in this paper, it is plausible to extend them to a larger
class of groups. Now let Υ be a measurable subset of a locally compact group K with finite
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non-zero Haar measure and let μ be a positive measure on the dual space K̂ . We call (Υ,μ)

a spectral pair if the Fourier transform maps from L1(Υ ) ∩ L2(Υ ) into
∫ ⊕

suppμ
Hπ ⊗ Hπ dμ(π)

and it extends to an isometry from L2(Υ ) onto
∫ ⊕

suppμ
Hπ ⊗ Hπ dμ(π), roughly speaking,

f̂ (σ ) is a Hilbert–Schmidt operator on Hσ and
∫
Υ

f (x)g(x) dx = ∫
suppμ

Tr[f̂ (π)ĝ(π)∗]dμ(π)

for f,g ∈ L1(Υ ) ∩ L2(Υ ); σ ∈ suppμ (see [1, Section 7.4] for the strict notion). For the fur-
ther investigation, it may be interesting to study how to characterize spectral pairs in this general
setting, for example, in the case of nilpotent Lie groups.

2. Spectral pairs

For a spectral pair (Ω,μ), we associate a pair of representations U and V of G on L2(Ω) as
follows:

(
U(t)f

)̂
(π) = π(t)f̂ (π), and (2.1)(

V (t)f
)̂
(π) = f̂ (π)π(t)∗, (2.2)

where π ∈ Λ := suppμ, t ∈ G and f ∈ L2(Ω).

It is easy to see that U and V both are algebraic unitary representations of G. In fact we have
the following.

Proposition 2.1. For a spectral pair (Ω,μ), with the above notation, both U and V are strongly
continuous unitary representations. Moreover, we have

U ∼=
⊕
π∈Λ

dππ and V ∼=
⊕
π∈Λ

dππ,

where π denotes the contragredient representation of π . Therefore V is the contragredient rep-
resentation of U .

Proof. For π ∈ Λ, let Eπ = B(Hπ). And the inner product on Eπ is given by (A,B)Eπ
=

μπ Tr(AB∗), where A,B ∈ Eπ . Define the representation uπ of G on Eπ by uπ(t)A = π(t)A,
A ∈ Eπ . Then U ∼= ⊕

π∈Λ uπ . From this we see that U is strongly continuous. On the other hand,
one can directly check that the character χuπ (i.e. χuπ (t) = Truπ(t)) of uπ is equal to dπχπ . This
implies that uπ ∼= dππ . Hence we have U ∼= ⊕

π∈Λ dππ . Similarly, if we define the representa-
tion vπ of G on Eπ by vπ(t) = Aπ(t)∗,A ∈ Eπ , then we have V ∼= ⊕

π∈Λ vπ and χvπ = dπχπ .
Hence V is strongly continuous and vπ ∼= dππ . The proof is finished. �
Lemma 2.2. Let (Ω,μ) be a spectral pair. Let U be the associated representation of G as
in (2.1). If E is a measurable subset of Ω and an element t ∈ G satisfies |Et \ Ω| = 0, namely,
the set Et is almost contained in Ω , then for any f ∈ L2(Ω), we have

(
U(t)f

)
(y) = f (yt) a.e. for y in E.

Furthermore, if Ω is open, then Ω has the integrability property and U is a locally right regular
representation.
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Proof. Let t ∈ G be an element which satisfies |Et \ Ω| = 0. Fix f ∈ L2(Ω). Let ϕ ∈ L∞(E).

Since ϕ̂(· t−1)(σ ) = σ(t−1)ϕ̂(σ ) for all σ ∈ Ĝ, we see that

∫
E

(
U(t)f

)
(x)ϕ(x) dx = (

U(t)f,ϕ
)
L2(Ω)

= (
f,U

(
t−1)ϕ)

L2(Ω)
= (

f̂ ,
(
U

(
t−1)ϕ)̂ )

L2(μ)

= (
f̂ , ϕ̂

(·t−1
))

L2(μ)
= (

f,ϕ
(·t−1))

L2(Ω)
.

If we put F(x) = f (x) for x ∈ Ω , otherwise, set F(x) ≡ 0, then the above last equality becomes

(
f,ϕ

(· t−1))
L2(Ω)

=
∫
G

F(x)ϕ(xt−1) dx =
∫
G

F(xt)ϕ(x) dx =
∫
E

f (xt)ϕ(x) dx.

The last equality follows from |Et \Ω| = 0. Therefore (U(t)f )(y) = f (yt) a.e. for y in E. And
the last assertion is obtained immediately. �
Remark 2.3. Following the similar arguments as in Lemma 2.2, if an element t in G satisfies
|t−1E \ Ω| = 0 and V is the representation of G as in (2.2), then for any f ∈ L2(Ω), we have
(V (t)f )(y) = f (t−1y) a.e. for y in E.

3. Orthogonality relations on domains

Throughout this section, (Ω,μ) denotes a spectral pair and δij denotes the Kronecker symbol,
i.e. δij = 1 for i = j , otherwise, δij = 0. Let U,V be the associated representations as in (2.1) and
(2.2), respectively. Before going to show the main theorem, we need the following calculations
later. For π,σ ∈ suppμ and t ∈ G, (1.1) gives

(
U(t)π̃ab, σ̃mn

)
L2(Ω)

= [(
U(t)π̃ab

)̂
(σ )

]
nm

= [
σ(t)̂̃πab(σ )

]
nm

=
∑

r

σnr(t)
[̂̃πab(σ )

]
rm

=
∑

r

σnr (t)(π̃ab, σ̃mr)L2(Ω). (3.1)

Similarly, we have

(
V (t)π̃ab, σ̃mn

)
L2(Ω)

=
∑

r

σrm

(
t−1)(π̃ab, σ̃rn.)L2(Ω). (3.2)

Proposition 3.1. Let (Ω,μ) be a spectral pair in a compact group G. Let Λ be the support of μ.
Then for π and σ ∈ Λ, we have

(π̃ab, σ̃mn)L2(Ω) =
{

δamδbnμ
−1
π if π ∼= σ,

0 otherwise,

where a, b = 1, . . . , dπ and m,n = 1, . . . , dσ .



C.-W. Leung / Journal of Functional Analysis 238 (2006) 636–648 641
Proof. For π,σ ∈ Λ, (3.1) gives

∑
r

σnr(t)(π̃ab, σ̃mr)L2(Ω) = (
U(t)π̃ab, σ̃mn

)
L2(Ω)

= (
U

(
t−1

)
σ̃mn, π̃ab

)
L2(Ω)

=
∑

s

πsb(t)(π̃as, σ̃mn)L2(Ω) (3.3)

for all t ∈ G.

Then the orthogonality relations on compact groups [3, Theorem 27.19] implies that

(π̃ab, σ̃mn)L2(Ω) = 0 (3.4)

for any π,σ ∈ Λ with π � σ.

As π ∼= σ , fix a, b,m,n = 1, . . . , dπ . (3.3) infers that∑
r

πnr (t)(π̃ab, π̃mr)L2(Ω) =
∑

r

πrb(t)(π̃ar , π̃mn)L2(Ω) (3.5)

for all t ∈ G.

By observing the coefficient of πnn(t) in (3.5), using the orthogonality relations on compact
groups again, we see that

(π̃ab, π̃mn)L2(Ω) = 0 (3.6)

for π ∈ Λ and n 
= b.

By the same argument for the representation V , (3.2) implies that

∑
r

πrm

(
t−1)(π̃ab, π̃rn)L2(Ω) = (

V (t)π̃ab, π̃mn

)
L2(Ω)

= (
V

(
t−1

)
π̃mn, π̃ab

)
L2(Ω)

=
∑

r

πar

(
t−1)(π̃ra, π̃mn)L2(Ω) (3.7)

for all t ∈ G.
Hence by observing the coefficient of πmm(t−1) in (3.7), if m 
= a, then

(π̃ab, π̃mn)L2(Ω) = 0. (3.8)

Combing (3.6) and (3.8), we assert that

(π̃ab, π̃mn)L2(Ω) = 0 (3.9)

for π ∈ Λ and (ab) 
= (mn).

Finally it remains to show that ‖π̃ab‖2
L2(Ω)

= μ−1
π for π ∈ Λ and a, b = 1, . . . , dπ . For π ∈ Λ

and a, b = 1, . . . , dπ , by the surjectivity of the Fourier transform ·̂ :L2(Ω) → L2(μ), we can
find a function ψ ∈ L2(Ω) so that for τ ∈ Λ, we have

[
ψ̂(τ )

]
mn

=
{

δbmδan if π ∼= τ ,
0 otherwise.
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In particular, we have (ψ, π̃ab)L2(Ω) = ψ̂(π)ba = 1. This implies that π̃ab 
= 0 in L2(Ω). On the
other hand, the isometric property of the Fourier transform, (1.1), (3.4), and (3.9) imply:

‖π̃ab‖2
L2(Ω)

= ‖̂̃πab‖2
L2(μ)

=
∑
σ∈Λ

μσ Tr
(̂̃πab(σ )̂̃πab(σ )∗

) = μπ Tr
(̂̃πab(π)̂̃πab(π)∗

)

= μπ

∑
r,s

∣∣(π̃ab, π̃sr )L2(Ω)

∣∣2 = μπ‖π̃ab‖4
L2(Ω)

.

Since π̃ab 
= 0, ‖π̃ab‖2
L2(Ω)

= μ−1
π . This completes the proof. �

Corollary 3.2. Let Ω be a spectral set. If μ is an exponent for Ω , then we have dπ � μπ, for all
π in the support of μ.

Proof. For π ∈ suppμ, Proposition 3.1 and the orthogonality relations on compact groups assert
that μ

−1/2
π = ‖π̃ab‖L2(Ω) � ‖πab‖L2(G) = d

−1/2
π . Therefore we have dπ � μπ . �

Theorem 3.3. Let Ω be a measurable subset of a compact group G of positive measure. Let μ

be a non-negative function on Ĝ. Then (Ω,μ) is a spectral pair if and only if the set {√μππ̃ab |
π ∈ suppμ; a, b = 1, . . . , dπ } forms an orthonormal base for L2(Ω).

Proof. Suppose that (Ω,μ) is a spectral pair. Put Λ = suppμ. Proposition 3.1 shows that the
set {√μππ̃ab | π ∈ suppμ; a, b = 1, . . . , dπ } forms an orthonormal subset of L2(Ω). Hence we
need to show that this set is total in L2(Ω). In fact, if f ∈ L2(Ω) and (f, π̃ab)L2(Ω) = 0, for
all π ∈ Λ, and a, b = 1, . . . , dπ , then (1.1) asserts that f̂ (π)ab = 0, for all π ∈ Λ and a, b =
1, . . . , dπ . Then f = 0 follows from the injectivity of the Fourier transform. Conversely, from
the assumption, we can directly check that (̂̃πab,̂̃σ jk)L2(μ) = (π̃ab, σ̃jk)L2(Ω) for π,σ in Λ.
Hence the Fourier transform is an isometry from L2(Ω) into L2(μ). And (1.1) implies that this
transformation is surjective. �
Remark 3.4. Write [π] for the unitary equivalence class of π and for a set of irreducible unitary
representations Λ̆ of G, put [Λ̆] = {[π] | π ∈ Λ̆}. Going back the construction of L2(μ), strictly
speaking, we select a fixed element in each [π] ∈ suppμ. Nevertheless, it is easy to see that
up to unitary equivalence, L2(μ) does not depend on such selections. Hence the definition of a
spectral pair (Ω,μ) depends only on the unitary equivalence class of [π] in suppμ. From this
observation and Theorem 3.3, now for the sets Ξ̆ and Λ̆ of irreducible unitary representations
of G with [Ξ̆ ] = [Λ̆], we can assert that if for each element π ∈ Λ̆, there is cπ > 0 such that
{cπ π̃ij | π ∈ Λ̆; i, j = 1, . . . , dπ } forms an orthonormal basis for L2(Ω), then Ξ shares the
same property. Obviously, this assertion holds for the case of abelian groups, but it seems that
this is not clear for the non-abelian case without employing Theorem 3.3. We give the following
informative example of the non-abelian case.

Example 3.5. Let G = SU(2), that is,

G =
{(

a −b̄
) ∣∣∣ |a|2 + |b|2 = 1

}
.

b ā
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We first recall some basic properties of the representation theory of G. The details can be found
in [1, Section 5.4]. For convenience, write

Ua,b =
(

a −b̄

b ā

)
∈ G.

We identify G with the unit sphere S3 in C2 via Ua,b ↔ (a, b). Then the normalized Haar
measure on G is given by the normalized surface measure σ on S3. Following the proof of
[1, Lemma 5.32], one can directly check that for any Borel measurable subset E of S3, if f

is a homogeneous polynomial function in complex variables z, z̄;w, w̄ of degree m ∈ N, i.e.
f = ∑

cαβγ δz
αz̄βwγ w̄δ; α + β + γ + δ = m, then

∫
E

f (Z′) dσ (Z′) = 1

π2�
( 1

2m + 2
) ∫

Ẽ

f (Z)e−‖Z‖2
d4Z, (3.10)

where Ẽ = {rZ′ | Z′ ∈ E, r � 0} and d4Z denotes the Lebesgue measure on C2. For m ∈ N, let
Hm be the space of homogeneous polynomials in two complex variables of degree m and it is
endowed with the inner product (ξ, η) := ∫

S3 ξ η̄ dσ . Let πm be the representation of G on Hm

given by the natural action of G on C2. Then Ĝ = {[πm] | m ∈ N}. Under a suitable choice of an
orthonormal basis for Hm, the (jk)th matrix coordinate function π

jk
m (Ua,b) of πm is the linear

combination of am−k−l āhbl b̄k−h, where 0 � h � k, 0 � l � m − k and h + l = j . In particular,
π00

m (Ua,b) = am. And we have ‖πjk
m ‖2

L2(G)
= 1

m+1 since dimHm = m + 1.

Now let Ω = {Ua,b | Ima � 0}. We claim that Ω is a spectral set. Note that we have∫
C

zr z̄se−|z|2 dz = 0 if r 
= s and
∫

C
zpz̄qe−|z|2 dz = 2

∫
{Im z�0} z

pz̄qe−|z|2 dz if p − q ∈ 2Z.

From this and Eq. (3.10), a direct calculation shows that for m,m1 ∈ N with m − m1 ∈ 2Z and
0 � j, k � m, 0 � j1, k1 � m1 then

(
am−k−l āhbl b̄k−h, am1−k1−l1 āh1bl1 b̄k1−h1

)
L2(G)

= 2
(
am−k−l āhbl b̄k−h, am1−k1−l1 āh1bl1 b̄k1−h1

)
L2(Ω)

,

where 0 � h � k, 0 � l � m− k, h+ l = j and 0 � h1 � k1, 0 � l1 � m1 − k1, h1 + l1 = j1. This
implies that (π

jk
m ,π

j1k1
m1 )L2(G) = 2(π̃

jk
m , π̃

j1k1
m1 )L2(Ω) whenever m − m1 ∈ 2Z. Therefore {π̃ jk

2m |
m � 0; j, k = 0,1, . . . ,2m} and {π̃ jk

2m+1 | m � 0; j, k = 0,1, . . . ,2m + 1} both are orthogonal
subsets of L2(Ω), moreover,

∥∥π̃
jk
m

∥∥2
L2(Ω)

= 1

2(m + 1)
.

Let

V0 = span
{
π̃

jk

2m | m � 0; j, k = 0,1, . . . ,2m
}

and

V1 = span
{
π̃

jk | m � 0; j, k = 0,1, . . . ,2m + 1
}
.
2m+1
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Note that for f ∈ V0, since {π̃ jk

2m | m � 0; j, k = 0,1, . . . ,2m} is an orthogonal set and

∥∥π̃
jk

2m

∥∥2
L2(Ω)

= 1

2(2m + 1)
,

we have

‖f ‖2
L2(Ω)

=
∑
m

∑
j,k

2(2m + 1)
∣∣(f, π̃

jk

2m

)
L2(Ω)

∣∣2
. (3.11)

On the other hand, we may regard L2(Ω) as a subspace of L2(G). Peter–Weyl theorem implies
that

‖f ‖2
L2(Ω)

= ‖f ‖2
L2(G)

=
∑
m

∑
j,k

(2m + 1)
∣∣(f,π

jk

2m

)
L2(G)

∣∣2 +
∑
m

∑
j,k

(2m + 2)
∣∣(f,π

jk

2m+1

)
L2(G)

∣∣2
.

Thus we have∑
m

∑
j,k

(2m + 1)
∣∣(f, π̃

jk

2m

)
L2(Ω)

∣∣2 =
∑
m

∑
j,k

(2m + 2)
∣∣(f, π̃

jk

2m+1

)
L2(Ω)

∣∣2 (3.12)

because (f,π
pq
n )L2(G) = (f, π̃

pq
n )L2(Ω). Equations (3.11) and (3.12) yield

‖f ‖2
L2(Ω)

=
∑
m

∑
j,k

2(2m + 2)
∣∣(f, π̃

jk

2m+1

)
L2(Ω)

∣∣2
.

From this and ‖π̃ jk

2m+1‖2
L2(Ω)

= 1
2(2m+2)

, we deduce that f ∈ V1. Similarly, if f ∈ V1, then
Eq. (3.12) still holds. Consequently, V0 = V1. In particular, π̃

jk

2m+1 ∈ V0 and π̃
jk

2m ∈ V1 for all m.
It follows that {π̃2m | m � 0} and {π̃2m+1 | m � 0} both are orthogonal bases for L2(Ω). By
Theorem 3.3 and Remark 3.4, we can now conclude that if we put μev(π2m) = 2(2m + 1) and
μev(π2m+1) = 0, then (Ω,μev) is a spectral pair. Similarly, if we set μodd(π2m+1) = 2(2m + 2)

and μodd(π2m) = 0, then (Ω,μodd) is also a spectral pair. Besides μev and μodd, there is no other
exponent for Ω because (π̃00

2m, π̃00
2n+1)L2(Ω) = (a2m,a2n+1)L2(Ω) 
= 0.

Corollary 3.6. Let (Ω,μ) be a spectral pair in a compact group G and let U be the associated
representation of G on L2(Ω) as in (2.1). Then for π ∈ suppμ; a, b = 1, . . . , dπ and x ∈ G,
we have

U(x)π̃ab =
dπ∑
s=1

πsb(x)π̃as .

Proof. Let π ∈ supp μ. Applying Proposition 3.1, for ρ ∈ suppμ, we have

[̂̃πab(ρ)
]
mn

=
{

δanδbmμ−1
π if π ∼= ρ,
0 otherwise.
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Therefore we have

(
U(x)π̃ab, σ̃rs

)
L2(Ω)

= ((
U(x)π̃ab

)̂
,̂̃σ rs

)
L2(μ)

=
{

δarμ
−1
π π(x)sb if π ∼= σ,

0 otherwise

for x ∈ G and σ ∈ suppμ, r, s = 1, . . . , dσ . Then the result follows from Theorem 3.3. �
Proposition 3.7. If Ω is an almost right G-invariant (respectively almost left G-invariant) spec-
tral subset, that is, |Ω � Ωt | = 0 (respectively |tΩ � Ω| = 0) for all t ∈ G, then there exists a
unique exponent for Ω .

Proof. Let μ,ν be the exponents for Ω . Suppose that Ω is almost right invariant. Let Uμ,Uν

be the corresponding associated representations of G on L2(Ω) as in (2.1). Then Lemma 2.2
implies that for f ∈ L2(Ω) and t ∈ G we have (Uμ(t)f )(y) = (Uν(t)f )(y) = f (yt) for a.e.
y in Ω . Thus we have Uμ = Uν . Proposition 2.1 implies that supp μ = supp ν. Now for π ∈
suppμ = suppν, by Proposition 3.1, we have μ−1

π = ν−1
π = ‖π̃ab‖2

L2(Ω)
. Hence, μ = ν. Similarly

if Ω is almost left invariant and V μ,V ν are the corresponding representations as in (2.2), then
by Remark 2.3, we have V μ = V ν . Hence the result follows from the similar arguments as in the
almost right invariance case. �

In general, the uniqueness of the exponents for a given spectral set does not hold. We have
Example 3.5 and the following example to show this fact.

Example 3.8. Let G be the circle group and let Ω = {ei2πθ | 0 � θ � 1/2}. If we let χm(z) = zm

for z ∈ G and m ∈ Z, then we can directly check that (χ̃2l+1, χ̃2k+1)L2(Ω) = (χ̃2l , χ̃2k)L2(Ω) =
1
2δlk and (χ̃2l+1, χ̃2k)L2(Ω) = i

π(2l−2k+1)
for l, k ∈ Z. Put μ2m = 2 and μ2m+1 = 0, for m ∈ Z.

We first claim that (Ω,μ) is a spectral pair. In fact, we have

∥∥∥∥χ̃2l+1 −
∑

−m�k�m

2(χ̃2l+1, χ̃2k)L2(Ω)χ̃2k

∥∥∥∥2

L2(Ω)

= 1

2
−

∑
−m�k�m

2

π2(2l − 2k + 1)2

for all l,m ∈ Z. From this we obtain that χ̃2l+1 lies in the closed linear span of {χ̃2k | k ∈ Z}
because 1 + 1

32 + 1
52 + · · · = π2

8 . Hence if f ∈ L2(Ω) satisfies (f, χ̃2k)L2(Ω) = 0 for all k ∈ Z,
then we have (f, χ̃2l+1)L2(Ω) = 0, for all � ∈ Z. Therefore in this case, we have (f,χm)L2(G) =
(f, χ̃m)L2(Ω) = 0, for all m ∈ Z. According to the Peter–Weyl theorem, f must be 0. Therefore

the set {√2χ̃2k | k ∈ Z} forms an orthonormal basis for L2(Ω). Hence (Ω,μ) is a spectral pair
follows from Theorem 3.3. On the other hand, if we put ν2m+1 = 2 and ν2m = 0 for m ∈ Z, then
by the same argument as above, (Ω,ν) is also a spectral pair.

4. Lie groups case

In this section, we are going to investigate the spectral pairs in compact Lie groups. We refer
to [8, Section X.1], [9, Chapter 0] and [7] for the basic tools that will be used later. When L is
a connected Lie group (not necessarily compact) with its Lie algebra l and Ω is an open subset
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of L, for X ∈ l, then iX may be regarded as a symmetric operator in L2(Ω) with domain C∞
c (Ω).

It is known that for any strongly unitary representation (π,Hπ) of L, the infinitesimal generator
dπ(X) of the one parameter unitary group h �→ exphX, i.e. dπ(X) = d

dh
π(exphX)|h=0, is a

skew-adjoint operator [9, Chapter 0, Theorem 1.5]. Also recall that a vector ξ ∈ Hπ is said to be
a C∞ vector for π if the map x �→ π(x)ξ is a C∞ map from L to Hπ . It is equivalent to say
that the map x �→ (π(x)ξ, η) is a C∞ map on L, for any η ∈ Hπ [9, Chapter 0, Lemma 3.1]. It is
known that the space of all C∞ vectors for π is contained in the domain of dπ(X) for any X ∈ l

[9, Chapter 0, Proposition 2.6]. Moreover, the space of all C∞ vectors for π is dense in Hπ [9,
Chapter 0, p. 11]. In particular, if Hπ is of finite dimension, then every vector in Hπ is a C∞
vector. On the other hand, we shall use the following result of Jorgensen later. In [4, Theorem 2],
Jorgensen showed that for an open connected subset Ω of L, if Ω has finite measure and ρ is a
strongly continuous unitary representation of L on L2(Ω) such that ρ is multiplicative, namely,
ρ(x)(fg) = (ρ(x)f )(ρ(x)g) for x ∈ G and f,g ∈ L2(Ω) with fg ∈ L2(Ω), and dρ(X) is an
extension of X for any X ∈ l, then Ω is a fundamental domain for a discrete subgroup of L.

Theorem 4.1. Assume that G is a second countable compact connected Lie group and Ω is an
open spectral subset of G with an exponent μ. Let U be the associated representation of G on
L2(Ω) as before. We have

(i) If ϕ ∈ C∞
c (Ω), then ϕ is a C∞-vector for U .

(ii) For X in the Lie algebra g of G, then the operator dU(iX) is an self-adjoint extension of
the vector field iX.

(iii) If Ω is connected and U is multiplicative, then Ω is a fundamental domain for a finite
subgroup of G.

(iv) For any π ∈ suppμ and a, b = 1, . . . , dπ , then π̃ab is a C∞ vector for U . Consequently,
π̃ab lies in the domain of dU(X) for any X ∈ g.

Proof. (i) Let ϕ ∈ C∞
c (Ω) and let X ∈ g. Choose finitely many open subsets Ω1, . . . ,ΩN of

Ω which cover the support of ϕ, and open symmetric neighborhoods W̃1, . . . , W̃N of the iden-
tity of G, such that ΩiW̃i ⊆ Ω , for all i = 1, . . . ,N . Using the partition of unity for the cover
{Ω1, . . . ,ΩN }, we can decompose ϕ as

∑N
i=1 ϕi with ϕi ∈ C∞

c (Ωi), i = 1, . . . ,N . We now
fix some Ωi . Take a symmetric open neighborhood Wi of the identity such that Wi ⊆ W̃i and
(suppϕi)Wi ⊆ Ωi . We claim that the map y �→ U(y)ϕi is a C∞ map from Wi to L2(Ωi). In fact,
recall that for X ∈ g, we have

Xϕi(z) = lim
h→0

1

h

(
ϕi(z exphX) − ϕi(z)

)
for z ∈ Ωi.

Now fix y ∈ Wi . Regarding C∞
c (Ωi) as a subspace of C∞(G), the Taylor theorem implies that

there exits ε > 0 and a bounded function K(h, z) for |h| < ε and z ∈ G satisfy the conditions

y exphX ∈ Wi and ϕi(x exphX) = ϕi(x) + hXϕi(x) + h2K(h,x)

for all x in G. Therefore for |h| < ε, Lemma 2.2 implies that

U(y exphX)ϕi(z) = ϕi(zy exphX) a.e. for z ∈ Ωi.
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For y ∈ Wi , put R(y)ϕi(z) = ϕi(zy), z ∈ Ωi . Then for 0 < |h| < ε, the supports of the mappings
R(y)Xϕi , R(y exphX)ϕi and R(y)ϕi are all contained in Ωi . Hence we have

∥∥∥∥R(y)Xϕi − 1

h

(
U(y exphX)ϕi − U(y)ϕi

)∥∥∥∥
L2(Ωi)

=
∥∥∥∥R(y)Xϕi − 1

h

(
R(y exphX)ϕi − R(y)ϕi

)∥∥∥∥
L2(Ωi)

=
∥∥∥∥R(y)Xϕi − 1

h

(
R(y exphX)ϕi − R(y)ϕi

)∥∥∥∥
L2(G)

=
∥∥∥∥Xϕi − 1

h

(
R(exphX)ϕi − ϕi

)∥∥∥∥
L2(G)

� h2 sup
∣∣K(h,x)

∣∣.
Therefore we obtain that

d

dh
U(y exphX)ϕi

∣∣∣∣
h=0

= R(y)Xϕi in L2(Ωi) for all y ∈ Wi and X ∈ g.

Hence the map y �→ U(y)ϕi is a C1 map from Wi to L2(Ωi). To repeat the above arguments, we
can show that this map is of class C∞. Now take W = W1 ∩ · · · ∩ WN . We obtain that the map
y �→ U(y)ϕ = ∑N

i=1 U(y)ϕi is a C∞ map from W to L2(Ω). Since any bounded linear map is
smooth, so for any x0 ∈ G, the composition of the maps

y
x0·�−→ x−1

0 y �−→ U
(
x−1

0 y
)
ϕ

U(x0)·�−−−−→ U(y)ϕ

is smooth on x0W . It follows that ϕ is a C∞ vector for U .
(ii) Since dU(X) is a skew-adjoint operator on L2(Ω), for X ∈ g, it remains to show that

dU(X) is an extension of X. Fix X ∈ g. For non-zero h ∈ R and ϕ ∈ C∞
c (Ω), put Qhϕ =

1
h
(U(exphX)ϕ − ϕ). The second countability of G and Lemma 2.2 assert that

lim
h→0

Qhϕ(z) = Xϕ(z) a.e. for z ∈ Ω.

Part (i) implies that the space C∞
c (Ω) is contained in the domain of dU(X), that is, the limit

lim
h→0

1

h

(
U(exphX)ϕ − ϕ

)
exists in L2(Ω) for any ϕ ∈ C∞

c (Ω).

Hence, dU(X)ϕ = Xϕ in L2(Ω).
(iii) This is an immediate consequence of Jorgensen’s result and of part (ii).
(iv) Let π ∈ suppμ and a, b = 1, . . . , dπ . By Corollary 3.6, we have shown that U(x)π̃ab =∑dπ

s=1 πsb(x)π̃as for x ∈ G. Also notice that the map x �→ πsb(x) is of class C∞ on G for
s, b = 1, . . . , dπ because π is a finite-dimensional representation. Therefore π̃ab is a C∞-vector
for U . �
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Remark 4.2. In view of the proof of Theorem 4.1, in fact we have shown that the results (i)–(iii)
of the theorem are still held when L is a connected Lie group (not necessarily compact) and
(π,L2(Ω)) is a locally right regular representation of L.
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