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Abstract

Fix integersu > 1, b andc. We prove that for certain projective varietiBsc P" (e.g. certain pos-
sibly singular complete intersections), there are only finitely many components of the Hilbert scheme
parametrizing irreducible, smooth, projective, low codimensional subvarkté¥ such that

WX, Ox @K x —bHx)<Jdt +c| Y pg(x™)
1<h<ep

whered, Ky and Hy denote the degree, the canonical divisor and the general hyperplane section of
X, pg (XM denotes the geometric genus of the general linear sectiotdimensiorh, and where

A, &1 andey are suitable positive real numbers depending only on the dimensignasfa and on

the ambient variety. In particular, except for finitely many families of varieties, the canonical map
of any irreducible, smooth, projective, low codimensional subvadetyV, is birational.
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0. Introduction

A famous theorem of Ellingsrud and Pesk[i8] states that there are only finitely many
components of the Hilbert scheme parametrizing smooth surfaéésiot of general type.
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This paper has been followed by others in which suitable extensions have been presented
(see[2—4,16,23]. More recently two of us gave further wide extensions of these results
[8-10]

Going back to the original theorem of Ellingsrud and Peskirtd, Ellia and Folegatti
[14] remarked that the technique of proof makes it possible to show a more general result.
Namely they are able to prove boundedness for families of smooth surfaé@swith
geometric genus bounded above by the sectional genus. This in turn implies boundedness
for families of smooth surfaces Pf* with nonbirational canonical map.

The present paper is devoted to give a wide extension of Ellia—Folegatti’s result (see
Theorem 0.1), which we now will state.

LetV be an irreducible, possibly singular, projective variety c@etet ¥ be a set of
projective subvarieties &f. We will say that¥ is boundedf there is a closed immersion
V C P" such that

sup{deg(X) : X € ¥} <+ oo.

This means that the varieties#ibelong to finitely many components of the Hilbert scheme.
In particular, this definition does not depend on the closed immersion.
In this paper we will prove the following:

Theorem 0.1.Let V. c P" be an irreducible projective variety of dimension .nbet
1<n <m be an integerand putk = m — n. Fix integersa, b, ¢ € Z, witha>1, and
pute(a) = min{y + 1, 7 +a — 1}. Assume that at least one of the following properties
holds

(A) m=n+2,2<n<4,VissmoothN S(V) ~ Z and any algebraic class iH*'~8(V, C)
is a multiple ofH‘%”“‘, whereHy is a hyperplane section of,V

B)ym=n+2,n>4and onlywherna =1,n> %; for i = —1, 0 any algebraic class
in Ho,42;(V, C)is a multiple ofH‘%‘i, the general linear sectio  of dimensior4 of V
is smooth andVsS(V @) ~ Z:

(C)m =n+ 2,n>5,V is smoothfor 1<i <3 any algebraic class ir{%(V, C) is a

multiple of H{,, and there exist rational numbeis, ..., v, such thatc; (Ty) = viH{', in
HZ%(V,C) foranyl1<i<n;
(D) n}% and, only whena = 1, n>%; for i = —1,0 any algebraic class in

Hy,42;(V, C) is a multiple ofH"j*i; moreovey for some2 < h <n with 1 >k, the general
linear sectionV "% of dimensior 4 k of V is smoothand either any algebraic class in
H2 (V"o Cyis amultiple ofH} .4, fori € {1, k}, orkis even and/Z vtk Ccy~C
foranyi =1,...,k—1;

(E)n > 3=2,V is smootha > 2, for 1<i <2k — 1 any algebraic class if? (V, C) is
a multiple ofH!,, and there exist rational numbets, .. ., v, such thaic; (Ty) = v; H{, in
HZ%(V,C) forany1<i<n.

For any ndimensional subvariety X of V denote ¥ (Kx resp) the general linear
section of dimension (the canonical divisor respof X. Denote byp, (X)) the geometric
genus o\ ™. Put Hy = X~V andd = deg(X).

Then there exists a strictly positive real numlder 0, depending only on,ra and the
ambient variety Ysuch that the set of irreducihlemooth projective subvarieties X of V
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of dimension n satisfying the following inequality under the hypoth@gisvith n # 3, or
(C)or (E)

n—1
WX, Ox(aK x — bHx)) < d"*1 + ¢ (Z pg(X(h))) , (0.1a)
h=1

or the following inequality under the hypothe§fy withn =3
hO(X, Ox(aKyx —bHY)) g/ldz + C(pg(X(l)) 4 pg(X(Z)))’

or the following inequality under the hypothe&B) or (D)

hO(X, Ox(aKx —bHx)<Ad" ™ +c| Y px®)], (0.1b)
1<h<e(a)—-1

is bounded

Moreover when V is smoottunder the hypothesi®) with n # 3, or (B) with a >2,
or (C), or (D) witha >2, or (E), the previous estimates are sharp in the following sense
there exists a real number> / depending only on,ra and the ambient variety,\éuch
that the set of irreduciblesmooth projective subvarieties X of V of dimension n satisfying
the inequality

hO(X, Ox(aK x — bHx)) <pud"** (0.1c)

is not bounded

In particular, using Theorem 0.1 far=5 = 1, we see that if the degree of the subvariety
X C Vis large enough, theb®(X, Ox (Kx — Hy)) > 0, i.e. the linear systefK y — Hx|
is not empty. This implies that the canonical linear syst&mn| induces a birational map
on X. Therefore we have the following

Corollary 0.2. With the same assumption of Theot@rh,except for finitely many families
of varieties the canonical map of any irreducihlemooth projective subvariety of V of
dimension nis birational.

Theorem 0.1 has a rather wide range of applications, also to singular varieties. By Lef-
schetz Hyperplane Theorem, Poincaré duality and Barth Theorem, any smooth complete
intersection fourfold/ on a Grassmann variety or on a Lagrangian maximal Grassmannian
variety or on a spinor varietj22], any smooth complete intersecti&nc P” of dimension
5 or 6, any smooth fourfold if® and any smooth sixfold iR® verifies the hypothesis (A).

Whenn >5 (and, only fora = 1, whenn > (r + 1)/2), possibly singular complete inter-
sectionsV c P" of dimensiom + 2, with dim(Sing(V)) <n — 6, verify the hypothesis
(B) (see[11, Theorem (2.11), p. 14%]Moreover any hypersurfacé c P"+3 of degree
t >3 defined by the equation

t— t—1 t—1 t
XXy xaxy 4+ Xpqax, 5+ X, 3=0,
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with n>4, 1<a <t — 1 and(a,t) = 1, has at most two singular points and satisfies
the hypothesis (B) (seld 1], Proposition (2.24), p. 148). This provides examples for the
assumption (B) in the case= 4 too. By Barth Theorem again, any smooth subvariety
V < P of dimensiom + 2, withn > (r + 2)/2, satisfies the hypothesis (B).

As before one sees that any possibly singular complete interséctio®” of dimension
mwith n > (m +2)/2 anddim(Sing(V)) <2n —m — 4 (and, only foa = 1, withn > (r +
1)/2), and any smooth subvariety c P" of dimensionm with n> (r 4+ 2)/2, satisfies
the hypothesis (D). When = (m + 2)/2 (and, only fora = 1, whenn > (r 4+ 1)/2), by
Noether—Lefschetz Theoreff] this is true also for Noether—Lefschetz general complete
intersectiond/ C P’ of dimensiorm, with 2% ~4(V') # 0 for somez < m /2 (for instance,
any general hypersurface of even dimensiok 4 and degree= 3 [21]).

Smooth complete intersectiolisc P of dimensionn > 7 (m < (4n+2)/3 resp.) satisfy
the hypothesis (C) ((E) resp.).

As for the proof, the general strategy consists in determining a lower bound for the
geometric genus of a subvarieky ¢ V. Our methods are partly based on the technical
developments diB—10], to which we will often refer.

Under the hypothesis (A), the basic tools are inequality (1.5) provi®],i€astelnuovo—
Halphen's theory, and Miyaoka—Yau'’s inequality (see Section 1).

The line of the proof under the hypothesis (B) is the following. A Barth-Lefschetz type
of argument proves that the Néron—Severi group of the subvart@sV has rank 1.

Then, whena > 2, Kawamata—Viehweg Vanishing Theorem allows us to obtain a lower
bound forh®(X, Ox(aK x — bH x)) (see Proposition 2.2, which should be compared with
Kollar-Luo—Matsusaka estimaft9, p. 302, Theorem 2.150]n order to make this lower
bound explicit, and then deduce the boundednessXfawe need a general result, i.e.
Theorem 2.1, concerning boundedness for subvarieties with bounded sectional genus, whose
proof relies on inequality (1.5) and Castelnuovo theory, and does not need the assumption
n>=(r + 1)/2. The previous argument does not work whes 1. In this case, using the
hypothesis: > (r + 1)/2, we may apply Larsen Theorem (as in Amerik pafidy and
deduce that the Picard groupXfs generated by the hyperplane section. Then Castelnuovo
theory[13] enables us to bourid (X, Ox (K x —bH x)) from below, and so, using Theorem

2.1 again, one may conclude in a similar way as in the ags2 (see Section 2).

Under the hypothesis (C), the Chern classes of the normal bundle of a smooth subvariety
X c V are multiples of the linear sections. By means of a somewhat delicate numerical
analysis based on the Hirzebruch—Riemann—Roch Theorem and the previous Theorem 2.1,
this allows us to bound from below the arithmetic genuXah terms of the degreé of
X. Using the Hyperplane Lefschetz Theorem one may estimate the difference between the
geometric genus oK and the arithmetic genus, finally obtaining a lower bound for the
geometric genus, from which one easily concludes (see Section 3).

Under the hypothesis (D), Theorem 0.1 follows in a similar manner as under the hypothe-
sis (B), taking into account a general result, i.e. Theorem 4.1, which states boundedness for
subcanonical subvarieties, and does not need the assumptiont- 1) /2. For the proof of
this result, the main tools are Chern classes computations ljg3]rand[8] (see Section
4).

Under the hypothesis (E), Theorem 0.1 follows by combining the methods used in the
proof under the hypothesis (C) and (D) (see Section 5).
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We prove the sharpness of the estimates (0.1a) and (0.1b) in the sense of (0.1c), by
considering the unbounded set consisting ofklcedimensional complete intersections of
balanced type oW

For instance, for a smooth complete intersection surkacé balanced typdu, u) in
P4, we havep, (X) < llzdz. On the other hand, our analysis proves that smooth surfaces
X c P*with Pe(X) < %Zdz are bounded (see Section 1, (1.2)).

Under the hypothesis (A) with = 3, or (B) witha = 1, or (D) witha = 1, our methods
do not enable us to obtain the expected sharp estimate. In any case we give explicit estimate
for the constant, and our analysis may give, in principle, explicit bounds for the dedree
in terms of the given data. We decided not to dwell on this here.

It would be interesting to investigate whether Theorem 0.1 is sharp in a stronger sense.
For instance, it implies boundedness for smooth surfaces of degne®®* with geometric
genus< Ad?, with /. < 1/6 (see Section 1, in particular (1.2)). A nice question is therefore
whether the family of smooth surfacesif with geometric genus<d?/6 is bounded or
not.

Notation.LetY be any smooth, irreducible, projective variety oGeMWe will denote by
Ty the tangent bundle of, and byKy a canonical divisor of. If & is any sheaf oY we
denote byy (&) its Euler—Poincaré characteristic anddyg’) its Chern classes. We denote
by p,(Y) the geometric genus ¥fAs usualV S (Y) will be the Néron—Severi group ®f We
denote numerical equivalence by using the synsbdf Z C Y is a subvariety, we denote
by Nz y the normal sheaf ainY. WhenY C P" we denote byHy the general hyperplane
section ofY. Moreover, ifdim(Y) =1 and 0< j </, we denote by /) the intersection of
with a general linear subspaB&~'+/ c P’. In particulardim (Y V) = j, andy -1 = Hy.

We say that ¢ P" isnumerically subcanonicd Ky =eHy in H2(Y, Q) for somee € Q.
We say thalt c P" is subcanonicalf Ky =eHy in Pic(Y), for somee € Z.

If xis a real number, we denote by] the integral part ok. If  isa setand : ¥ —
[0, +o0[ is a numerical function, we say that a functign % — [0, +oo[ is O(f), and
we write p = O(f), if |p(O)| < Cf(¢) forall & € &, whereC is a constant- 0.

1. The proof of Theorem 0.1 under the hypothesis (A)

We start by proving Theorem 0.1 in the case- 2, under the hypothesis (A). We need
the following result:

Theorem 1.1. Let V C P’ be an irreducible projective variety of dimensiom + 2> 4.
Assume that the general linear sectigif” of dimensiord of V is smooth and such that
NS(V@) ~ Z. Fix an integer sand a real number

, 1
N ————.
(n+ 1)lsm
For any projective rfold X contained in Yputd =deg(X) and letp, (X) be the geometric

genus of XThen the set of irreducibJemooth projective codimension two subvarieties X
of V, contained in some reducggkojective subvariety d® of dimensiom + 1 and degree
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<s, and such that
pe(X) < Ad"+E, (1.1a)

is bounded

Proof of Theorem 1.1. Using the same argument as in the proof4d], Theorem 4.1,
p. 487, one proves that

dn+l
X)=—— 4+ 0" 1.1b
Dg( ) n + Dls" + 0O(d") ( )
for any irreducible, smooth, projective, codimension two subvarieieEV of degreed,
contained in some reduced, projective subvarietl’obf dimensionz + 1 and degres
(see[10], p. 491, line 7 from below). Our Theorem (1.1) follows comparing (1.1a) with
(1.1b). O

We are in position to prove Theorem 0.1 in the case2. To this purpose, I8t C P be
a smooth fourfold as in Theorem 0.1. We may assMissnondegenerate. First we examine
the caser = 1 andb = 0. Putr = deg (V). Fix any real numbe# such that
1
A< —. 1.2
A< & (1.2)

Let X C V be any smooth projective surface such that

(X, Ox(Kx)) <4d? + cpy(Hx). (1.3)
We have
1(Ox) <1+ 2d® + cp,(Hy). (1.4)

Now we use the crucial inequality (sf& p. 277](2))
d®/t +q(2g — 2) + O(d) <2(K% — 67(0x)), (1.5)

whereg = p,(Hx) andKy =gHy in H?(V, C). By[9] we may assume thatis of general
type. Hence, using Miyaoka—Yau inequality (compare i)

K2<9(0x)

and (1.4) and (1.5), we get
(% - 62) d? + (2q — 6¢)g + O(d) <O0. (1.6)

If 2q — 6¢ >0 thendis bounded by (1.2). So we only have to examine the case@ < 0.
From (1.6) we get

5, 1—614

=2 +0O(d). 1.7)

8=
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Put
11— 61
20 t(6c —2q)°
and

so =max{t + 1, [a] + 1}.

Notice that, by (1.3) and Castelnuovo’s bound on the geometric genus of a projective curve,
we have

pg(X)<Jd® + cp,(Hx) = O(d?).

Then, by Theorem 1.1 we may assume thatthere is noirreducible and reduced 3=fa¥d
containingX and of degreex sg. Hence, by[6], Hx is nondegenerate and not contained in
any surface ifP?"~1 of degree< sq. By [7] we deduce

g<d?/2s0 + O(d). (1.8)

From (1.7) and (1.8) we obtain

2 /1 1
— (— - —) +0(d) <0,
2 \a so

which implies thatlis bounded becausg > «. This concludes the proof of the boundedness
in Theorem 0.1, under the hypothesis (A), with= 2,« = 1 andb = 0.

Now we turn to the case = 2 under the hypothesis (A), witlhh= 1 and any fixed.
As before, fix any real number as in (1.2). LetX ¢ V be a smooth surface such that
ho(X, Ox(Kx —bHx))<Ad? + cpq(Hx). From the Poincaré residue sequence (compare
with [12], proof of Corollary (2.2) (a), and witf8], p. 329)

0— wx(=1) — wx - oy, (=1 — 0,
we deduce
Ppe(X)<Ad? + (b + ¢) pg(Hx).

And so the boundedness @follows from the previous analysis of the case- 1, = 0.

Next, we consider the case>1. Fix any real numbe#i as in (1.2), and leX c V
be a smooth surface such thé( X, Ox (aK x — bHx)) <d? + cpy(Hx). Again by the
previous analysis, we may assupgX) > 0. Hence we have

RO(X, Ox(Kx — bHx)) <h°(X, Ox(aKx — bHXx)).

Therefore the boundednessdfollows from the analysis of the cage= 1.

Finally, to prove the sharpness of estimate (0.1a) under the hypothesis (A) with,
consider the se#”’ of smooth surfaces complete intersection\oof type (u, u). Clearly,
& is not bounded. In order to estimatl(X, Ox (aK x — bHy)) for X € &, first notice
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thatd = ru? (t = degree o¥), and by the adjunction formula we hase; = (¢ + 2u) Hx
in H2(X, C), whereKy = gHy in H?(V, C). From[19], p. 301, (2.15.8.6), we have

[(a(q + 2u) — byHZ]?

4a?4?
2 =
HX

+2

hO(X, Ox(aKyx —bHx))< +0@®?).

This proves (0.1c) and completes the proof of Theorem 0.1 under the hypothesis (A) with
n=2.

Next we are going to prove Theorem 0.1 in the case3, under the hypothesis (A). First
we examine the case= 1 andb = 0. To this purpose, taking into account Castelnuovo’s
bound for the genus of a projective curve, it suffices to prove the boundedness of the set of
smooth 3-foldsX C V such that

pe(X) <Ad? + cp,(Hx), (1.9)

where is anyfixed real number, and is any fixed integer>1. We follow the proof of
Theorem 0.1 in the case= 3, in[10]. First notice that using (2.2) ¢10] and Hyperplane
Lefschetz Theorem one has

1(0x) 21— h'(X, OUx) — pg(X)
>c(1—hY(X, Ox) — pg(Hx)) + (cpy(Hx) — pg(X) +1—c¢)
>c(=7(Ony) — 2(8 = 1) + (cpy(Hx) — pg(X) +1—0),

whereg = p, (XD) denotes the linear sectional genuoAs in the proof of (i) of Lemma
2.1in[10], we deduce

(24) — 129 + 24c)1(Opy) 2d*(2) — q — 2)/t + (g — D)(2d/t + O(D)) + O(d)
+ 24(cp,(Hx) — pg(X)),

wherey is any integer such that the twisted tangent burigié)) is globally generated and
Ky =qH, in H?(V,C). Using (g) of Lemma 2.1 ifil0], and taking into account that we
may assumei2— g + 2c > 0, we obtain

0<(g — Diu(g — 1)/d — 2d/t + O(1)] — 2d%(2y — g + ¢ — 1)/t + O(d)
+ 24(pg(X) — cpy(Hx)),

whereu = 8(2y — g + 2¢). From (1.9) we get

0<(g — Diu(g — V)/d — 2d/t + O(D)] — 2d*[~12% + (2y — g + ¢ — 1) /1]
+ O(d). (1.10)

By Theorem 1.1if10] we may assumg > 1. Moreover, as in the cage=2, using Theorem
1.1 and (1.9), we may also assume

¢<d?/2s0 + Od),
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where
so=max{t + 1, [ut/4] + 1}.
Therefore
(8 —Dlug —1)/d —2d/t + O(D]<0
for d > O(1), and by (1.10) we get
2d%[—12).+ 2y — q + ¢ — 1) /1] 4+ O(d) <0,

which proves the boundednesshbecause we may choogsuch that-127 + (2y — g +
¢—1)/t > 0. This concludes the proof of Theorem 0.1 under the hypothesis (A), in the case
n =3, whena =1 andb =0.

As in the case = 2, one reduces the proof of the general ecasel andb, ¢ € Z, to the
casea = 1 andb = 0. This concludes the proof of Theorem 0.1 under the hypothesis (A),
in the case: = 3.

Now we are going to prove the theorem in the case4, under the hypothesis (A). First
we examine the case= 1 andb = 0. Fix any positive real numbeérsuch that

) 1 (1.11)
N ———5. .
144Q2
As before, taking into account Castelnuovo’s bound for the genus of a projective curve, it
suffices to prove the boundedness of the set of smooth projective 4Xaofd$’ such that
Pe(X) <id® + c(pg(XP) + pg (X, (1.12)

wherec is any fixed integeg> 1. We follow the proof of Theorem 0.1 in the case- 4, in
[10]. Arguing as above, we obtain
1Ox) <1+ pg(XP) + pg(X)
S+ DA+ pe(XP) + pg (X)) + (pg(X) = epy(XP) —ep (X))
<+ D@Ox2) +28 = 1) +2 = 2(0Ux)) + (pg(X) — cp (XP)
—cp(XP)),

Wheregng(X(l)) denotes the linear sectional genuXofs in the proof of (m) of Lemma
3.1in[10], we deduce

602y — g + 2(c + 1) x(Ox®)
<(=9d /1 + 0 1(Cx@) + (¢ = DId(9g/2 — 9~ 10y)/1 + O(1)]
— d3/(12%) + 0d®) + 120(py (X) — cp (X'?) — ep (X)), (1.13)

wherey is any integer such thaty, (y) is globally generated ankly = g H, in H2(V, C).
Now put

52y — g +2(b+ 1))
—20-2-3d, v=2y—gq. B=
=8 v=2=a. B 2(1+ vd/2)
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Notice that we may assume> O(1). By Theorem 1.1 if10] we also may assume
g>0(d) and d>0(1). (1.14)
Hence we may assume<Ovd /o < 1/2, from which we get
0<52y—q+2b+1)/3<p<52y—q+20b+1)/2 (1.15)
Combining inequality (i) of Lemma 3.1 ifi0], i.e.

241+ vd /o) 1 (O ) > (g — 1)(2d /1 + O(1))
+ 2(Ox@)(—6d?/(at) + O(1)) — 36(1(Ox2))?/
o — d*/(40t?) + O(d?)

(notice that the term 36(Cy2))?/« corrects a misprint ifil0]), with (1.12) and (1.13),
we get

A(1(Ox2)* + By(Ux@) + C =0,
whereA = 36, B = 6d2/t — 9do/(ft) + «O(1), and

C=ua(g—D[d(9g/2—-9—10y)/(f1) —2d/t + O(1)]
+d*/(41%) + ad®(1204 — 1/(12:%))/ B + 2O(d?).

Using (1.11), (1.14) and (1.15) one sees that 0 andC < 0. At this point, taking into
account Theorem 1.1, in order to prove the boundednedsarfe may proceed exactly as
in the proof of Theorem 0.1 if10], in the case: = 4, under the hypothesis (A) (sg0], p.
486, line 18 from above). This concludes the proof of Theorem 0.1 in thexcage under
the hypothesis (A), whem= 1, 5 = 0 andc is any integer. Next, as before, one reduces the
general case >1 andb, ¢ € Z, to the case =1 andb = 0.

One proves the sharpness in the sense of (0.1c) in a similar way as in thedse

This concludes the proof of Theorem 0.1 in the hypothesis (A).

Remark 1.16. From the previous proof of Theorem 0.1 under the hypothesis (A), we see
that in the case = 3, for any fixed integera >1, b, ¢, and forany fixed real number

4, the set of irreducible, smooth, projective subvarie¥esf V of dimension 3 such that
hO(X, Ox(aK x —bHx)) <id? + c(pg(XD) + pe(X?@)), is bounded.

2. The proof of Theorem 0.1 under the hypothesis (B)

We begin with the following preliminary result, concerning boundedness for subvarieties
with bounded sectional genus (compare with Theorem 1[10}).

Theorem 2.1. LetV c P" be an irreducibleprojective variety of dimension=n+2>4
and degree.tDenote byV® the general linear section of V of dimensidnFor any
subvarietyX c V of dimension ndenote byX® the general linear section of X of
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dimension H1< h <n), by d the degree of Yand by g the geometric genus ¥fV. Fix a
real numberi such that

1
O<l<——. 2.1a
24/ 2t ( )

Assume tha¥’ ¥ is smoothand that its Néron—Severi group has rahkThen the set of
irreducible, projective subvarieties X of V of dimension n such & is smooth and

g<Id®?,
is bounded.

Proof of Theorem 2.1. We may assume = 2. Let X C V be any smooth projective
surface such thai < 1d%2. By [10] we may assume that is of general type. Therefore
1(0x)) >0, and from (1.5) we get

d?/t — 2K% + 0d®?)<0. (2.1b)

Now consider the orthogonal decompositiog=D+e¢H x in NS(X)®Q, with D- Hy =0
andD?<0. Sincee = (2g — 2 — d)/d, g </d*/? and we may assumé> O(1), we have

le| < 27.dY?.
It follows that

K2 = (D + eHx)?><e?d <4)%d?.
Using (2.1b) we have

1
(; - 8;?) d? + 0d¥? <0,

which, taking into account (2.1a), proves the boundedneds of]

We are in position to prove Theorem 0.1 under the hypothesis (B),antHl . To this
aim, fix any real numbei such that

O<i< ; (2.2)

/2O

Notice that, taking into account Castelnuovo—Harris bound for the geometric genus of a
projective variety[18], it suffices to prove that the set of smooth, projective subvarigties
of V of dimensiom with

RO(X, Ox(Kx — bHx))<Ad"?, (2.3)

is bounded. Using our hypothesis on the homology of the ambient vatietg know that
X = acH\% in Hy,(V, C), for somea € Q. Hence we can consider the following natural
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commutative diagram
Al(X)

*Hy (2.4)
ABv)y— P LA

whereA3(V) ¢ Ha,_»(V, C) denotes the space of algebraic classes of codimension 3 of
V, and similarly forX, p is the natural restriction map, apd the map which takes a cycle
onXand considers it as a cycle ¥nNotice that, by our hypothesig3(V) ~ C. Moreover

the vertical map is injective by Hard Lefschetz: this is where we nizel. It follows

thatj is an isomorphism, i.eA%(X) ~ NS(X) ® C has dimension 1. Whem = 1, we
assume: > (r + 1)/2 and so we may apply Larsen Theorf2]. With the same argument
developed i1, Proposition 8, p. 69we deduce that the Picard groupois generated by

the hyperplane section. It follows that

Kx =eHy
in Pic(X),withe = (2¢ — 2 — (n — 1)d)/d. Therefore, by (2.3) we have
h2(X, Ox(Kx — bHx)) = hO(X, Ox (e — b)) < Jd"2. (2.5)

On the other hand, by Castelnuovo Theory (see Proposition (3.23), p. [113])inve know
that

hO(X, Ux(e — b)) = (e — b)"/n! (2.6)
(by Theorem 2.1 we may assume- b > 0). Combining (2.5) with (2.6) we obtain
1)
g< %d:”/z +O(d), 2.7)

and the boundedness dffollows by (2.2) and Theorem 2.1. This concludes the proof of
Theorem 0.1 under the hypothesis (B), do& 1.

Now we are going to prove Theorem 0.1 under the hypothesis (B),auitB. We need
the following preliminary result, which relies on Kawamata—Viehweg Vanishing Theorem,
and allows us to bound®(X, Ox(aK x — bHy)) from below only assuming that the
Néron—Severi group of has rank 1 (compare with (2.5) and (2.6) above).

Proposition 2.8. Let X € P” be a projectiveirreducible and smooth variety of general
type of dimensiom >2 and degree dLet D be a big and nef divisor on.)Assume that
for suitable integersg and«, the general hyperplane sectidfiy is numerically equivalent
to 7D, and the canonical divisoK x is numerically equivalent te D. Fix an integet! > ¢
and definex and 8 by dividingl — o = at + 8, 0< 8 < 7. Put

y(n,d,o, 1, )= —2)(x —n + 1)[oc12(n —1) +nt(c —2)]
+nn—DI( —0—1t(n — 2)).
Then one has

hO(X, Ox(ID))>d (a 2) y(n,d, 0,7,1)/2t%°n(n — 1). (2.8a)
n—
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Remark 2.9. (i) In (2.8a) we assuméfl‘:;) —1forn=2, and(f;:%) —0forn> 2 and
a<n—1.

(i) Proposition 2.8 should be compared with Kollar—Luo—Matsusaka estifh8iep.
302, Theorem 2.15.9, which, in our context, is not as good as inequality (2.8a).

Proof of Proposition 2.8. First we examine the cage=2. SinceKx = oD, and! > g, by

Kawamata-Viehweg Vanishing Theorem we hateX, ('x (I D)) = 0 for anyi > 0. Hence
by Riemann—Roch Theorem we géX(X, Ox(ID)) = y(Ox) + I(I — 6)D?/2. SinceX is

of general type, thep((x) >0 and so we deduce

hWO(X, Ox(UD)>1( — 0)D?/2=dy(2,d, 0, 1,1)/4°. (2.10)
This proves Proposition 2.8 far= 2.

Now we are going to examine the case 2. We may assume>n — 1. By Kawamata—
Viehweg Vanishing Theorem we have

hY(X, Ox(ID — j1Hx))=0 forany O< ji<o— 1.
Therefore, from the hyperplane section exact sequence

0— Ox(ID— (1i+1DHx) — Ox(ID — j1Hyx) — Ox(D — j1Hx) ® Oxwn-1

— 0,
we get
-2
hO(X, Ox (D))= Y " (X", 0x(ID — j1Hx) ® Uxu-1).
Jj1=0

On the other hand, by Kawamata—Viehweg Vanishing Theorem again, we also have, for any

hO(X(nil)v Ox(ID — JiHx) ® @X(ll—l)) = ho(X(nil), (OX(H—J.)((I - jj_’E)D(nfl))),
whereX =D = Hy denotes the general hyperplane sectioX ahd D"~ denotes the

restriction ofD to X~ _ It follows that

-2
hO(X, Ox (D))= D (X", Ogu-1 (U — 1) D).
J1=0

Iterating the previous argument for the successive linear sectioXisnd get

o—2 a—3—j1  a—(—=D—ji—ja——ju-3

hOX, Ox(D)= D Y o 3

Jj1=0 j>=0 Jn—2=0
x O(XP, Oy (I — (14 ja+ -+ ja22D)D?P)),  (2.11)
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whereX @ denotes the general linear sectiorXadf dimension 2, and®@ the restriction
of D on X Notice thatX @ is of general type becauseis. Hence from (2.10) we have

ROX® Oy (A — (r+ ja+ -+ ju2)1)DP))
2dll — 1+ o+ -+ jn—2)tll — (1 + jo+ -+ ju—2)7
— 0 — (n—2)]/2r% (2.12)

Combining (2.11) with (2.12) we obtain (2.8a)]
We are in position to prove Theorem 0.1 under the hypothesis (B),anitR. Fix any
real numberl such that

_la— 1" Y24 +n—2)
2n1\/(21)" '

As in the case = 1, it suffices to prove that the set of smooth, projective subvarixtads
V of dimensiom with

0</ (2.13)

hO(X, Ox(aKx —bHx))<Ad"2/2, (2.14)

is bounded. As in the case= 1, one sees thaVS(X) has rank 1. Therefore, for some
ample divisorD on X, and suitable integers and z, we haveHy = tD, andKy =
oD. Pute = g/t and notice that = (2¢ — 2 — (n — 1)d)/d. By Theorem 2.1 we may
assume > O(1), in particularX is of general type. Moreover, if we plit= ag — bt then

we havel > ¢ because: > 2. Also, by Kawamata—Viehweg Vanishing Theorem, we have
ho(X, Ox(aK x —bH x))=h%X, Ox(ID)). Hence we can apply Proposition 2.8 and from
(2.8a) we get

hO(X, Ox(aKx —bHx))> %[(a — D" Y2a4+n—-2e"+0" ). (2.15)

Now fix any real numbey: such thatl < u < % (compare with (2.13)), and
n:
put
nlu
A= . 2.16
! \/2n—1(a ) Y2 +n-2 (2.16)
We have O< 11 < #Z (see (2.1a)). Hence, from Theorem 2.1, we may assumé;d/2.
From (2.15) we obtain
0 @-u"*t 4 g (n142)/2
h-(X, @X(aKx—be))>Tz (2a+n—2)A1d
+ O +V/2), (2.17)

In view of 2.16, comparing 2.17 with 2.14 we deduce tthet bounded.

In a similar way as under the hypothesis (A), with# 3, considering codimension
two balanced complete intersections\6fwhenV is smooth), one proves the sharpness of
Theorem 0.1 under the hypothesis (B), wlaen 2, in the sense of (0.1c).
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This concludes the proof of Theorem 0.1 under the hypothesis (B), wheh

Remark 2.18. (i) As already remarked in (2.3), we notice that, taking into account
Castelnuovo—Harris bound for the geometric genus of a projective v4ti8tyin order
to prove Theorem 0.1 under the hypothesis (B), it suffices to prove the existence of a posi-
tive real number such that the set of smooth, projective subvarietie$ V of dimension
nwith R0(X, Ox(aK x — bH x)) < 2d"/?, is bounded. The corresponding claim holds true
also under the hypothesis (D) (compare with (4.3.2) in Section 4). But this is not true under
the hypothesis (A) (and (C) and (E), see below).

(i) With obvious modification, the proof of Theorem 0.1 under the hypothesis (B) with
a = 1 works also fou > 2.

3. The proof of Theorem 0.1 under the hypothesis (C)

As in the proof of Theorem 0.1 under the hypothesis (A), in order to prove Theorem 0.1
under the hypothesis (C), we may assume 1 andb = 0. This said, the proof consists in
showing the existence of a suitable constant0 such that

n—1

pe(X) —c (Z pg(X(h))> >ud("+2)/2,

h=1

for any smooth and-dimensional subvarietf C V of degreel > O(1). In order to prove

this, first we compare the geometric genusxoivith the arithmetic genus. This is done

in Corollary (3.5) below. To prove this result, we need some preliminaries. First we prove

Lemma (3.1) and Proposition (3.2) which allow us to control the difference between the

geometric genus and the arithmetic genus in terms of the arithmetic genera of the linear
sections. Next we need Lemma (3.3) and Lemma (3.4) to obtain a numerical control of
these arithmetic genera.

Lemma 3.1. LetY C P" be an irreduciblesmooth projective variety of dimension > 2.
For any 1< j <m, denote byy /) the general linear section of Y of dimensioifhen we
have

h (Y, Oy) < pg (YD),
Proof. Use Hyperplane Lefschetz Theorem and inductiomon [

Proposition 3.2. LetY c P" be an irreducible smooth projective variety of dimension
m >1.Then there exist integets, . . ., ¢;;—1 anddp, . . ., d,,—1, depending only on nand
such that

m—1 m—1

o+ Y cix(Opi) < pe(Y) + (=D y(Oy) <do+ Y dj 2(Oyp).
j=1 j=1
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Proof. The casen = 1 being trivial, we may assume > 2 and argue by induction am.
We have

pe(Y) + (1" (Oy) = K" (Y, Oy) + (=) Y (=1 W/ (¥, Oy)

j=0
m—1 o
= (=" (~1In (v, Oy).
j=0
By Lemma (3.1) we deduce
m—1 . m_1 |
-1+ Z Pe(Y) | <po(¥) 4+ (1) Ly (0y) <1+ Z P (Y,
j=1 i

and our claim follows by using the induction hypothesis on the general linear sections
y® o ye=b o0

Lemma 3.3. Let V c P’ be an irreducible smooth projective variety of dimensiom +
2>7. Assume that fol <i <3, any algebraic class irH%(V, C) is a multiple of H},,
whereHy is the hyperplane section of et X c V be an irreduciblesmooth projective
subvariety of dimension, with degree dand assume that > O(1). Then

c2(Nx.v)>2c2(Nx.y) > 0.

Proof. We already know that, by our hypothesis on the cohomology; &fis numerically
subcanonical (see (2.4) before). Hence we Haye-e H y in H(X, C), wheree=(2g—2—
(n—1)d)/d (as usualg denotes the linear genusXy. Therefore we haver (Nx v)=n1Hx
in H2(X, C), where

np=e—¢q,

with Ky =gHy in H?(V, C). On the other hand, from the self-intersection formula, we
haveca(Ny,v) = npH2 in H*(X, C), where

np=d/t
(r= degree o). Hence we only have to prove that
n%}an.

To this purpose, fix a constapts> 0 such that the twisted tangent bundle(y) is globally
generated. Then algdy v (y) is, and therefore we have the positivity of its Segre class (see

[17])

—s5(Nx,v(y) = C?(NX,V(V)) - 4C§(NX,V(V))C2(NX,V(V))
+ 3c1(Nx,v ()3 (Nx,v (7)) >0, (3.3a)
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Now notice thatc1(Nx v () = (n1 + 2y)Hx, andca2(Nx v () = (n2 + yn1 + y2)H§.
By Theorem 2.1 we may choose the constaimdependently oK, so that

ni+2y>0 and ny+yn1+7>>0. (3.3b)
Therefore previous inequality (3.3a) yields

2 — 4y +320,
where

y = (n1429)%/(n2 + 71 + 7).
It follows that eithery <1 or y > 3. From the positivity

—s3(Nx,v (7)) = [(n1+ 2))° = 2(n1 + 2)) (n2 + yn1 + 7)) - H3 >0,
we have 2np + yng + yz) <(n1+ 2y)2, i.e.y>2. The above argument implies that 3,
ie.

(3nz — n?) — yn1 — 9?<0.
Now supposez% < 2n». From the previous inequality we have

n%/2 —yn1 —*<0.

We obtainz; < O(1) which, by Theorem 2.1, implies thdtis bounded. This is in contrast
with our hypothesig > O(1). Hence we must ha\l@?l > 2ny, and this concludes the proof
of Lemma (3.3). [J

Lemma 3.4. Let V C P be an irreducible smooth projective variety of dimensiom +

2>7. Assume thatfor 1<i <3, any algebraic class irH% (v, C) is a multiple ofH},,

where Hy is the hyperplane section of Wloreover assume thaftor 1<i <n, there exist
rational numbersq, ..., v, such thatc; (Ty) = viH{', in H% (v, C). For any irreducible

smooth projective subvariet C V of dimension nwith degree d and linear genusput

ny=2¢g —2— n—1d)/d + vi. Assumel > O(1). Thenni > 0 and, for any1<h <n,

one has

17(Oxm)| <dOM™).

Proof. Fix an integem € {1, ..., n}. By Hirzebruch—-Riemann—Roch Theorem we know
that (O ) is equal to the degree of the top Todd classxéf. This is the degree of a
certain linear combination, with coefficients depending onhyhpof monomials like

M (Txm) - G2 (Txm) - ..cy (Txm),
with o, . .., o, non-negative integers, athd= Z?zljaj. From the natural exact sequence

0— Tym — Tyutd ® Oxay — Ny yara — 0,
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we may compute the Chern classeéf in terms of the Chern classesBf w2 & Oxam,
and the Chern classes dfyx) ya+2. With the same notation as in the proof of Lemma
(3.3), we have

2
c1(Nxw yur2) =n1Hyw and ca(Nym yar2) =n2Hygq,.

Taking into account our hypothesis on the Chern class&4 ffollows that (€ yw)) is
equal to a certain linear combination, with coefficients depending onty ohmonomials
like

dnilngzvflvgz . vfh,
with o, o2, B1, Ba, - - ., B, NON-negative integers such that+ 2o, + Z?:ljﬁj <h. From
Lemma (3.3) we know that if > O(1) then

n% >2ny>1.
Hence, for a suitable constakf we have

o1 o P1 B B h
ldni'nz?vitvg? . v [ < Kdnf.

This proves thaly (O ym)| <dOm%). O

As a consequence of Proposition (3.2), Lemma (3.3) and Lemma (3.4), we obtain the
following.

Corollary 3.5. Let V. c P”" be an irreducible smooth projective variety of dimension
n+2>7.Assume thafor 1<i <3, any algebraic class it/ (V, C) is a multiple ofH,,
where Hy is the hyperplane section of Wloreover assume thafor 1<i <n, there exist
rational numbersus, . ..., v, such that; (Ty) = v; H, in H% (V, C). Fix an integerc >0.
For any irreducible smooth projective subvarietyX c V of dimension nwith degree d
and linear genus gputni = (2¢g — 2 — (n — 1)d)/d + v1. Assumel > O(1). Thenny > 0
and
n—1
Pe(X) —c (Z pg<x<”’)> > (—1)"1(Ox) +dOm; ™).

h=1

We are in position to prove Theorem 0.1 under the hypothesis (C). To this purpose, let
X C V be a smooth subvariety of codimension 2. By Corollary (3.5), in order to bound
pe(X) — c(Zz;}pg(X(h))) from below, it is enough to boun@-1)" y(@x) from below.

We keep the notation we introduced in the proof of Lemma (3.3). As in the proof of this
lemma, using Hirzebruch—-Riemann—Roch Theorem, one may write

(=1)"2(0x) = (=1)"d(U + R),
whereU is a linear combination, with coefficients depending onlynpof monomials like

oy 02
nyny,
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with o1, a2 non-negative integers such that+ 20, = n, andR is a linear combination,
with coefficients depending only an of monomials like

ar o B1 Po B
ny Ny vy vy ...vh’,

with a1, a2, f1, Bo, ..., B, NON-negative integers such that+ 20, + Zl}zljﬂj =nand
o1 + 202 < n. As in the proof of Lemma (3.3) one sees that

(—1)"dR = dO(n™1).
Summing up we obtain

n—1

pe(X) —c¢ (Z pg(x<h>)> > (=1)"dU +dOo@}™1). (3.6)

h=1
Now definev andp by dividing
n=2v+p, 0<p<]l,
and denote by
X0y X1y« vy Xy

the integers, depending only ansuch that

1 4 _o;
1V n=2] ]
(-D"U = n 2 | & xjnq ny | . 3.7)

Now we need the following numerical lemma. We will prove it later.

Lemma 3.8. With the same notation as befodenote by
v .
qy) =y x;y'",
j=0

and byg ) (y) its j-th derivative Then one hag/)(2) > 0, for any0< j <v.
As a consequence we have the following.

Corollary 3.9. There exists a rational number- 0, depending only on,rsuch thatif we
put

q:(y) =q(y) —ey’,

then one haaéj)(Z) >0, for any0< j <v. In particular, if y>2theng.(y) >q.(2).
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Now, continuing our computation, from (3.6) and (3.7), and taking into account Lemmas
(3.3), (3.8) and Corollary (3.9), we may write

n—1
pe(X) —c (Z pg(X“”))

h=1
2 2\"
(niz)v [q,g ("1) +s<” ) } +dOom! Y
— d n dO n—1
= (n+2)' 2‘]8 + 2)'87’114‘ (”ll )
__d j nt o1
- (n+2)' zqg o + (n+2)' [eny + )]
> d
Tk
d v+p/2 2) — qs(z) n/2+1
>(n+2)‘n1n2618( )/( +2), q:( )_—(n—i—Z)!\/t_"d .

Since% is a constant- 0, the previous inequality proves Theorem 0.1 under the

hypothesis (C) (as before, considering codimension two balanced complete intersections
onV, one proves the sharpness in the sense of (0.1c)).

It remains to prove the numerical Lemma (3.8). To this aim, keep all the notation we
introduced before. Since the polynomidaly) depends only on, in order to compute it, we
may use a complete intersectidnc V of type (u, v). In this case we have

ni=u-+v and ny=uv.
Moreover

1(Ox) = pv(0) — py(—u) — py(=v) + py(—u —v)

(pv (1) = Hilbert polynomial ofV). We may compute the ter@1)"dU assuming that all
Chern classes af are 0. By Hirzebruch—Riemann—Roch Theorem again, this implies that
we may assume

ln+2

Pv(l)=l‘m

(t =degree oW). Sinced = uvt we obtain

d (l/l + v)n+2 _ un+2 _ vn+2
(n+2)! ’

(=1)"dU =
uv
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In other words, the coefficients, x1, ..., x, of the polynomialg (y) are defined by the
identity

(u+ v)n+2 _ Mn+2 _ vn+2

v
=3 + 0 v (3.10)
uv ;

j=0
Now, if we put

(u + v)?
y =
uv

’

we have
Mn+2 + vn+2

v1 % Y
(1 + v)? (uv)*+?

gy) =y (3.11)

2 ,_ —1./v(4=~
Fix areal number 2<y<5/2. Then we have = (“j—;’) with u = LW and
v = 1. Notice that sincéx| = 1, then we have

u =exp(+/—10)
for some real numbet. In particular we have
y—2=2cosf) and ./ y(4—y)=2sind. (3.12)
From (3.11) we get
n+2
_ v+l _ M—H 3 13
CI(}’)—)’ (u+1)pu"+l’ ( . )

and so, taking into account thatyif= 2 thenu = 4/—1, we deduce
AR if n=0 mod(4),
2= 24 (=)D i n=1 mod(d),
TE=N 241 L 2(—1)H0/4 if n =2 mod(4),
24 4 (=) it n =3 mod(4).
This proves thay (2) = ¢@(2) > 0.
Moreover, from (3.10), one sees that=n + 2, and thereforg " (2) > 0.
It remains to evaluate the derivatives’ (2), for 1< j <v — 1.

First we examine the cases even. Henca = 2v andp = 0. In this case, from (3.13),
we may write

! 1
q(y) — y\+1 _ (uv+l + W)
=y — [exp(V=1(v 4+ 1)0) 4 exp(—/—1(v + 1)0)]
and so we get

q(y) =y"t = 2cogv + 1)0. (3.14)



204 V. Beorchia et al. / Journal of Pure and Applied Algebra 197 (2005) 183-212

One may write cog + 1)0 as a polynomial in co8 of degreev + 1, i.e.

v+1
cosv+1)0 = " f(cost)’,
1=0
with suitable integer numbey,, .. ., f,,1. By (3.12) we obtain the following polynomial

identity

v+1 2 /
400=y”1—2[§:m9%§l}-
1=0
From this formula we deduce, forlj <v — 1,
/) (2) = 211_11 [2“ <VJJf1> B [)’j]- (3.15)
Now we need the following.

Sublemma. With the same notation as befpessume > 0. Then forany0</<v-+ 1one

has
Bl<2 (le).

Proof of the Sublemma. The case & v< 1 being trivial, we may assume>2 and argue
by induction orw. From the identity

cogv + 1)0 = 2 cost cosvl — cogv — 1)0 (3.16)
and the induction hypothesis, we deduce that
ﬁv+l = 2v’ ﬁv =0, and |ﬁ0| <1

Hence we only have to estimai@ | for 1</ <v — 1. To this purpose, put

y v—1
cosvd =) y/(cost)’ and cosy—1)0 = 5 (cosh).
=0 =0

From (3.16) we hav§, = 2y,_; — J;. Therefore, using the induction hypothesis, we get

v v—1 v+1
i<ana o<z () +2 (V) <2 (Y. o

Continuing the computation @f/)(2) from (3.15) and using the sublemma, we get

) 1 )
g7 (2)>2j! (”. ) 2/ -1 >0.
J

This concludes the proof of Lemma (3.8) in the casen.
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Finally assume is odd, hence = 2v + 1 andp = 1. In this case, from (3.13), we have
v+1
q(y) — yv-‘rl _ (_1)v+l _ |:Z(_1)V+l—1(ul + M—l):| )
=1
Therefore we get
v+1
g(y) =yt (12 -2 |:Z(—1)V+"1 cole:| . (3.17)
=1

A direct computation proves Lemma (3.8) foK2 < 4. Hence we may assume- 4 and
argue by induction om. From (3.17) we may write

v—=1
gy =r(+ {yv_l +(=D' -2 |:Z(—1)"+l_3 Cosw] } :

=1

where
r(y) =[y"** — 2cogv + 1)0] — [y" " — 2 cogvh)].

By induction hypothesis, all the derivativgS’ (2) —r/)(2) are> 0 for any, > 0. Therefore
we only have to prove that/)(2) > 0 for 1< j <v — 1. This follows by rewriting-(y) as

r(y) =yt — 2 cogv + 1)0] — [y* — 2cogvd)] + y* — y' 7L,

and using a similar computation as in the casgen (compare with (3.14)). This concludes
the proof of Lemma (3.8).

Remark 3.18. From (3.10) one obtains explicit formulae feg, x1, ..., x,, i.e. one has,
for0<j <,

j—1
: n—j+2> J 1 <n—j+2>
x;i=(—1)/ + -1)/ [+1 .
i=( )< it1 ;:O( ) ( ) i—1-1
In particular we see that
xo=n+2,

and deduce (y) for low n. For example we have

Ty2 — 14y +7 if n =5,

8y3 — 20y% 4 16y — 2 if n=6,
q(y)= 3_ o072 _ TI

9y° — 27y + 30y — 9 if n=7,

10y* — 35y3 + 50y2 — 25y +2 if n=8.
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4. The proof of Theorem 0.1 under the hypothesis (D)

First we prove a boundedness result for subcanonical subvarieties (see Theorem 4.1
and Corollary 4.3 below), which does not need the assummtﬁaﬁg—l appearing in the
hypothesis (D).

Theorem 4.1. LetV C P" be an irreducibleprojective variety of dimension m and degree
t. Let n be an integer with <m < 2n, and putk = m — n. Assume that for sonte< i <n
with & >k, the general linear sectioir "% of dimensior: + k of V is smoothand that
either any algebraic class it (V1% C) is a multiple OfH, 1, fori € {1, k}, ork

is even andd? (V"+h) C) ~ Cforanyi =1, ...,k — 1. For any subvarietyX c V of
dimension n and an¥< z <n, denote byX " the general kdimensional linear section of
X.Putd = deg(X), g = pg(XD), and fix a real numbe# such that

1
29t
Then the set of irreducib)@rojective subvarieties X of V of dimension n such &
is smoothnumerically subcanonicadnd such that

O<i< (4.1a)

g <ad* DIk,

is bounded

Proof of Theorem 4.1. We may assume=nh by takingV =V *+X)_Therefore/is smooth.
Let X C V be any smooth projective subvariety of dimensmiof degreed, numerically
subcanonical, and such that 1d *+tD/* We have

Ky =eHx
in H2(X, Q), with e = (2¢g —2— (n — 1)d)/d. Since we may assumk> O(1), we have
le| < 22dY¥. (4.1b)

Now letqandy be rational numbers such thiy =¢ H, in H?(V, C) andTy (y) is globally
generated. Then alg¥y vy (y) is globally generated. Since

c1(Nx,v(y)) = (ky + e —q)Hy, (4.1¢c)
by [17] we deduce & ky + ¢ — ¢. Notice that taking > O(1) we may assume
1<ky+e—q. (4.1d)
We need the following lemma. We will prove it later.
Lemma 4.2. With the same assumption as befdog anyi =1, ..., k one has

d(ky +e—q)" 0@ P <GHx) i (Nx v)er(Nx,y ()"
<d(ky+e—q)" [ ' + 0@ V/H)]. (4.2a)
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Using the previous Lemma 4.2 foe= k, we have
cx(Nx v)er(Nx v ()" <d(ky + e — g)" F[e* + 0@ /%)), (4.2b)

Onthe other hand, if any algebraic clas## (V, C) is a multiple ofH{j , thenX:(d/t)H{j
in H%(V, C), and therefore by the self-intersection formula we get

cx(Nxv) = (d/1)HE.
By (4.1c) we deduce
Ny v)er(Nx,y () =d?(ky + e — )" /1. (4.2¢)

If kis even and4? (v, C) ~ Cforanyi =1, ..., k — 1, Lefschetz Hyperplane Theorem
and Hodge—Riemann bilinear relations imply that the intersection forl v %0 R)
is positive definite. Hence we have

(X® — (/1) H} 5))? >0.
Using the self-intersection formula again we get
ck(Nxw yan) = X®2=a?/1.
Using (4.1c) it follows that
ck(Nx,v)eaNx,y ()™ = (ky + e — )" Fex(Nx,v) Hy

=y +e—a)" Fa(Nyw ya)
>d*(ky +e—q)"* /1, (4.2d)

which, by (4.2c), holds imnycase.
Summing up, from (4.1b), (4.1d), (4.2b) and (4.2d) we obtain

d/1<ek +0* V%) < @nkd + 0@*brk).

Therefore we have
1
[; — (%k] d +0d* V" <o,

which, taking into account (4.1a), proves the boundednesds Tiis concludes the proof
of Theorem 4.1.

Now we are going to prove Lemma 4.2. To this purpose, we argue by induction on
Wheni =1, from (4.1c) we have

(HO sV v)er(Nx,y )" =" Hd(e — ) (ky + e — )",
which, taking into account (4.1d), proves Lemma 4.2 ferl. Assume then i <k. From
the formula
k- o
ci(Nx v =) <i _ j) (yHx)"™/cj(Nx,v),

j=0
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intersecting with(y Hx)* " c1(Nx.v ()" %, we get

(yHx) " 'c;(Nx.v)er(Nx, v ()" *

= (pHx) e (Nx.y ()er(Nx. v ()" *
i—1

k—j ;
- (l. B j) (Hx) ej(Nx,v)er(Nx,v ()"

j=1
k
— ( , ) PWdky +e—q)" . (4.2e)
4
Using induction and (4.1b) we have
k— . .
(l. B j) (Hx) i (Nx v)ea(Nx,y ()" =d(ky + e — q)"*0@@/*)  (4.2f)

for any 1< j <i — 1. Notice that, in order to obtain the equality in (4.2f), we have to use
both inequalities in (4.2a). The equality (4.2f) enables us to control, from above and from
below, the terms in (4.2e) which appear in the sum. And in fact, using (4.2e) and (4.2f), we
get

(Hx) " ci (Nx,v)er(Nx,v ()" .
= (P Hx)* "' c; (Nx v ())er(Nx.y (0))" 5 + d(ky + e — )" * 0@~/ (4.29)

Now notice that sinc&/x v (y) is globally generated, bjL 7] we have

0< (HX) e (Nx,v ())erWx, v (1)) .
Hence the left-hand side inequality in (4.2a) holds. On the other hand one h§k{Laed
the proof of Proposition ifi23])

ci(Nx,v (M)er(Nx,v ()™ <ea(Nxv ()",
from which, using (4.1b), (4.1c) and (4.1d), we deduce

(VHX)* " ci(Nx,v (0))er(Nx,v ()"
=ci(Nxy ) ky +e—q)" FHY
=y ky + e — @) KNy v () ky + e — )" HE
=y ky + e — @) Fei(Nx,v ()er(Nx v ()"
<y +e— ) FeaNx v () =9 T dky + e — g)"
=dky+e—q)" el + 0@ Y/,

Comparing the previous inequality with (4.2g), we get the second inequality in (4.2a). This
concludes the proof of Lemma 4.2.

Corollary 4.3. LetV c P’ be anirreducibleprojective variety of dimension m and degree
t. Let n be an integer with < m <2n, and putk = m — n. Assume that for some< i <n
with >k, the general linear sectioff "% of dimensior: + k of V is smoothand that
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either any algebraic class i#% (V*+K) C) is a multiple ofH}, ., fori € {1, k},orkis
even anddZ (V+h C)y~ Cforanyi=1,...,k — 1.

Fix integersa, b, ¢ € Z witha>1, and pute(a) = min{; + 1, 7 +a — 1}. For any
n-dimensional subvariety X of V denote Ky" (K x resp) the general linear section of
dimension Hthe canonical divisor respof X. Denote byp, (X ™) the geometric genus of
XM PutHy = X® D andd = deg(X).

Then there exists a strictly positive real numlder 0, depending only on,ra and the
ambient variety Ysuch that the set of irreduciblemooth subcanonicalprojective subva-
rieties X of V of dimension n such that

WX, Ox@Kx =bH))<2d" @ +c| 7 pX™)
1<h<e(a)—-1

is bounded.

Proof of Corollary 4.3. First we analyze the cage= 1. Fix any real numbei such that

1
O<;u< m, (43a)
wherer = deg(V). As in the proof of Theorem 0.1 under the hypothesis (B) (see Section
2), one sees that in order to prove the claim, it suffices to prove that the set of smooth,
projective, subcanonical subvarietdé®f V of dimensiom with

hO(X, Ox(Kx — bHx)) <id"*, (4.3b)

is bounded. Using a similar argument as in the proof of (2.7), one sees that for such subva-
rietiesX one has

1)/n
g< %d“*w k4 O).

So the boundedness dfollows by (4.3a) and Theorem 4.1.
The casex >2 follows using Proposition 2.8 in a similar manner as in the proof of
Theorem 0.1 under the hypothesis (B), witk:2. [

We are in position to prove Theorem 0.1 in the hypothesis (D). Fix any smooth subvariety
X of V of dimensiom. Using our hypothesis on the homology of the ambient vakiethe
inequalityn > (m + 2) /2, and a Barth—Lefschetz type of argument (see diagram (2.4)), one
sees thatvS(X) ® C has dimension 1.

Whena =1, we assume > (r + 1) /2, and so we may apply Larsen TheorQ]. With
the same argument developed 1, Proposition 8, p. 69, we deduce that the Picard group
of X is generated by the hyperplane section. In particdler subcanonical. At this point,
Theorem 0.1 in the hypothesis (D) with= 1 is a consequence of Corollary 4.3.

Whena > 2, using Theorem 4.1 instead of Theorem 2.1, one proves Theorem 0.1 in the
hypothesis (D) using a similar argument as in the proof of Theorem 0.1 in the hypothesis
(B) witha>2. O



210 V. Beorchia et al. / Journal of Pure and Applied Algebra 197 (2005) 183-212

Remark 4.4. As a further consequence of Theorem 4.1, we havettieset of smooth
projective numerically subcanonical and not of general type subvarieties of dimension n
in P2"_ is bounded

5. The proof of Theorem 0.1 under the hypothesis (E)

We keep the notation introduced in Section 4, and assume the hypothesis (E). Fix any
real numbert such that

(a—1"t2a+n-2

O0<i< Sk (5.1)
Let X C V be a smooth subvariety of dimensinand degree, and assume that
n—1
hO(X, Ox(@Kx —bHx)) — ¢ (Z pg(X(h))> <2d" R (5.2)
h=1

As in (2.15), using Kawamata—Viehweg Vanishing Theorem, one proves that,aghan
d
WX, Ox(@Kx = bHx)) > 5 —(a = 1""H(2a +n = 2)n} +dO@; ™),

whereny =e¢ —q,e=(2¢ — 2 — (n — 1)d)/d, andKy = qH, in H?(V, C) (notice that,
by Theorem (4.1), we may assume> ed /¥, for a suitable constamt> 0). Therefore we
have

n—1
hO(X, Ox(aKx —bHx)) — ¢ (Z pg(X“”))

h=1

d e . . n—1

Now using a Barth—Lefschetz type of argument (see diagram (2.4)), our hypothesis on the
codimensiork of X and on the cohomology &f implies that, for any i <k,

ci(Nx,v) =n;Hi,

in H% (X, C), for a suitable rational numbes. Using (4.1c) and the second inequality in
(4.2a), we deduce

(PHx) 7 (i Hi ) (ky + e — @) Hy)" " * <d(ky 4+ ¢ — ¢)" *[)* ' + 0@ ~Y/%)].

Simplifying the factor(ky + ¢ — ¢)" %, and taking into account thaly = 4 and that
nig=e—q,we get

n <(n1+q) + O V%) = O(nl).

Similarly, using the first inequality in (4.2a), we get> O(”il)- In other words, for any
1<i <k, we have

In;| <OnY).
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Using Proposition 3.2 and arguing as in the proof of Lemma 3.4, it follows that
pe(X")<dO(})

for any 1<k <n. Hence we have

n—1

> pe(X ") <dOm] ™.
h=1

Therefore, from (5.3), we get

n—1
hO(X, Ox(aKx —bHx)) — ¢ (Z pg(X“”))

h=1
d
> a— 1" Y2a 4+ n — 2)nt +dOms™). (5.4)
Now fix any real numbep such thatl < u < ““1)21# (compare with (5.1)), and
put '
nlu
=" . 55
' \/2n—1(a 1" Y2 +n -2 5.9)

We have O< A1 < ﬁ; (see (4.1a)). Hence, from Theorem 4.1, we may assyme2i1d /%,
From (5.4) we obtain

KX, Ox(aKx —bHx))> 2"Y2a +n — 2))a"/ "1

(a _ 1)1’1—1
n!
+ O(d =7k (5.6)

In view of (5.5), comparing (5.6) with (5.2) we deduce tdas bounded.
One proves the sharpness of the estimate in a similar way as in the hypothesis (A). This
concludes the proof of Theorem 0.1 under the hypothesis (E).
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