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Abstract

Fix integersa�1,b andc. We prove that for certain projective varietiesV ⊂ Pr (e.g. certain pos-
sibly singular complete intersections), there are only finitely many components of the Hilbert scheme
parametrizing irreducible, smooth, projective, low codimensional subvarietiesX of V such that

h0(X,OX(aKX − bHX))��d�1 + c


 ∑
1�h<�2

pg(X
(h))


 ,

whered,KX andHX denote the degree, the canonical divisor and the general hyperplane section of
X,pg(X(h)) denotes the geometric genus of the general linear section ofXof dimensionh, and where
�, �1 and�2 are suitable positive real numbers depending only on the dimension ofX, ona and on
the ambient varietyV. In particular, except for finitely many families of varieties, the canonical map
of any irreducible, smooth, projective, low codimensional subvarietyX of V, is birational.
© 2004 Elsevier B.V. All rights reserved.

MSC:Primary: 14C05; 14M07; 14M10; secondary: 14J99

0. Introduction

A famous theorem of Ellingsrud and Peskine[15] states that there are only finitely many
components of the Hilbert scheme parametrizing smooth surfaces inP4 not of general type.
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This paper has been followed by others in which suitable extensions have been presented
(see[2–4,16,23]). More recently two of us gave further wide extensions of these results
[8–10].
Going back to the original theorem of Ellingsrud and Peskine[15], Ellia and Folegatti

[14] remarked that the technique of proof makes it possible to show a more general result.
Namely they are able to prove boundedness for families of smooth surfaces inP4 with
geometric genus bounded above by the sectional genus. This in turn implies boundedness
for families of smooth surfaces inP4 with nonbirational canonical map.
The present paper is devoted to give a wide extension of Ellia–Folegatti’s result (see

Theorem 0.1), which we now will state.
Let V be an irreducible, possibly singular, projective variety overC. LetS be a set of

projective subvarieties ofV. We will say thatS is boundedif there is a closed immersion
V ⊂ Pr such that

sup{deg(X) : X ∈ S}<+ ∞.

Thismeans that the varieties inSbelong to finitelymany components of theHilbert scheme.
In particular, this definition does not depend on the closed immersion.
In this paper we will prove the following:

Theorem 0.1. Let V ⊂ Pr be an irreducible, projective variety of dimension m. Let
1�n<m be an integer, and putk = m − n. Fix integersa, b, c ∈ Z, with a�1, and
put �(a) = min{n

k
+ 1, n

k
+ a − 1}. Assume that at least one of the following properties

holds.
(A)m=n+2, 2�n�4,V is smooth,NS(V ) � Z andanyalgebraic class inH 4n−8(V ,C)

is a multiple ofH 2n−4
V , whereHV is a hyperplane section of V;

(B) m = n + 2, n�4 and, only whena = 1, n� r+1
2 ; for i = −1,0 any algebraic class

in H2n+2i (V ,C) is a multiple ofH
2−i
V , the general linear sectionV (4) of dimension4 of V

is smooth andNS(V (4)) � Z;
(C) m = n + 2, n�5,V is smooth, for 1� i�3 any algebraic class inH 2i (V ,C) is a

multiple ofHi
V , and there exist rational numbersv1, . . . , vn such thatci(TV ) = viH

i
V in

H 2i (V ,C) for any1� i�n;
(D) n� m+2

2 and, only whena = 1, n� r+1
2 ; for i = −1,0 any algebraic class in

H2n+2i (V ,C) is a multiple ofH
k−i
V ; moreover, for some2�h�n with h�k, the general

linear sectionV (h+k) of dimensionh + k of V is smooth, and either any algebraic class in
H 2i (V (h+k),C) is amultiple ofHi

V (h+k) for i ∈ {1, k},or k is even andH 2i (V (h+k),C) � C
for anyi = 1, . . . , k − 1;
(E) n> 3m−2

4 ,V is smooth, a�2, for 1� i�2k − 1 any algebraic class inH 2i (V ,C) is
a multiple ofHi

V , and there exist rational numbersv1, . . . , vn such thatci(TV ) = viH
i
V in

H 2i (V ,C) for any1� i�n.
For any n-dimensional subvariety X of V denote byX(h) (KX resp.) the general linear

section of dimension h(the canonical divisor resp.) of X.Denote bypg(X(h)) the geometric
genus ofX(h). PutHX =X(n−1) andd = deg(X).
Then there exists a strictly positive real number�>0, depending only on n, a and the

ambient variety V, such that the set of irreducible, smooth, projective subvarieties X of V
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of dimension n satisfying the following inequality under the hypothesis(A) with n �= 3, or
(C) or (E)

h0(X,OX(aKX − bHX))��dn/k+1 + c

(
n−1∑
h=1

pg(X
(h))

)
, (0.1a)

or the following inequality under the hypothesis(A) with n= 3

h0(X,OX(aKX − bHX))��d2 + c(pg(X
(1))+ pg(X

(2))),

or the following inequality under the hypothesis(B) or (D)

h0(X,OX(aKX − bHX))��d�(a) + c


 ∑

1�h<�(a)−1

pg(X
(h))


 , (0.1b)

is bounded.
Moreover, when V is smooth, under the hypothesis(A) with n �= 3, or (B) with a�2,

or (C), or (D) with a�2, or (E), the previous estimates are sharp in the following sense:
there exists a real number�> � depending only on n, a and the ambient variety V, such
that the set of irreducible, smooth, projective subvarieties X of V of dimension n satisfying
the inequality

h0(X,OX(aKX − bHX))��dn/k+1 (0.1c)

is not bounded.

In particular, using Theorem 0.1 fora= b=1, we see that if the degree of the subvariety
X ⊂ V is large enough, thenh0(X,OX(KX −HX))>0, i.e. the linear system|KX −HX|
is not empty. This implies that the canonical linear system|KX| induces a birational map
onX. Therefore we have the following

Corollary 0.2. With the same assumption of Theorem0.1,except for finitely many families
of varieties, the canonical map of any irreducible, smooth, projective subvariety of V of
dimension n, is birational.

Theorem 0.1 has a rather wide range of applications, also to singular varieties. By Lef-
schetz Hyperplane Theorem, Poincaré duality and Barth Theorem, any smooth complete
intersection fourfoldV on a Grassmann variety or on a Lagrangian maximal Grassmannian
variety or on a spinor variety[22], any smooth complete intersectionV ⊂ Pr of dimension
5 or 6, any smooth fourfold inP6 and any smooth sixfold inP8 verifies the hypothesis (A).
Whenn�5 (and, only fora = 1, whenn�(r + 1)/2), possibly singular complete inter-

sectionsV ⊂ Pr of dimensionn + 2, with dim(Sing(V ))�n − 6, verify the hypothesis
(B) (see[11, Theorem (2.11), p. 144]). Moreover any hypersurfaceV ⊂ Pn+3 of degree
t�3 defined by the equation

xa0x
t−a
1 + x1x

t−1
2 + · · · + xn+1x

t−1
n+2 + xtn+3 = 0,
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with n�4, 1�a < t − 1 and (a, t) = 1, has at most two singular points and satisfies
the hypothesis (B) (see[11], Proposition (2.24), p. 148). This provides examples for the
assumption (B) in the casen = 4 too. By Barth Theorem again, any smooth subvariety
V ⊂ Pr of dimensionn+ 2, with n�(r + 2)/2, satisfies the hypothesis (B).
As before one sees that any possibly singular complete intersectionV ⊂ Pr of dimension

mwith n> (m+2)/2 anddim(Sing(V ))�2n−m−4 (and, only fora=1, withn�(r +
1)/2), and any smooth subvarietyV ⊂ Pr of dimensionm with n�(r + 2)/2, satisfies
the hypothesis (D). Whenn = (m + 2)/2 (and, only fora = 1, whenn�(r + 1)/2), by
Noether–Lefschetz Theorem[5] this is true also for Noether–Lefschetz general complete
intersectionsV ⊂ Pr of dimensionm, withha,m−a(V ) �= 0 for somea <m/2 (for instance,
any general hypersurface of even dimensionm�4 and degree�3 [21]).
Smooth complete intersectionsV ⊂ Pr of dimensionm�7 (m<(4n+2)/3 resp.) satisfy

the hypothesis (C) ((E) resp.).
As for the proof, the general strategy consists in determining a lower bound for the

geometric genus of a subvarietyX ⊂ V . Our methods are partly based on the technical
developments of[8–10], to which we will often refer.
Under the hypothesis (A), the basic tools are inequality (1.5) proved in[9], Castelnuovo–

Halphen’s theory, and Miyaoka–Yau’s inequality (see Section 1).
The line of the proof under the hypothesis (B) is the following. A Barth–Lefschetz type

of argument proves that the Néron–Severi group of the subvarietiesX of V has rank 1.
Then, whena�2, Kawamata–Viehweg Vanishing Theorem allows us to obtain a lower
bound forh0(X,OX(aKX − bHX)) (see Proposition 2.2, which should be compared with
Kollár–Luo–Matsusaka estimate[19, p. 302, Theorem 2.15.9]). In order to make this lower
bound explicit, and then deduce the boundedness forX, we need a general result, i.e.
Theorem2.1, concerningboundedness for subvarietieswithboundedsectional genus,whose
proof relies on inequality (1.5) and Castelnuovo theory, and does not need the assumption
n�(r + 1)/2. The previous argument does not work whena = 1. In this case, using the
hypothesisn�(r + 1)/2, we may apply Larsen Theorem (as in Amerik paper[1]) and
deduce that the Picard group ofX is generated by the hyperplane section. Then Castelnuovo
theory[13] enables us to boundh0(X,OX(KX−bHX)) from below, and so, usingTheorem
2.1 again, one may conclude in a similar way as in the casea�2 (see Section 2).
Under the hypothesis (C), the Chern classes of the normal bundle of a smooth subvariety

X ⊂ V are multiples of the linear sections. By means of a somewhat delicate numerical
analysis based on the Hirzebruch–Riemann–Roch Theorem and the previous Theorem 2.1,
this allows us to bound from below the arithmetic genus ofX in terms of the degreed of
X. Using the Hyperplane Lefschetz Theorem one may estimate the difference between the
geometric genus ofX and the arithmetic genus, finally obtaining a lower bound for the
geometric genus, from which one easily concludes (see Section 3).
Under the hypothesis (D), Theorem 0.1 follows in a similar manner as under the hypothe-

sis (B), taking into account a general result, i.e. Theorem 4.1, which states boundedness for
subcanonical subvarieties, and does not need the assumptionn�(r+1)/2. For the proof of
this result, the main tools are Chern classes computations like in[23] and[8] (see Section
4).
Under the hypothesis (E), Theorem 0.1 follows by combining the methods used in the

proof under the hypothesis (C) and (D) (see Section 5).
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We prove the sharpness of the estimates (0.1a) and (0.1b) in the sense of (0.1c), by
considering the unbounded set consisting of thek-codimensional complete intersections of
balanced type onV.
For instance, for a smooth complete intersection surfaceX of balanced type(u, u) in

P4, we havepg(X)� 7
12d

2. On the other hand, our analysis proves that smooth surfaces
X ⊂ P4 with pg(X)� 1

12d
2 are bounded (see Section 1, (1.2)).

Under the hypothesis (A) withn= 3, or (B) witha = 1, or (D) witha = 1, our methods
do not enable us to obtain the expected sharp estimate. In any case we give explicit estimate
for the constant�, and our analysis may give, in principle, explicit bounds for the degreed
in terms of the given data. We decided not to dwell on this here.
It would be interesting to investigate whether Theorem 0.1 is sharp in a stronger sense.

For instance, it implies boundedness for smooth surfaces of degreed in P4 with geometric
genus��d2, with �<1/6 (see Section 1, in particular (1.2)). A nice question is therefore
whether the family of smooth surfaces inP4 with geometric genus�d2/6 is bounded or
not.
Notation.LetYbe any smooth, irreducible, projective variety overC. We will denote by

TY the tangent bundle ofY, and byKY a canonical divisor ofY. If E is any sheaf onYwe
denote by�(E) its Euler–Poincaré characteristic and byci(E) its Chern classes.We denote
bypg(Y ) the geometric genus ofY.As usualNS(Y )will be theNéron–Severi group ofY.We
denote numerical equivalence by using the symbol≡. If Z ⊂ Y is a subvariety, we denote
byNZ,Y the normal sheaf ofZ inY.WhenY ⊂ Pr we denote byHY the general hyperplane
section ofY. Moreover, ifdim(Y )= l and 0�j� l, we denote byY (j) the intersection ofY
with a general linear subspacePr−l+j ⊂ Pr . In particulardim(Y (j))= j , andY (l−1) =HY .
We say thatY ⊂ Pr isnumerically subcanonicalif KY =eHY inH 2(Y,Q) for somee ∈ Q.
We say thatY ⊂ Pr is subcanonicalif KY = eHY in P ic(Y ), for somee ∈ Z.

If x is a real number, we denote by[x] the integral part ofx. If S is a set andf : S →
[0,+∞[ is a numerical function, we say that a function� : S → [0,+∞[ is O(f ), and
we write� = O(f ), if |�(�)|�Cf (�) for all � ∈ S, whereC is a constant>0.

1. The proof of Theorem 0.1 under the hypothesis (A)

We start by proving Theorem 0.1 in the casen = 2, under the hypothesis (A). We need
the following result:

Theorem 1.1. Let V ⊂ Pr be an irreducible, projective variety of dimensionn + 2�4.
Assume that the general linear sectionV (4) of dimension4 of V is smooth and such that
NS(V (4)) � Z. Fix an integer s, and a real number

�<
1

(n+ 1)!sn .

For any projective n-fold X contained in V, putd = deg(X) and letpg(X) be the geometric
genus of X. Then the set of irreducible, smooth, projective, codimension two subvarieties X
of V, contained in some reduced, projective subvariety ofPr of dimensionn+1and degree
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�s, and such that

pg(X)��dn+1, (1.1a)

is bounded.

Proof of Theorem 1.1.Using the same argument as in the proof of[10], Theorem 4.1,
p. 487, one proves that

pg(X)= dn+1

(n+ 1)!sn + O(dn) (1.1b)

for any irreducible, smooth, projective, codimension two subvarietiesX of V of degreed,
contained in some reduced, projective subvariety ofPr of dimensionn + 1 and degrees
(see[10], p. 491, line 7 from below). Our Theorem (1.1) follows comparing (1.1a) with
(1.1b). �

We are in position to prove Theorem 0.1 in the casen=2. To this purpose, letV ⊂ Pr be
a smooth fourfold as in Theorem 0.1.Wemay assumeV is nondegenerate. First we examine
the casea = 1 andb = 0. Putt = deg(V ). Fix any real number� such that

�<
1

6t
. (1.2)

LetX ⊂ V be any smooth projective surface such that

h0(X,OX(KX))��d2 + cpg(HX). (1.3)

We have

�(OX)�1+ �d2 + cpg(HX). (1.4)

Now we use the crucial inequality (see[9, p. 277](2))

d2/t + q(2g − 2)+ O(d)�2(K2
X − 6�(OX)), (1.5)

whereg=pg(HX) andKV =qHV inH 2(V ,C). By [9] wemay assume thatX is of general
type. Hence, using Miyaoka–Yau inequality (compare with[14])

K2
X�9�(OX)

and (1.4) and (1.5), we get(
1

t
− 6�

)
d2 + (2q − 6c)g + O(d)�0. (1.6)

If 2q−6c�0 thend is bounded by (1.2). So we only have to examine the case 2q−6c <0.
From (1.6) we get

g�d2
1− 6t�

t (6c − 2q)
+ O(d). (1.7)
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Put

1

2�
= 1− 6t�

t (6c − 2q)
,

and

s0 =max{t + 1, [�] + 1}.
Notice that, by (1.3) and Castelnuovo’s bound on the geometric genus of a projective curve,
we have

pg(X)��d2 + cpg(HX)= O(d2).

Then, byTheorem1.1wemayassume that there is no irreducible and reduced3-foldT ⊂ Pr

containingX and of degree<s0. Hence, by[6],HX is nondegenerate and not contained in
any surface inPr−1 of degree<s0. By [7] we deduce

g�d2/2s0 + O(d). (1.8)

From (1.7) and (1.8) we obtain

d2

2

(
1

�
− 1

s0

)
+ O(d)�0,

which implies thatd is boundedbecauses0> �. This concludes the proof of the boundedness
in Theorem 0.1, under the hypothesis (A), withn= 2, a = 1 andb = 0.
Now we turn to the casen = 2 under the hypothesis (A), witha = 1 and any fixedb.

As before, fix any real number� as in (1.2). LetX ⊂ V be a smooth surface such that
h0(X,OX(KX − bHX))��d2 + cpg(HX). From the Poincaré residue sequence (compare
with [12], proof of Corollary (2.2) (a), and with[3], p. 329)

0 → �X(−1) → �X → �HX
(−1) → 0,

we deduce

pg(X)��d2 + (b + c)pg(HX).

And so the boundedness ofd follows from the previous analysis of the casea = 1, b = 0.
Next, we consider the casea�1. Fix any real number� as in (1.2), and letX ⊂ V

be a smooth surface such thath0(X,OX(aKX − bHX))��d2 + cpg(HX). Again by the
previous analysis, we may assumepg(X)>0. Hence we have

h0(X,OX(KX − bHX))�h0(X,OX(aKX − bHX)).

Therefore the boundedness ofd follows from the analysis of the casea = 1.
Finally, to prove the sharpness of estimate (0.1a) under the hypothesis (A) withn = 2,

consider the setS of smooth surfaces complete intersection onV of type (u, u). Clearly,
S is not bounded. In order to estimateh0(X,OX(aKX − bHX)) for X ∈ S, first notice
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thatd = tu2 (t = degree ofV), and by the adjunction formula we haveKX = (q + 2u)HX

in H 2(X,C), whereKV = qHV in H 2(V ,C). From[19], p. 301, (2.15.8.6), we have

h0(X,OX(aKX − bHX))�
[(a(q + 2u)− b)H 2

X]2
H 2
X

+ 2= 4a2d2

t
+ O(d3/2).

This proves (0.1c) and completes the proof of Theorem 0.1 under the hypothesis (A) with
n= 2.
Next we are going to prove Theorem 0.1 in the casen=3, under the hypothesis (A). First

we examine the casea = 1 andb = 0. To this purpose, taking into account Castelnuovo’s
bound for the genus of a projective curve, it suffices to prove the boundedness of the set of
smooth 3-foldsX ⊂ V such that

pg(X)��d2 + cpg(HX), (1.9)

where� is anyfixed real number, andc is any fixed integer�1. We follow the proof of
Theorem 0.1 in the casen= 3, in [10]. First notice that using (2.2) of[10] and Hyperplane
Lefschetz Theorem one has

�(OX)�1− h1(X,OX)− pg(X)

�c(1− h1(X,OX)− pg(HX))+ (cpg(HX)− pg(X)+ 1− c)

�c(−�(OHX
)− 2(g − 1))+ (cpg(HX)− pg(X)+ 1− c),

whereg=pg(X
(1)) denotes the linear sectional genus ofX. As in the proof of (i) of Lemma

2.1 in[10], we deduce

(24	 − 12q + 24c)�(OHX
)�d2(2	 − q − 2)/t + (g − 1)(2d/t + O(1))+ O(d)

+ 24(cpg(HX)− pg(X)),

where	 is any integer such that the twisted tangent bundleTV (	) is globally generated and
KV = qHV in H 2(V ,C). Using (g) of Lemma 2.1 in[10], and taking into account that we
may assume 2	 − q + 2c >0, we obtain

0�(g − 1)[�(g − 1)/d − 2d/t + O(1)] − 2d2(2	 − q + c − 1)/t + O(d)

+ 24(pg(X)− cpg(HX)),

where� = 8(2	 − q + 2c). From (1.9) we get

0�(g − 1)[�(g − 1)/d − 2d/t + O(1)] − 2d2[−12� + (2	 − q + c − 1)/t]
+ O(d). (1.10)

ByTheorem1.1 in[10]wemayassumeg >1.Moreover, as in the casen=2, usingTheorem
1.1 and (1.9), we may also assume

g�d2/2s0 + O(d),
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where

s0 =max{t + 1, [�t/4] + 1}.
Therefore

(g − 1)[�(g − 1)/d − 2d/t + O(1)]�0

for d >O(1), and by (1.10) we get

2d2[−12� + (2	 − q + c − 1)/t] + O(d)�0,

which proves the boundedness ofd, because we may choose	 such that−12� + (2	 − q +
c−1)/t >0. This concludes the proof of Theorem 0.1 under the hypothesis (A), in the case
n= 3, whena = 1 andb = 0.
As in the casen= 2, one reduces the proof of the general casea�1 andb, c ∈ Z, to the

casea = 1 andb = 0. This concludes the proof of Theorem 0.1 under the hypothesis (A),
in the casen= 3.
Now we are going to prove the theorem in the casen=4, under the hypothesis (A). First

we examine the casea = 1 andb = 0. Fix any positive real number� such that

�<
1

1440t2
. (1.11)

As before, taking into account Castelnuovo’s bound for the genus of a projective curve, it
suffices to prove the boundedness of the set of smooth projective 4-foldsX ⊂ V such that

pg(X)��d3 + c(pg(X
(2))+ pg(X

(3))), (1.12)

wherec is any fixed integer�1. We follow the proof of Theorem 0.1 in the casen = 4, in
[10]. Arguing as above, we obtain

�(OX)�1+ pg(X
(2))+ pg(X)

�(c + 1)(1+ pg(X
(2))+ pg(X

(3)))+ (pg(X)− cpg(X
(2))− cpg(X

(3)))

�(c + 1)(2�(OX(2) )+ 2(g − 1)+ 2− �(OX(3) ))+ (pg(X)− cpg(X
(2))

− cpg(X
(3))),

whereg=pg(X
(1)) denotes the linear sectional genus ofX.As in the proof of (m) of Lemma

3.1 in[10], we deduce

60(2	 − q + 2(c + 1))�(OX(3) )

�(−9d/t + O(1))�(OX(2) )+ (g − 1)[d(9q/2− 9− 10	)/t + O(1)]
− d3/(12t2)+ O(d2)+ 120(pg(X)− cpg(X

(2))− cpg(X
(3))), (1.13)

where	 is any integer such thatTV (	) is globally generated andKV = qHV in H 2(V ,C).
Now put

� = 2g − 2− 3d, 
 = 2	 − q, � = 5(2	 − q + 2(b + 1))

2(1+ 
d/�)
.
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Notice that we may assume	>O(1). By Theorem 1.1 in[10] we also may assume

g�O(d) and d�O(1). (1.14)

Hence we may assume 0< 
d/�<1/2, from which we get

0<5(2	 − q + 2(b + 1))/3<�<5(2	 − q + 2(b + 1))/2. (1.15)

Combining inequality (i) of Lemma 3.1 in[10], i.e.

24(1+ 
d/�)�(OX(3) )�(g − 1)(2d/t + O(1))

+ �(OX(2) )(−6d2/(�t)+ O(1))− 36(�(OX(2) ))
2/

� − d4/(4�t2)+ O(d2)

(notice that the term 36(�(OX(2) ))2/� corrects a misprint in[10]), with (1.12) and (1.13),
we get

A(�(OX(2) ))
2 + B�(OX(2) )+ C�0,

whereA= 36,B = 6d2/t − 9d�/(�t)+ �O(1), and

C = �(g − 1)[d(9q/2− 9− 10	)/(�t)− 2d/t + O(1)]
+ d4/(4t2)+ �d3(120� − 1/(12t2))/� + �O(d2).

Using (1.11), (1.14) and (1.15) one sees thatB <0 andC <0. At this point, taking into
account Theorem 1.1, in order to prove the boundedness ofd, one may proceed exactly as
in the proof of Theorem 0.1 in[10], in the casen=4, under the hypothesis (A) (see[10], p.
486, line 18 from above). This concludes the proof of Theorem 0.1 in the casen= 4, under
the hypothesis (A), whena= 1,b= 0 andc is any integer. Next, as before, one reduces the
general casea�1 andb, c ∈ Z, to the casea = 1 andb = 0.

One proves the sharpness in the sense of (0.1c) in a similar way as in the casen= 2.
This concludes the proof of Theorem 0.1 in the hypothesis (A).

Remark 1.16. From the previous proof of Theorem 0.1 under the hypothesis (A), we see
that in the casen = 3, for any fixed integersa�1, b, c, and forany fixed real number
�, the set of irreducible, smooth, projective subvarietiesX of V of dimension 3 such that
h0(X,OX(aKX − bHX))��d2 + c(pg(X

(1))+ pg(X
(2))), is bounded.

2. The proof of Theorem 0.1 under the hypothesis (B)

We begin with the following preliminary result, concerning boundedness for subvarieties
with bounded sectional genus (compare with Theorem 1.1 in[10]).

Theorem 2.1. LetV ⊂ Pr be an irreducible, projective variety of dimensionm=n+2�4
and degree t. Denote byV (4) the general linear section of V of dimension4. For any
subvarietyX ⊂ V of dimension n, denote byX(h) the general linear section of X of
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dimension h(1�h�n), by d the degree of X, and by g the geometric genus ofX(1). Fix a
real number� such that

0< �<
1

2
√
2t
. (2.1a)

Assume thatV (4) is smooth, and that its Néron–Severi group has rank1. Then the set of
irreducible, projective subvarieties X of V of dimension n such thatX(2) is smooth and

g��d3/2,

is bounded.

Proof of Theorem 2.1.We may assumen = 2. Let X ⊂ V be any smooth projective
surface such thatg��d3/2. By [10] we may assume thatX is of general type. Therefore
�(OX))�0, and from (1.5) we get

d2/t − 2K2
X + O(d3/2)�0. (2.1b)

Now consider the orthogonal decompositionKX=D+eHX inNS(X)⊗Q, withD ·HX=0
andD2�0. Sincee = (2g − 2− d)/d, g��d3/2 and we may assumed >O(1), we have

|e|�2�d1/2.

It follows that

K2
X = (D + eHX)

2�e2d�4�2d2.

Using (2.1b) we have(
1

t
− 8�2

)
d2 + O(d3/2)�0,

which, taking into account (2.1a), proves the boundedness ofd. �

We are in position to prove Theorem 0.1 under the hypothesis (B), witha = 1 . To this
aim, fix any real number� such that

0< �<
1

n!√(2t)n . (2.2)

Notice that, taking into account Castelnuovo–Harris bound for the geometric genus of a
projective variety[18], it suffices to prove that the set of smooth, projective subvarietiesX
of V of dimensionnwith

h0(X,OX(KX − bHX))��dn/2, (2.3)

is bounded. Using our hypothesis on the homology of the ambient varietyV, we know that
X = �H 2

V in H2n(V ,C), for some� ∈ Q. Hence we can consider the following natural
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commutative diagram

(2.4)

whereA3(V ) ⊂ H2n−2(V ,C) denotes the space of algebraic classes of codimension 3 of
V, and similarly forX, � is the natural restriction map, andj is the map which takes a cycle
onXand considers it as a cycle onV. Notice that, by our hypothesis,A3(V ) � C. Moreover
the vertical map is injective by Hard Lefschetz: this is where we usen�4. It follows
that j is an isomorphism, i.e.A1(X) � NS(X) ⊗ C has dimension 1. Whena = 1, we
assumen�(r + 1)/2 and so we may apply Larsen Theorem[20]. With the same argument
developed in[1, Proposition 8, p. 69], we deduce that the Picard group ofX is generated by
the hyperplane section. It follows that

KX = eHX

in P ic(X), with e = (2g − 2− (n− 1)d)/d. Therefore, by (2.3) we have

h0(X,OX(KX − bHX))= h0(X,OX(e − b))��dn/2. (2.5)

On the other hand, by Castelnuovo Theory (see Proposition (3.23), p. 117 in[13]) we know
that

h0(X,OX(e − b))�(e − b)n/n! (2.6)

(by Theorem 2.1 we may assumee − b>0). Combining (2.5) with (2.6) we obtain

g� (n!�)1/n
2

d3/2 + O(d), (2.7)

and the boundedness ofd follows by (2.2) and Theorem 2.1. This concludes the proof of
Theorem 0.1 under the hypothesis (B), fora = 1.

Now we are going to prove Theorem 0.1 under the hypothesis (B), witha�2. We need
the following preliminary result, which relies on Kawamata–Viehweg Vanishing Theorem,
and allows us to boundh0(X,OX(aKX − bHX)) from below only assuming that the
Néron–Severi group ofX has rank 1 (compare with (2.5) and (2.6) above).

Proposition 2.8. LetX ⊂ Pr be a projective, irreducible and smooth variety of general
type, of dimensionn�2 and degree d. Let D be a big and nef divisor on X. Assume that
for suitable integers
 and�, the general hyperplane sectionHX is numerically equivalent
to �D, and the canonical divisorKX is numerically equivalent to
D. Fix an integerl >

and define� and� by dividingl − 
 = �� + �, 0��< �. Put

	(n, d,
, �, l)= (n− 2)(� − n+ 1)[��2(n− 1)+ n�(
 − 2l)]
+ n(n− 1)l(l − 
 − �(n− 2)).

Then one has

h0(X,OX(lD))�d

(
� − 1

n− 2

)
	(n, d,
, �, l)/2�2n(n− 1). (2.8a)
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Remark 2.9. (i) In (2.8a) we assume
(

�−1
n−2

)
= 1 for n = 2, and

(
�−1
n−2

)
= 0 for n>2 and

�<n− 1.
(ii) Proposition 2.8 should be compared with Kollár–Luo–Matsusaka estimate[19], p.

302, Theorem 2.15.9, which, in our context, is not as good as inequality (2.8a).

Proof of Proposition 2.8. First we examine the casen=2. SinceKX ≡ 
D, andl >
, by
Kawamata–ViehwegVanishing Theorem we havehi(X,OX(lD))= 0 for anyi >0. Hence
by Riemann–Roch Theorem we geth0(X,OX(lD)) = �(OX) + l(l − 
)D2/2. SinceX is
of general type, then�(OX)�0 and so we deduce

h0(X,OX(lD))� l(l − 
)D2/2= d	(2, d,
, �, l)/4�2. (2.10)

This proves Proposition 2.8 forn= 2.

Now we are going to examine the casen>2.We may assume��n− 1. By Kawamata–
Viehweg Vanishing Theorem we have

h1(X,OX(lD − j1HX))= 0 for any 0�j1�� − 1.

Therefore, from the hyperplane section exact sequence

0 → OX(lD − (j1 + 1)HX) → OX(lD − j1HX) → OX(lD − j1HX)⊗ OX(n−1)

→ 0,

we get

h0(X,OX(lD))�
�−2∑
j1=0

h0(X(n−1),OX(lD − j1HX)⊗ OX(n−1) ).

On the other hand, by Kawamata–ViehwegVanishing Theorem again, we also have, for any
0�j1�� − 2,

h0(X(n−1),OX(lD − j1HX)⊗ OX(n−1) )= h0(X(n−1),OX(n−1) ((l − j1�)D(n−1))),

whereX(n−1) = HX denotes the general hyperplane section ofX andD(n−1) denotes the
restriction ofD toX(n−1). It follows that

h0(X,OX(lD))�
�−2∑
j1=0

h0(X(n−1),OX(n−1) ((l − j1�)D(n−1))).

Iterating the previous argument for the successive linear sections ofX, we get

h0(X,OX(lD))�
�−2∑
j1=0

�−3−j1∑
j2=0

· · ·
�−(n−1)−j1−j2−···−jn−3∑

jn−2=0

× h0(X(2),OX(2) ((l − (j1 + j2 + · · · + jn−2)�)D(2))), (2.11)
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whereX(2) denotes the general linear section ofX of dimension 2, andD(2) the restriction
of D onX(2). Notice thatX(2) is of general type becauseX is. Hence from (2.10) we have

h0(X(2),OX(2) ((l − (j1 + j2 + · · · + jn−2)�)D(2)))

�d[l − (j1 + j2 + · · · + jn−2)�][l − (j1 + j2 + · · · + jn−2)�
− 
 − (n− 2)�]/2�2. (2.12)

Combining (2.11) with (2.12) we obtain (2.8a).�
We are in position to prove Theorem 0.1 under the hypothesis (B), witha�2. Fix any

real number� such that

0< �<
(a − 1)n−1(2a + n− 2)

2n!√(2t)n . (2.13)

As in the casea = 1, it suffices to prove that the set of smooth, projective subvarietiesX of
V of dimensionnwith

h0(X,OX(aKX − bHX))��d(n+2)/2, (2.14)

is bounded. As in the casea = 1, one sees thatNS(X) has rank 1. Therefore, for some
ample divisorD on X, and suitable integers
 and �, we haveHX ≡ �D, andKX ≡

D. Put e = 
/� and notice thate = (2g − 2 − (n − 1)d)/d. By Theorem 2.1 we may
assumee >O(1), in particularX is of general type. Moreover, if we putl = a
 − b� then
we havel >
 becausea�2. Also, by Kawamata–Viehweg Vanishing Theorem, we have
h0(X,OX(aKX −bHX))=h0(X,OX(lD)). Hence we can apply Proposition 2.8 and from
(2.8a) we get

h0(X,OX(aKX − bHX))�
d

2n! [(a − 1)n−1(2a + n− 2)en + O(en−1)]. (2.15)

Now fix any real number� such that�<�< (a−1)n−1(2a+n−2)

2n!
√
(2t)n

(compare with (2.13)), and

put

�1 = n

√
n!�

2n−1(a − 1)n−1(2a + n− 2)
. (2.16)

We have 0< �1< 1
2
√
2t
(see (2.1a)). Hence, fromTheorem 2.1, wemay assumeg > �1d3/2.

From (2.15) we obtain

h0(X,OX(aKX − bHX))�
(a − 1)n−1

n! 2n−1(2a + n− 2)�n1d
(n+2)/2

+ O(d(n+1)/2). (2.17)

In view of 2.16, comparing 2.17 with 2.14 we deduce thatd is bounded.
In a similar way as under the hypothesis (A), withn �= 3, considering codimension

two balanced complete intersections onV (whenV is smooth), one proves the sharpness of
Theorem 0.1 under the hypothesis (B), whena�2, in the sense of (0.1c).
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This concludes the proof of Theorem 0.1 under the hypothesis (B), whena�2.

Remark 2.18. (i) As already remarked in (2.3), we notice that, taking into account
Castelnuovo–Harris bound for the geometric genus of a projective variety[18], in order
to prove Theorem 0.1 under the hypothesis (B), it suffices to prove the existence of a posi-
tive real number� such that the set of smooth, projective subvarietiesX of V of dimension
nwith h0(X,OX(aKX − bHX))��dn/2, is bounded. The corresponding claim holds true
also under the hypothesis (D) (compare with (4.3.2) in Section 4). But this is not true under
the hypothesis (A) (and (C) and (E), see below).
(ii) With obvious modification, the proof of Theorem 0.1 under the hypothesis (B) with

a = 1 works also fora�2.

3. The proof of Theorem 0.1 under the hypothesis (C)

As in the proof of Theorem 0.1 under the hypothesis (A), in order to prove Theorem 0.1
under the hypothesis (C), we may assumea = 1 andb = 0. This said, the proof consists in
showing the existence of a suitable constant�>0 such that

pg(X)− c

(
n−1∑
h=1

pg(X
(h))

)
��d(n+2)/2,

for any smooth andn-dimensional subvarietyX ⊂ V of degreed >O(1). In order to prove
this, first we compare the geometric genus ofX with the arithmetic genus. This is done
in Corollary (3.5) below. To prove this result, we need some preliminaries. First we prove
Lemma (3.1) and Proposition (3.2) which allow us to control the difference between the
geometric genus and the arithmetic genus in terms of the arithmetic genera of the linear
sections. Next we need Lemma (3.3) and Lemma (3.4) to obtain a numerical control of
these arithmetic genera.

Lemma 3.1. LetY ⊂ Pr be an irreducible, smooth, projective variety of dimensionm�2.
For any1�j�m, denote byY (j) the general linear section of Y of dimension j. Then we
have

hj (Y,OY )�pg(Y
(j)).

Proof. Use Hyperplane Lefschetz Theorem and induction onm. �

Proposition 3.2. Let Y ⊂ Pr be an irreducible, smooth, projective variety of dimension
m�1.Then there exist integersc0, . . . , cm−1 andd0, . . . , dm−1, depending only on m, and
such that

c0 +
m−1∑
j=1

cj�(OY (j) )�pg(Y )+ (−1)m+1�(OY )�d0 +
m−1∑
j=1

dj�(OY (j) ).
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Proof. The casem = 1 being trivial, we may assumem�2 and argue by induction onm.
We have

pg(Y )+ (−1)m+1�(OY )= hm(Y,OY )+ (−1)m+1
m∑
j=0

(−1)jhj (Y,OY )

= (−1)m+1
m−1∑
j=0

(−1)jhj (Y,OY ).

By Lemma (3.1) we deduce

−

1+

m−1∑
j=1

pg(Y
(j))


 �pg(Y )+ (−1)m+1�(OY )�1+

m−1∑
j=1

pg(Y
(j)),

and our claim follows by using the induction hypothesis on the general linear sections
Y (1), . . . , Y (m−1). �

Lemma 3.3. LetV ⊂ Pr be an irreducible, smooth, projective variety of dimensionn +
2�7. Assume that for1� i�3, any algebraic class inH 2i (V ,C) is a multiple ofHi

V ,
whereHV is the hyperplane section of V. LetX ⊂ V be an irreducible, smooth, projective
subvariety of dimension n, with degree d, and assume thatd >O(1). Then

c21(NX,V )�2c2(NX,V )>0.

Proof. We already know that, by our hypothesis on the cohomology ofV,X is numerically
subcanonical (see (2.4) before).HencewehaveKX=eHX inH 2(X,C), wheree=(2g−2−
(n−1)d)/d (as usual,gdenotes the linear genus ofX). Thereforewe havec1(NX,V )=n1HX

in H 2(X,C), where

n1 = e − q,

with KV = qHV in H 2(V ,C). On the other hand, from the self-intersection formula, we
havec2(NX,V )= n2H

2
X in H 4(X,C), where

n2 = d/t

(t= degree ofV). Hence we only have to prove that

n21�2n2.

To this purpose, fix a constant	 � 0 such that the twisted tangent bundleTV (	) is globally
generated. Then alsoNX,V (	) is, and therefore we have the positivity of its Segre class (see
[17])

−s5(NX,V (	))= c51(NX,V (	))− 4c31(NX,V (	))c2(NX,V (	))
+ 3c1(NX,V (	))c22(NX,V (	))�0. (3.3a)
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Now notice thatc1(NX,V (	)) = (n1 + 2	)HX, andc2(NX,V (	)) = (n2 + 	n1 + 	2)H 2
X.

By Theorem 2.1 we may choose the constant	 independently ofX, so that

n1 + 2	>0 and n2 + 	n1 + 	2>0. (3.3b)

Therefore previous inequality (3.3a) yields

y2 − 4y + 3�0,

where

y = (n1 + 2	)2/(n2 + 	n1 + 	2).

It follows that eithery�1 ory�3. From the positivity

−s3(NX,V (	))= [(n1 + 2	)3 − 2(n1 + 2	)(n2 + 	n1 + 	2)] ·H 3
X�0,

we have 2(n2 + 	n1 + 	2)�(n1 + 2	)2, i.e.y�2. The above argument implies thaty�3,
i.e.

(3n2 − n21)− 	n1 − 	2�0.

Now supposen21�2n2. From the previous inequality we have

n21/2− 	n1 − 	2�0.

We obtainn1�O(1) which, by Theorem 2.1, implies thatd is bounded. This is in contrast
with our hypothesisd >O(1). Hence we must haven21�2n2, and this concludes the proof
of Lemma (3.3). �

Lemma 3.4. LetV ⊂ Pr be an irreducible, smooth, projective variety of dimensionn +
2�7. Assume that, for 1� i�3, any algebraic class inH 2i (V ,C) is a multiple ofHi

V ,
whereHV is the hyperplane section of V. Moreover assume that, for 1� i�n, there exist
rational numbersv1, . . . , vn such thatci(TV ) = viH

i
V in H

2i (V ,C). For any irreducible,
smooth, projective subvarietyX ⊂ V of dimension n,with degree d and linear genus g, put
n1 = (2g − 2− (n − 1)d)/d + v1. Assumed >O(1). Thenn1>0 and, for any1�h�n,
one has

|�(OX(h))|�dO(nh1).

Proof. Fix an integerh ∈ {1, . . . , n}. By Hirzebruch–Riemann–Roch Theorem we know
that�(OX(h)) is equal to the degree of the top Todd class ofX(h). This is the degree of a
certain linear combination, with coefficients depending only onh, of monomials like

c
�1
1 (TX(h) ) · c�22 (TX(h) ) . . . c

�h
h (TX(h) ),

with �1, . . . , �h non-negative integers, andh=∑h
j=1j�j . From the natural exact sequence

0 → TX(h) → TV (h+2) ⊗ OX(h) → NX(h),V (h+2) → 0,
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wemay compute the Chern classes ofX(h) in terms of the Chern classes ofTV (h+2) ⊗OX(h) ,
and the Chern classes ofNX(h),V (h+2) . With the same notation as in the proof of Lemma
(3.3), we have

c1(NX(h),V (h+2) )= n1HX(h) and c2(NX(h),V (h+2) )= n2H
2
X(h) .

Taking into account our hypothesis on the Chern classes ofV, it follows that�(OX(h)) is
equal to a certain linear combination, with coefficients depending only onh, of monomials
like

dn
�1
1 n

�2
2 v

�1
1 v

�2
2 . . . v

�h
h ,

with �1, �2,�1,�2, . . . ,�h non-negative integers such that�1+2�2+∑h
j=1j�j �h. From

Lemma (3.3) we know that ifd >O(1) then

n21�2n2>1.

Hence, for a suitable constantK, we have

|dn�1
1 n

�2
2 v

�1
1 v

�2
2 . . . v

�h
h |�Kdnh1.

This proves that|�(OX(h))|�dO(nh1). �

As a consequence of Proposition (3.2), Lemma (3.3) and Lemma (3.4), we obtain the
following.

Corollary 3.5. Let V ⊂ Pr be an irreducible, smooth, projective variety of dimension
n+ 2�7.Assume that, for 1� i�3,any algebraic class inH 2i (V ,C) is a multiple ofHi

V ,
whereHV is the hyperplane section of V. Moreover assume that, for 1� i�n, there exist
rational numbersv1, . . . , vn such thatci(TV ) = viH

i
V in H

2i (V ,C). Fix an integerc�0.
For any irreducible, smooth, projective subvarietyX ⊂ V of dimension n, with degree d
and linear genus g, putn1 = (2g − 2− (n− 1)d)/d + v1. Assumed >O(1). Thenn1>0
and

pg(X)− c

(
n−1∑
h=1

pg(X
(h))

)
�(−1)n�(OX)+ dO(nn−1

1 ).

We are in position to prove Theorem 0.1 under the hypothesis (C). To this purpose, let
X ⊂ V be a smooth subvariety of codimension 2. By Corollary (3.5), in order to bound
pg(X) − c(

∑n−1
h=1pg(X

(h))) from below, it is enough to bound(−1)n�(OX) from below.
We keep the notation we introduced in the proof of Lemma (3.3). As in the proof of this
lemma, using Hirzebruch–Riemann–Roch Theorem, one may write

(−1)n�(OX)= (−1)nd(U + R),

whereU is a linear combination, with coefficients depending only onn, of monomials like

n
�1
1 n

�2
2 ,
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with �1, �2 non-negative integers such that�1 + 2�2 = n, andR is a linear combination,
with coefficients depending only onn, of monomials like

n
�1
1 n

�2
2 v

�1
1 v

�2
2 . . . v

�h
h ,

with �1, �2,�1,�2, . . . ,�h non-negative integers such that�1 + 2�2 +∑h
j=1j�j = n and

�1 + 2�2<n. As in the proof of Lemma (3.3) one sees that

(−1)ndR = dO(nn−1
1 ).

Summing up we obtain

pg(X)− c

(
n−1∑
h=1

pg(X
(h))

)
�(−1)ndU + dO(nn−1

1 ). (3.6)

Now define
 and� by dividing

n= 2
 + �, 0���1,

and denote by

x0, x1, . . . , x


the integers, depending only onn, such that

(−1)nU = 1

(n+ 2)!


 
∑
j=0

xjn
n−2j
1 n

j
2


 . (3.7)

Now we need the following numerical lemma. We will prove it later.

Lemma 3.8.With the same notation as before, denote by

q(y)=

∑

j=0

xjy

−j ,

and byq(j)(y) its j -th derivative. Then one hasq(j)(2)>0, for any0�j�
.

As a consequence we have the following.

Corollary 3.9. There exists a rational number�>0,depending only on n, such that, if we
put

q�(y)= q(y)− �y
,

then one hasq(j)� (2)>0, for any0�j�
. In particular, if y�2 thenq�(y)�q�(2).
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Now, continuing our computation, from (3.6) and (3.7), and taking into account Lemmas
(3.3), (3.8) and Corollary (3.9), we may write

pg(X)− c

(
n−1∑
h=1

pg(X
(h))

)

� d

(n+ 2)!n
�
1n



2

[
q�

(
n21

n2

)
+ �

(
n21

n2

)
]
+ dO(nn−1

1 )

= d

(n+ 2)!n
�
1n



2q�

(
n21

n2

)
+ d

(n+ 2)! �n
n
1 + dO(nn−1

1 )

= d

(n+ 2)!n
�
1n



2q�

(
n21

n2

)
+ d

(n+ 2)!n
n−1
1 [�n1 + O(1)]

� d

(n+ 2)!n
�
1n



2q�

(
n21

n2

)

� d

(n+ 2)!n
�
1n



2q�(2)�

d

(n+ 2)!n

+�/2
2 q�(2)= q�(2)

(n+ 2)!√tn
dn/2+1.

Since q�(2)
(n+2)!√tn

is a constant>0, the previous inequality proves Theorem 0.1 under the

hypothesis (C) (as before, considering codimension two balanced complete intersections
onV, one proves the sharpness in the sense of (0.1c)).
It remains to prove the numerical Lemma (3.8). To this aim, keep all the notation we

introduced before. Since the polynomialq(y) depends only onn, in order to compute it, we
may use a complete intersectionX ⊂ V of type(u, v). In this case we have

n1 = u+ v and n2 = uv.

Moreover

�(OX)= pV (0)− pV (−u)− pV (−v)+ pV (−u− v)

(pV (l) =Hilbert polynomial ofV). We may compute the term(−1)ndU assuming that all
Chern classes ofV are 0. By Hirzebruch–Riemann–Roch Theorem again, this implies that
we may assume

pV (l)= t
ln+2

(n+ 2)!
(t = degree ofV). Sinced = uvt we obtain

(−1)ndU = d

(n+ 2)!

[
(u+ v)n+2 − un+2 − vn+2

uv

]
.
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In other words, the coefficientsx0, x1, . . . , x
 of the polynomialq(y) are defined by the
identity

(u+ v)n+2 − un+2 − vn+2

uv
=


∑
j=0

xj (u+ v)n−2j (uv)j . (3.10)

Now, if we put

y = (u+ v)2

uv
,

we have

q(y)= y
+1 − un+2 + vn+2

(u+ v)�(uv)
+1 . (3.11)

Fix a real number 3/2�y�5/2. Then we havey= (u+v)2

uv
with u= [y−2+√−1

√
y(4−y)]

2 and
v = 1. Notice that since|u| = 1, then we have

u= exp(
√−1�)

for some real number�. In particular we have

y − 2= 2 cos� and
√
y(4− y)= 2 sin�. (3.12)

From (3.11) we get

q(y)= y
+1 − un+2 + 1

(u+ 1)�u
+1 , (3.13)

and so, taking into account that ify = 2 thenu= √−1, we deduce

q(2)=



2
+1 if n ≡ 0 mod(4),
2
+1 + (−1)(n−1)/4 if n ≡ 1 mod(4),
2
+1 + 2(−1)(n+6)/4 if n ≡ 2 mod(4),
2
+1 + (−1)(n+5)/4 if n ≡ 3 mod(4).

This proves thatq(2)= q(0)(2)>0.
Moreover, from (3.10), one sees thatx0 = n+ 2, and thereforeq(
)(2)>0.
It remains to evaluate the derivativesq(j)(2), for 1�j�
 − 1.
First we examine the casen is even. Hencen = 2
 and� = 0. In this case, from (3.13),

we may write

q(y)= y
+1 −
(
u
+1 + 1

u
+1

)
= y
+1 − [exp(√−1(
 + 1)�)+ exp(−√−1(
 + 1)�)]

and so we get

q(y)= y
+1 − 2 cos(
 + 1)�. (3.14)
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One may write cos(
 + 1)� as a polynomial in cos� of degree
 + 1, i.e.

cos(
 + 1)� =

+1∑
l=0

�l (cos�)
l,

with suitable integer numbers�0, . . . ,�
+1. By (3.12) we obtain the following polynomial
identity

q(y)= y
+1 − 2

[
+1∑
l=0

�l
(y − 2)l

2l

]
.

From this formula we deduce, for 1�j�
 − 1,

q(j)(2)= j !
2j−1

[
2

(


 + 1

j

)
− �j

]
. (3.15)

Now we need the following.

Sublemma.With the same notation as before, assume
�0.Then for any0� l�
+1one
has

|�l |�2l
(


 + 1

l

)
.

Proof of the Sublemma.The case 0�
�1 being trivial, we may assume
�2 and argue
by induction on
. From the identity

cos(
 + 1)� = 2 cos� cos
� − cos(
 − 1)� (3.16)

and the induction hypothesis, we deduce that

�
+1 = 2
, �
 = 0, and |�0|�1.

Hence we only have to estimate|�l | for 1� l�
 − 1. To this purpose, put

cos
� =

∑

l=0

	l (cos�)
l and cos(
 − 1)� =


−1∑
l=0

�l (cos�)l .

From (3.16) we have�l = 2	l−1 − �l . Therefore, using the induction hypothesis, we get

|�l |�2|	l−1| + |�l |�2l
(



l − 1

)
+ 2l

(

 − 1

l

)
�2l

(

 + 1

l

)
. �

Continuing the computation ofq(j)(2) from (3.15) and using the sublemma, we get

q(j)(2)�2j !
(


 + 1

j

)
(2
−j − 1)>0.

This concludes the proof of Lemma (3.8) in the casen even.
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Finally assumen is odd, hencen= 2
 + 1 and� = 1. In this case, from (3.13), we have

q(y)= y
+1 − (−1)
+1 −
[
+1∑
l=1

(−1)
+l−1(ul + u−l )

]
.

Therefore we get

q(y)= y
+1 + (−1)
+2 − 2

[
+1∑
l=1

(−1)
+l−1 cosl�

]
. (3.17)

A direct computation proves Lemma (3.8) for 2�
�4. Hence we may assume
>4 and
argue by induction on
. From (3.17) we may write

q(y)= r(y)+
{
y
−1 + (−1)
 − 2

[
−1∑
l=1

(−1)
+l−3 cosl�

]}
,

where

r(y)= [y
+1 − 2 cos(
 + 1)�] − [y
−1 − 2 cos(
�)].
By induction hypothesis, all the derivativesq(j)(2)−r(j)(2)are�0 for anyj�0.Therefore
we only have to prove thatr(j)(2)>0 for 1�j�
 − 1. This follows by rewritingr(y) as

r(y)= [y
+1 − 2 cos(
 + 1)�] − [y
 − 2 cos(
�)] + y
 − y
−1,

and using a similar computation as in the caseneven (compare with (3.14)). This concludes
the proof of Lemma (3.8).

Remark 3.18. From (3.10) one obtains explicit formulae forx0, x1, . . . , x
, i.e. one has,
for 0�j�
,

xj = (−1)j
(
n− j + 2

j + 1

)
+

j−1∑
l=0

(−1)j+1+l (l + 1)

(
n− j + 2

j − 1− l

)
.

In particular we see that

x0 = n+ 2,

and deduceq(y) for low n. For example we have

q(y)=



7y2 − 14y + 7 if n= 5,
8y3 − 20y2 + 16y − 2 if n= 6,
9y3 − 27y2 + 30y − 9 if n= 7,
10y4 − 35y3 + 50y2 − 25y + 2 if n= 8.
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4. The proof of Theorem 0.1 under the hypothesis (D)

First we prove a boundedness result for subcanonical subvarieties (see Theorem 4.1
and Corollary 4.3 below), which does not need the assumptionn� r+1

2 appearing in the
hypothesis (D).

Theorem 4.1. LetV ⊂ Pr be an irreducible, projective variety of dimension m and degree
t. Let n be an integer withn<m�2n, and putk = m − n. Assume that for some1�h�n

with h�k, the general linear sectionV (h+k) of dimensionh + k of V is smooth, and that
either any algebraic class inH 2i (V (h+k),C) is a multiple ofHi

V (h+k) , for i ∈ {1, k}, or k
is even andH 2i (V (h+k),C) � C for any i = 1, . . . , k − 1. For any subvarietyX ⊂ V of
dimension n and any1�h�n, denote byX(h) the general h-dimensional linear section of
X. Putd = deg(X), g = pg(X

(1)), and fix a real number� such that

0< �<
1

2 k
√
t
. (4.1a)

Then the set of irreducible, projective subvarieties X of V of dimension n such thatX(h)

is smooth, numerically subcanonical, and such that

g��d(k+1)/k,

is bounded.

Proof of Theorem 4.1.Wemayassumen=hby takingV=V (h+k). ThereforeV is smooth.
LetX ⊂ V be any smooth projective subvariety of dimensionn, of degreed, numerically
subcanonical, and such thatg��d(k+1)/k. We have

KX = eHX

in H 2(X,Q), with e = (2g − 2− (n− 1)d)/d. Since we may assumed >O(1), we have

|e|�2�d1/k. (4.1b)

Now letqand	 be rational numbers such thatKV =qHV inH 2(V ,C) andTV (	) is globally
generated. Then alsoNX,V (	) is globally generated. Since

c1(NX,V (	))= (k	 + e − q)HX, (4.1c)

by [17] we deduce 0�k	 + e − q. Notice that taking	>O(1) we may assume

1�k	 + e − q. (4.1d)

We need the following lemma. We will prove it later.

Lemma 4.2.With the same assumption as before, for anyi = 1, . . . , k one has

d(k	 + e − q)n−kO(d(i−1)/k)�(	HX)
k−ici(NX,V )c1(NX,V (	))n−k

�d(k	 + e − q)n−k[	k−iei + O(d(i−1)/k)]. (4.2a)
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Using the previous Lemma 4.2 fori = k, we have

ck(NX,V )c1(NX,V (	))n−k�d(k	 + e − q)n−k[ek + O(d(k−1)/k)]. (4.2b)

On theother hand, if anyalgebraic class inH 2k(V ,C) is amultiple ofHk
V , thenX=(d/t)Hk

V

in H 2k(V ,C), and therefore by the self-intersection formula we get

ck(NX,V )= (d/t)Hk
X.

By (4.1c) we deduce

ck(NX,V )c1(NX,V (	))n−k = d2(k	 + e − q)n−k/t. (4.2c)

If k is even andH 2i (V ,C) � C for anyi = 1, . . . , k − 1, Lefschetz Hyperplane Theorem
and Hodge–Riemann bilinear relations imply that the intersection form onH 2k(V (2k),R)
is positive definite. Hence we have

(X(k) − (d/t)Hk
V (2k) )

2�0.

Using the self-intersection formula again we get

ck(NX(k),V (2k) )= (X(k))2�d2/t.

Using (4.1c) it follows that

ck(NX,V )c1(NX,V (	))n−k = (k	 + e − q)n−kck(NX,V )H
n−k
X

= (k	 + e − q)n−kck(NX(k),V (2k) )

�d2(k	 + e − q)n−k/t, (4.2d)

which, by (4.2c), holds inanycase.
Summing up, from (4.1b), (4.1d), (4.2b) and (4.2d) we obtain

d/t�ek + O(d(k−1)/k)�(2�)kd + O(d(k−1)/k).

Therefore we have[
1

t
− (2�)k

]
d + O(d(k−1)/k)�0,

which, taking into account (4.1a), proves the boundedness ofd. This concludes the proof
of Theorem 4.1.
Now we are going to prove Lemma 4.2. To this purpose, we argue by induction oni.

Wheni = 1, from (4.1c) we have

(	HX)
k−1c1(NX,V )c1(NX,V (	))n−k = 	k−1d(e − q)(k	 + e − q)n−k,

which, taking into account (4.1d), proves Lemma 4.2 fori=1.Assume then 2� i�k. From
the formula

ci(NX,V (	))=
i∑

j=0

(
k − j

i − j

)
(	HX)

i−j cj (NX,V ),
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intersecting with(	HX)
k−ic1(NX,V (	))n−k, we get

(	HX)
k−ici(NX,V )c1(NX,V (	))n−k

= (	HX)
k−ici(NX,V (	))c1(NX,V (	))n−k

−
i−1∑
j=1

(
k − j

i − j

)
(	HX)

k−j cj (NX,V )c1(NX,V (	))n−k

−
(
k

i

)
	kd(k	 + e − q)n−k. (4.2e)

Using induction and (4.1b) we have(
k − j

i − j

)
(	HX)

k−j cj (NX,V )c1(NX,V (	))n−k = d(k	 + e − q)n−kO(dj/k) (4.2f)

for any 1�j� i − 1. Notice that, in order to obtain the equality in (4.2f), we have to use
both inequalities in (4.2a). The equality (4.2f) enables us to control, from above and from
below, the terms in (4.2e) which appear in the sum. And in fact, using (4.2e) and (4.2f), we
get

(	HX)
k−ici(NX,V )c1(NX,V (	))n−k

= (	HX)
k−ici(NX,V (	))c1(NX,V (	))n−k + d(k	 + e − q)n−kO(d(i−1)/k).(4.2g)

Now notice that sinceNX,V (	) is globally generated, by[17] we have

0�(	HX)
k−ici(NX,V (	))c1(NX,V (	))n−k.

Hence the left-hand side inequality in (4.2a) holds. On the other hand one has (use[17] and
the proof of Proposition in[23])

ci(NX,V (	))c1(NX,V (	))n−i �c1(NX,V (	))n,

from which, using (4.1b), (4.1c) and (4.1d), we deduce

(	HX)
k−ici(NX,V (	))c1(NX,V (	))n−k

= ci(NX,V (	))	k−i (k	 + e − q)n−kHn−i
X

= 	k−i (k	 + e − q)i−kci(NX,V (	))(k	 + e − q)n−iHn−i
X

= 	k−i (k	 + e − q)i−kci(NX,V (	))c1(NX,V (	))n−i

�	k−i (k	 + e − q)i−kc1(NX,V (	))n = 	k−id(k	 + e − q)n+i−k

= d(k	 + e − q)n−k[	k−iei + O(d(i−1)/k)].
Comparing the previous inequality with (4.2g), we get the second inequality in (4.2a). This
concludes the proof of Lemma 4.2.

Corollary 4.3. LetV ⊂ Pr be an irreducible,projective variety of dimensionmand degree
t. Let n be an integer withn<m�2n, and putk = m − n. Assume that for some1�h�n

with h�k, the general linear sectionV (h+k) of dimensionh + k of V is smooth, and that
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either any algebraic class inH 2i (V (h+k),C) is a multiple ofHi
V (h+k) , for i ∈ {1, k}, or k is

even andH 2i (V (h+k),C) � C for anyi = 1, . . . , k − 1.
Fix integersa, b, c ∈ Z with a�1, and put�(a) = min{n

k
+ 1, n

k
+ a − 1}. For any

n-dimensional subvariety X of V denote byX(h) (KX resp.) the general linear section of
dimension h(the canonical divisor resp.) of X.Denote bypg(X(h)) the geometric genus of
X(h). PutHX =X(n−1) andd = deg(X).
Then there exists a strictly positive real number�>0, depending only on n, a and the

ambient variety V, such that the set of irreducible, smooth, subcanonical, projective subva-
rieties X of V of dimension n such that

h0(X,OX(aKX − bHX))��d�(a) + c


 ∑

1�h<�(a)−1

pg(X
(h))




is bounded.

Proof of Corollary 4.3. First we analyze the casea = 1. Fix any real number� such that

0< �<
1

n! k
√
tn
, (4.3a)

wheret = deg(V ). As in the proof of Theorem 0.1 under the hypothesis (B) (see Section
2), one sees that in order to prove the claim, it suffices to prove that the set of smooth,
projective, subcanonical subvarietiesX of V of dimensionnwith

h0(X,OX(KX − bHX))��dn/k, (4.3b)

is bounded. Using a similar argument as in the proof of (2.7), one sees that for such subva-
rietiesX one has

g� (n!�)1/n
2

d(k+1)/k + O(d).

So the boundedness ofd follows by (4.3a) and Theorem 4.1.
The casea�2 follows using Proposition 2.8 in a similar manner as in the proof of

Theorem 0.1 under the hypothesis (B), witha�2. �

Weare in position to prove Theorem 0.1 in the hypothesis (D). Fix any smooth subvariety
X ofV of dimensionn. Using our hypothesis on the homology of the ambient varietyV, the
inequalityn�(m+2)/2, and a Barth–Lefschetz type of argument (see diagram (2.4)), one
sees thatNS(X)⊗ C has dimension 1.
Whena= 1, we assumen�(r + 1)/2, and so we may apply Larsen Theorem[20]. With

the same argument developed in[1], Proposition 8, p. 69, we deduce that the Picard group
of X is generated by the hyperplane section. In particularX is subcanonical. At this point,
Theorem 0.1 in the hypothesis (D) witha = 1 is a consequence of Corollary 4.3.
Whena�2, using Theorem 4.1 instead of Theorem 2.1, one proves Theorem 0.1 in the

hypothesis (D) using a similar argument as in the proof of Theorem 0.1 in the hypothesis
(B) with a�2. �
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Remark 4.4. As a further consequence of Theorem 4.1, we have thatthe set of smooth,
projective, numerically subcanonical and not of general type subvarieties of dimension n
in P2n, is bounded.

5. The proof of Theorem 0.1 under the hypothesis (E)

We keep the notation introduced in Section 4, and assume the hypothesis (E). Fix any
real number� such that

0< �<
(a − 1)n−1(2a + n− 2)

2n!tn/k . (5.1)

LetX ⊂ V be a smooth subvariety of dimensionn and degreed, and assume that

h0(X,OX(aKX − bHX))− c

(
n−1∑
h=1

pg(X
(h))

)
��dn/k+1. (5.2)

As in (2.15), using Kawamata–Viehweg Vanishing Theorem, one proves that, whena�2,

h0(X,OX(aKX − bHX))�
d

2n! (a − 1)n−1(2a + n− 2)nn1 + dO(nn−1
1 ),

wheren1 = e − q, e = (2g − 2− (n− 1)d)/d, andKV = qHV in H 2(V ,C) (notice that,
by Theorem (4.1), we may assumen1��d1/k, for a suitable constant�>0). Therefore we
have

h0(X,OX(aKX − bHX))− c

(
n−1∑
h=1

pg(X
(h))

)

� d

2n! (a − 1)n−1(2a + n− 2)nn1 + dO(nn−1
1 )− c

(
n−1∑
h=1

pg(X
(h))

)
. (5.3)

Now using a Barth–Lefschetz type of argument (see diagram (2.4)), our hypothesis on the
codimensionk of X and on the cohomology ofV implies that, for any 1� i�k,

ci(NX,V )= niH
i
X,

in H 2i (X,C), for a suitable rational numberni . Using (4.1c) and the second inequality in
(4.2a), we deduce

(	HX)
k−i (niH

i
X)((k	 + e − q)HX)

n−k�d(k	 + e − q)n−k[	k−iei + O(d(i−1)/k)].
Simplifying the factor(k	 + e − q)n−k, and taking into account thatHn

X = d and that
n1 = e − q, we get

ni �(n1 + q)i + O(d(i−1)/k)= O(ni1).

Similarly, using the first inequality in (4.2a), we getni �O(ni1). In other words, for any
1� i�k, we have

|ni |�O(ni1).
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Using Proposition 3.2 and arguing as in the proof of Lemma 3.4, it follows that

pg(X
(h))�dO(nh1)

for any 1�h�n. Hence we have

n−1∑
h=1

pg(X
(h))�dO(nn−1

1 ).

Therefore, from (5.3), we get

h0(X,OX(aKX − bHX))− c

(
n−1∑
h=1

pg(X
(h))

)

� d

2n! (a − 1)n−1(2a + n− 2)nn1 + dO(nn−1
1 ). (5.4)

Now fix any real number� such that�<�< (a−1)n−1(2a+n−2)
2n!tn/k (compare with (5.1)), and

put

�1 = n

√
n!�

2n−1(a − 1)n−1(2a + n− 2)
. (5.5)

Wehave0< �1< 1
2 k
√
t
(see (4.1a)).Hence, fromTheorem4.1,wemayassumen1>2�1d1/k.

From (5.4) we obtain

h0(X,OX(aKX − bHX))�
(a − 1)n−1

n! 2n−1(2a + n− 2)�n1d
n/k+1

+ O(d(n+k−1)/k). (5.6)

In view of (5.5), comparing (5.6) with (5.2) we deduce thatd is bounded.
One proves the sharpness of the estimate in a similar way as in the hypothesis (A). This

concludes the proof of Theorem 0.1 under the hypothesis (E).
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