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Abstract 

We study the long-time asymptotics of a multi-dimensional diffusion with a random potential 
satisfying a scaling property. We prove a subdiffisivity property. 
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1. Introduction 

The aim of this paper is to derive limit theorems on the long-time asymptotics of 
multi-dimensional diffusions in a self-similar (or almost self-similar) random potential. 
Let @(x),x E RF) be a random field indexed by R”, let Q be the law of B and let V 
be a (deterministic) function from IF!” to R. We define W = V + B. Let us consider 
the (formal) stochastic differential equation: 

(*) d& = dfir - ;VW(X,)dt, Xl = 0, 

where /3 is an n-dimensional Brownian motion, independent of W. 
Intuitively speaking, we first solve equation (*) for a given realization of W (see 

below for a rigorous definition of the word “solve” in this context). Thus we get a 
Markov process, say (Xl@‘, t 20). We are interested in the average w.r.t. W of the 
law of Xtw for large t. This problem was first considered by Th.Brox in his 1986 
paper, when B is a one-dimensional Brownian motion and V = 0. In this case the 
drift term in (*) is just white noise. Brox proved that the effect of the drift is to 
slow-down the diffusion: (l/(log t)2 ).Xtw converges in law to a probability measure p, 
i.e. for any continuous bounded function f, _Q[E[f (X,w/(log t)2)]] + s f dp when 
t -+ +m This property is sometimes called subdifisivity. The result of Brox has 
then been extended to a larger class of other one-dimensional random environments 
by Tanaka (1987) and Kawasu et al. (1989). In Mathieu (1994) we made an at- 
tempt to generalize these results to higher dimensions. It turns out that the method 
of Brox and Tanaka cannot be used for n > 1. Thus we introduced a different point 
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of view which is based on a simple remark: provided that B has a scaling prop- 
erty, the problem of getting information on the law of Xlw for large t is equiva- 
lent to a zero-white-noise problem, with now a deterministic potential. Many ques- 
tions on zero-white-noise limits can be answered using the large deviation technique. 
In our case, since we deal with non-differentiable potentials, there is no large de- 
viation principle. In order to overcome this difficulty, we were led to a different 
approach of the zero-white-noise problem based on semi-group techniques: this is 
the content of Mathieu (1995). We shall now apply these ideas to random poten- 
tials. 

Let us mention that the model we shall consider has been introduced at a physical 
level by Marinari et al. (1983). 

We make the following assumptions on B and V: 
(HO) (Continuity) V(0) = 0 and Q. a.s. B(0) = 0. The function V is continuous 

and Q. a.s. the function x -+ B(x) is continuous. 
(Hl) (Scaling property) There exists a /? > 0 s.t. for any c > 0, the random fields 

((l/c)B(c~x),x E KY) and B have the same law. 
(H2) Q. a.s. the connected components of the set {x s.t. B(x) -c 1) are bounded. 
(H3) R-“fl suplZlgR IV(z)1 --f 0 when R -+ +co. 
These hypothesis are satisfied, for instance, if n = 1, and B is a Brownian motion, or 

a Bessel process, or a Brownian motion reflected at 0, and V(X) = 1x1’ for 0 < a 6 i. 
When I? > 1, we can choose for B Levy’s Brownian motion, or its modulus (see 
Mathieu (1994) for the proof of (H3)). Note that in these examples, the sample paths 
of W are not differentiable. 

Since we do not assume that W is differentiable, we cannot rely on Ito’s theory to 
solve equation (*). In order to provide a solution to equation (*), we use the same 
approach as in Mathieu (1994): Let f be a probability density on IF?. Let C( R”, R) 
be the set of continuous functions from UP to R. For any w E C(lR’, R), let X” be the 
solution in the sense of Dirichlet forms of the S.D.E. dXfw = dp, -(i )Vw(X,“‘) dt, with 
initial law f. Thus Xw is the Markov process with Dirichlet form u + (i)J IVu12ePw. 
Let Pf” be the law of Xw on C(R+, R”). Let (X,, t 20) be the coordinate projections 
of C(R+, Rn). Still following Mathieu (1994), we denote by Pf the probability on 
C(R+, Rn) obtained by averaging Py w.r.t. the law of W, i.e. lP’f(F) = EQP~(F), for 
any measurable bounded functional F. We shall use the notation lEf for the expectation 
w.r.t. lPf. 

Our aim is to express the law of XI for large t in terms of the geometry of B and 
V. We shall need a few definitions from Mathieu (1994) or (1995): let w E C(lP, R). 
Let D be a bounded domain of R”. We call D a valley if there exists a E R s.t. D 
is one of the connected components of the set {x s.t. w(x) < a}. We say that D is a 
r-valley if it is a valley and if sup0 w - infD w = r, where sup, w = supXcD w(x). 
We then call r the depth of D and denote it by di(w, D). 

More generally, we define the depths of w on D: for r > 0, let f(r) be the number 
of r-valleys of w contained in D. For i> 1, let di(w, D) = inf{r s.t. f(r) < i}. 
For r > 0, let d,(w) be the connected component of the set {X s.t. w(x) < r} that 
contains 0. Let N,(w) be the number of r-valleys of w contained in d,(w), and let 
(D:(w), 1 <i<N,(w)) be the r-valleys of w contained in A,.. 
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We shall prove: 

Theorem 1. Let f be a probability density with compact support. There exists a 
family of functions on R+ X C(lIP, R), (ai,i E N*), s.t. 
- ai(t,w) = 0 for any t E R+ whenever i > Nl(w), 
- ai(t, W) > 0 for any t E R+, i > 0, W E C(R”, R), 
-for any t and i, the function w 4 ai(t,W) is measurable, 
- xi ai(t, w) = 1 for any w and t. 

Furthermore, for any bounded measurable function g 

when t tends to +oo. 

Comments. (1) implies that the family of the laws of (l/(log t)~)!E-, under Pf is tight. 
Thus (log t)b is the “right scale”. In some examples, it is possible to deduce from (1) 
that (l/(log t)~)%-, converges in law and to compute the limit. First note that this limit 
will not depend on Y. 

If B > 0 Q. a.s., then ZV, = 1 and thus (1) becomes 

~,k7((l/(logt)B)%)1 - EQ 
IS 

d,(B) g e-ilug’)B/~,C~j eC(logOB] + 0. 

From this last formula one can get an expression for the limit in law of (l/(log t)“)Xt 
(see Mathieu, 1994). But in general, since we do not know how to calculate the ai’s, 
we can only get partial information on the limit of (l/(log t)b)X’t. Note in particular 
that (1) implies that, for any domain D 

ljzpinf Pf[(l/(log t)%2-( E D] 2 Q[A,(B) c D]. (2) 

Using the same technique as for the proof of Theorem 1, it is also possible to estimate 
other quantities related to the long-time behaviour of %^t such as the hitting times of a 
sphere whose radius tends to +oo This would lead to inequalities similar to (2). We 
shall only quote one result: for r E R+, let err = inf{t>O s.t. IV(&) = r}. It turns out 
that the limiting law of (l/r)loga, can be written explicitly in term of the geometry 
of B: 

Theorem 2. Let f be a probability density with compact support. The law of (l/r) 
log a, under Pf converges, when r tends to +co, to the law of dl(B, Al(B)) 
under Q. 

Thus, in order to obtain more precise statements on the long-time behaviour of !Et, it 
would be necessary to compute the “law” of Al(B). This can be easily done if B is 
a one-dimensional Brownian motion. To our knowledge, this problem is unsolved for 
random fields indexed by R”, n > 1, such as Levy’s Brownian motion. 
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Proof of Theorem 1. We follow the same method as in Mathieu (1994): for E > 0 and 
w E C(lV, Iw), let X&W be the solution, in the sense of Dirichlet forms, of the S.D.E. 
d X;w = Ed/$ - iVw(X,E,W)dt. As previously, let P;” be the law of XGW, when the 
initial law is f, and let p> be the probability on C([w+, IWn) defined by p>(F) = 

EQP>~‘(F), where W’(x) = s2 V(s-‘px) + B(x). Also let fJx> = .s-*~“f(~-*Bx). 

It follows from the hypothesis Hl that the law of (asp%-,, t 2 0) under Pf coincides 
with the law of (X(E*(*~-~)~), t 20) under p’i (see Lemma 111.2.2 of Mathieu, 1994). 
Therefore, the statement of Theorem 1 is equivalent to: 

ET, [g(X(eli”‘)] - EQ ~c~i(e~‘~*,B) (3) 
i 

We shall in fact prove an almost sure version of (3): Let C(lY, [w) be the set of 
continuous functions w, from KY’ to K! s.t. for any a E Iw the connected components 
of the set {x s.t. w(x) < a} are bounded. For w E C(kY, rW), let R,(w) be the set of 
r > 0 such that: 
_ there exists x E d,(w) s.t. w(x) < 0 and 
_ there exists p > r s.t. for every i <N,(w), there exists a p-valley, D, s.t. D:(w) c D 
and dz(w,D) < r. 
Note that if Y E RI(W) then dl(A,(w)) > r. 
Let wE be a family of functions in C(Iw, [w”) s.t. wE -+ w uniformly on compact sets 
of Iw”. 
We claim that, for any probability density f with compact support, if r E R*(w) 

E~J~(XE,“‘i(er”2)] - c bi(E, w)/ LJ e-w1’2// ehwIc2 + 0 
i D:(w) Q(w) 

for any bounded continuous function g, where the hi’s satisfy: bi(E, w) 3 0, bi(E, w) = 0 
if i > N,.(W), xi bi(E, W) = 1. 

Proof of (4). The proof of (4) repeats arguments of Mathieu (1994, 1995), but since 
we had assumed in Mathieu (1995) that wE = w and VW E Lm,~OC we cannot directly 
apply Theorem 6. For a domain D, let rGW’ (D) = inf {t > 0 s.t. X,““’ $ D}; We start 
with 

Lemma 1. Let D be a valley. For q > 0, 

PJ>(s210grE~‘+ (D)>d,(w,D) -q) --) 1. 

Similarly, for any probability density with support contained in D, k, and for any 
g > 0, 

P&*log@(D)2dl(w,D) - ‘I) + 1. 

Proof. It is sufficient to show that E,-, (exp(-e(dl(W~D)-~)~&‘~E,WP(D))) ---f 0. If wE = w 
for any E, then the lemma follows from Theorem 11.3 of Mathieu (1994). The general 
case can be handled identically. 

Since Pf~(~~,~‘(A,)~e(‘+q)~&*) -+ 1, for q > 0 small enough (Remember that dl(w, A,.) 
> r), it is enough to prove (4) for the process XE,‘“’ reflected on the boundary of A,,(w). 
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Following Mathieu (1995), for any bounded domain D with a smooth boundary, we 
shall denote by (r&E,w”,D,r 3E,w’,D ) the smallest closed extension of the Dirichlet form 
r~e,d,D (u) = (s2/2)J, IVu12 exp(-w”/s2), for u E P(D). rEE,Wr,D is the Dirichlet 
form of the Markov process (rX/‘WL’D, t >O) obtained from XE”“’ by reflection on the 
boundary of D. We denote by (rP>“‘L,D, t 20) its semi-group. 

Let y~,~r,D (dx) = exp( -wB(x)/c2)ZB(x)/ SD exp(-w”/s2)dx be its invariant probability 
measure. 

Let (-A~“‘(D),$~W’TD )iao be a spectral decomposition of the generator of T&E,W’~D, 
with the conventions: A;““(D) = 0, $zWE’D = 1, Af’“‘(D)<A$‘(D),J (I/I”““‘,~[~~~,~‘,~ 
= 1, J +~“‘~&‘w”D~Gw’,D = 0, when i # j. 

Our basic tool is the following result on the asymptotics of A:““(D): assume that 
D is a valley, then for any i k 1, 

c2 log /If”“‘(D) + -di+l(w,D), (5) 

(5) is proved in Theorem 2 of Mathieu (1995) when wE = w for every E. It can be 
easily extended to the general case: indeed assume that llwE - wIIL,(fij <q. Since 

ny”(D) = inf ( / ) WI2 exp(-w”iE2)/ / M2 exp(-wE/E2)), UEP@) 6 d 

we have IA:“‘(D)-AT”‘(D)1 < exp(10q/s2)A~W(D). Thus (5) follows at once for i = 1. 
The proof for the other eigenvalues is similar. 

Lemma 2. Let D = D:(w) and t6 = exp(r/e2), where r E RI(W). For any probability 
density k with support contained in D, for any continuous bounded function g 

&(g(PW’(tE))) - s gyGW,D --f 0. 

Proof. First assume that k is bounded. 
Since r E RI(w), we can choose p > r and D’ s.t. D’ is a p-valley, DC D’ and 

d2(D’) < r. It follows from Lemma 1 that Pk(s2 log(rE,wf’(D’)) 2 p-q) + 1 for ye > 0. 
Since p > r, Pk(c2 log(z”,““(D’)) 2 r + q) + 1 for some q > 0. 
Therefore, 

(i) Ek(g(PW’(te))) - E&(‘X”.““D’tt8)>) + 0. (6) 

On the other hand. 
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From (5) we know that E* l~g(A;~“(D’)t,) --) r - dz(+v,D’) > 0. Since k is bounded, 
then lim sups* log J(~/Y~~I’,~‘)~Y~““,~ < +oq therefore 

(ii) E&();YE~W”~D (&))) - / gy&,WJ + 0. 

Besides it is easy to see that Y > dz(D’) implies that 

(7) 

(i)-(iii) yield the conclusion of the lemma. 
The case of unbounded k can be treated by 

Lemma 3. Let D = d,(w), N = N,(w) and tE = exp(r/c*), where r E RI(W). 

approximation and truncation. 

(9) 

for any bounded continuous function g. 

Proof. First assume that f is bounded. For k E L2(D,yE,W’*D), let P(k) = 

Ci<N e 
-n:“i(o)f~(Sky”“,D)~~““Dy&,w’,D. Thus P(k) is a (nonnecessarily positive) 

bounded measure on D. The idea of the proof is simple: first note that P(k) is 
close to the law of rXE,W’,D t ( ,) with initial law k(x) dx. Cp” maps L*(D, YE,““,~) onto an 
N-dimensional subspace of the set of measures on d. If the support of k is contained 
in D:(D), then, by the previous lemma, ape(k) is close to yE,W,D:(W). The measures 

(Y E, w,Df(w) 1 < i <N) are linearly independent. Thus the range of a’ is close to the vec- 
tor space ‘spanned by the (y E,WoF(W), 1 <i <N), which is exactly what Lemma 3 says. 
We now give the details of the proof 

By definition of Ai, 

~&(g(~P’~D tG)) - / @(k)12 

< ,-24”‘(D)t, 
- J (k/y&,w’,D)2y&,w’,D J g2y&,w’,D. 

From (5) and the definition of N, we know that lim c2 log A;“‘(D)& = r-dN+l(w, D) 
> 0. Therefore, for some q > 0, and for e small enough: 

(&(g(Y,WQ (te))) - Jgac(k)12 I exp(-ev@) J(/q+c.“~D~2ye~“~D J g2y”‘++~~D. 
(10) 

For i < N, let ki be a probability density with support contained in D:(D). 
From Lemma 1 (applied to D = d,(w)) , we know that Pk,(e2 logrEYWP,D <r+q) -+ 0, 

for q < dl(D) - Y. Hence 

Ek,(g(YW’,D (G))) - -q(g(~E~W”(t~))) -+ 0. 
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Lemma 2 implies that 

Therefore, (7) implies that 

s 
gy&,W,o:(+@ _ 

s 
giP&&) --) 0. (11) 

Hence s Z~;c,,Q”(ki) --+ 1 and s ZD;(,,,,@‘(ki) -+ 0 for any i # j. 
From the Lemma of the Appendix it follows that, for E small enough, the measures 

(@,“(ki), 1 <i<N) are linearly independent. On the other hand, @’ maps Lz(fi, Y’,~‘,~) 
into an N-dimensional subspace of the set of measures on 0. Therefore there 
exist coefficients bi(k,&, W) s.t. Q’(k) = CiGN bi(k,&,IV)V(ki), in particular (ap(fs) = 
CiGN bi(s,w)Q’(ki). Applying (7) to k = fs, we obtain that Ef,(g(‘X”W’J’(tp))) - 
J gP(fE) -+ 0, uniformly for 191 bounded by 1. Hence, for any measurable subset of 
D, A, 0 < lim inf JA QE(fE) < lim sup sA @‘(fs) d 1, uniformly in A. We can now apply 
the second part of the lemma of the Annex to deduce that Jbi(E, w)j < 2, for any i <N 
and E small enough. 

(7) and (8) imply that 

+ 0. (12) 

The case of unbounded k can be treated by approximation and truncation. 
It is now easy to recover the conditions on the hi’s: since bi(E, w)--P~,,(‘P~“‘~~(~~) E 

D;(w)) + 0, we can replace bi(s, w) by bi(E, w)VO in (9). Besides, since xi bi(E, IV) + 
1, it is also possible to replace bi(c, W) by bi(E, IV)/ xi bj(c, w) in (9). 

End of the proof of (4). 
The only thing we have to check in order to complete the proof of (4) is that 

Ef, (g(‘X”7”“yD(t,))) - Es, (g(X@ (Q)) -+ 0. 

But this is a consequence of the fact that P~.(E* log r”*““(D) > d, (w,D) - q) -+ 1 for 
4 > 0 and d 1 (w,D) > r, therefore Pf, (E* log rGW’ (D) 2 r + q) --f 1 for q > 0 small 
enough. 

Proof of Theorem 1 (Conclusion). Our aim is to show (3). There are two cases to 
distinguish: either B(x)20 for any x, or there exists x E R” s.t. B(x) < 0. 

Let Al = {w E e(R”, W) s.t. there exists x s.t. w(x) < 0) and 
A2 = {w E C(R’,R) s.t. for every x w(x)aO}. Let R*(w) be the set of r > 0 s.t. 

for every x E d,(w), w(x)>0 and there exists p > r s.t. there are no r-valleys in 
dp(w) - d,(w). We claim that 
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Lemma 4. For every r > 0, Q. as. r E R,(B) U R2(B). 

Proof. Let Qr - resp Q2 - be the probability Q conditionally on Ai - resp AZ. Note 
that the properties (HI)-(H3) are preserved under Qi or Q2. 

We shall prove that Qi(r E R*(B)) = 1 and Qz(r E Rz(B)) = 1. Let TO(W) = 
inf{r s.t. di(w,d,(w) > r}. It follows from the scaling property of B (Hl) that 
Qi(rc = 0) = 1. Therefore, (i) Qt(for every Y, di(w, A,.(B)) > r) = 1. 

We claim that for any w E c(rW’, W), for almost any r, for every r-valley D, there 
exists p > r and a p-valley D’ containing D, s.t. d2(w, 0’) < r. Indeed let D be a q- 
valley. For r B q, let D, be the unique r-valley containing D, and let f(r) = d2(w, Or). 
For every r, f(r) < r. Therefore, if r is a point of continuity of f then there exists 
p > r s.t. f(p) < r. Since f is increasing, f is continuous at almost any r. Since 
there is at most a denumerable number of valleys of w in [w”, the claim is justified. In 
particular: 

(ii) for almost any r, Q1.a.s. there exists p > r s.t. for i<N,(w), there exists a 
p-valley, D, s.t. D:(w) c D and dz(w,D) < r. 

(i) and (ii) imply that for almost any r, Ql(r E RI(B)) = 1. But the scaling property 
of B implies that Ql(r E R,(B)) does not depend on r. Therefore for any r, Ql(r E 
RI(B)) = 1. The proof that Qz(r E R~(w)) = 1 is similar: let f(r) = dz(A,(w)). Note 
that if r is point of continuity of f then there exists a p > r s.t. dZ(AJw)) < r, 
and therefore there is only one r-valley contained in d,(w): d,(w). The points of 
discontinuity of f are denumerable. One then concludes as before. 

End of the proof of (3). 
(H2) and the scaling property imply that Q.a.s. for any a E [w, the connected com- 

ponents of the set {X s.t. B(x) < u} are bounded, i.e. B E d([Wn, Iw) Q.a.s. 
(H3) implies that ~~V(.s-~~x) ---) 0 uniformly on compact sets. Hence Q.a.s. WE --f B 

uniformly on compact sets. 
If 1 E RI(W) we can apply directly (4). Assume that 1 E RX(W), then N,(w) = 1 

and D;(w) = Al(w). 
We claim that for any continuous bounded function g 

Er, [g(XE~“‘(e1/E2)] _ 
s 

gy”~w.dl(w) + 0. 
Al(W) 

Since the proof is identical to the proof of Lemma 2, we omit it. 
Thus in both cases (4) holds. Since 1 E RI(B) U R2(B) a.s. (4) holds a.s. for r = 1 

and therefore (3) holds. 

Proof of Theorem 2. As for Theorem 1, it is sufficient to prove that s2 log r”,““(di(w)) 
converges in law under Pf$, to d I (w, Al(w)), for any sequence of continuous functions 
wE E C([Wn, (w) s.t. wE + w uniformly on compact sets of [w”. Let r] > 0. In Lemma 1 
we have proved that P~~,(~210gz”~“‘(A~(w))3d~(w, Al(w)) - q) + 1. 

If wE = w for any E, then it follows from Theorem 4 of Mathieu (1995) that 

P,(c210gr”YAi(w)) I dr(w,Ai(w)) + r) -+ 1. The general case can be handled 
identically. 
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Appendix Lemma. Let k E N. Let E ~(3 + 2k)-‘. Let (Vi, 1 di Gk) be measures 
on a space E and (Ai, 1 <i < k) be measurable subsets of E. Assume that for every 
i # j, Vi(Ai)> 1 - E and IVi(Aj)l GE. Then (i) the Vi’s are linearly independent. (ii) 
Let (/Ii, 1 <i <k) be real numbers, Assume that the measure p = xi Iivi is bounded 
below by --E and bounded above by 1 + E, then for any i, 1 Ail < 2. 

Proof. (i) Assume that Ci PiVi = 0. Without any restriction, we can assume that 
/~]a0 and ~1 >lpil for any i. Then ~1~1(A1)~~1(1 -E) and IpiVi(Al)l<pl& for i # 1. 
Therefore, if ~1 # 0, then k.z 3 1 - E, which is impossible. 

(ii) Assume that Iill 12 Illi for any i. 
First assume that il > 0. Then llvl(Al) >I,,( 1 - E), and iliVi(Al) > - EL, for 

i#l.Since~(Al)bl+~,(--Ek+l-~)~I~l+&andtherefore3,,~2. 
If A1 < 0, then A~vI(AI)<A~(~--E), and liVi(A,)Q-E21 for i # 1. Since p(Ai)<--E, 

(--Ek + 1 - &)A, Z - E and therefore i, > - 2. 
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