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Abstract

We study the long-time asymptotics of a multi-dimensional diffusion with a random potential
satisfying a scaling property. We prove a subdiffusivity property.
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1. Introduction

The aim of this paper is to derive limit theorems on the long-time asymptotics of
multi-dimensional diffusions in a self-similar (or almost self-similar) random potential.
Let (B(x),x € R") be a random field indexed by R", let O be the law of B and let V
be a (deterministic) function from R" to R. We define W = V + B. Let us consider
the (formal) stochastic differential equation:

(*) dX, =dB — VWG, X =0,

where f is an n-dimensional Brownian motion, independent of .

Intuitively speaking, we first solve equation (x) for a given realization of W (see
below for a rigorous definition of the word “solve” in this context). Thus we get a
Markov process, say (X”,£>0). We are interested in the average w.r.t. W of the
law of X% for large ¢. This problem was first considered by Th.Brox in his 1986
paper, when B is a one-dimensional Brownian motion and ¥ = 0. In this case the
drift term in (*) is just white noise. Brox proved that the effect of the drift is to
slow-down the diffusion: (1/(log ¢)?)X¥ converges in law to a probability measure p,
i.e. for any continuous bounded function f, Eg[E[f(X”/(log t)))]] — [ f du when
t — +oo. This property is sometimes called subdiffusivity. The result of Brox has
then been extended to a larger class of other one-dimensional random environments
by Tanaka (1987) and Kawasu et al. (1989). In Mathieu (1994) we made an at-
tempt to generalize these results to higher dimensions. It turns out that the method
of Brox and Tanaka cannot be used for n > 1. Thus we introduced a different point
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of view which is based on a simple remark: provided that B has a scaling prop-
erty, the problem of getting information on the law of X” for large ¢ is equiva-
lent to a zero-white-noise problem, with now a deterministic potential. Many ques-
tions on zero-white-noise limits can be answered using the large deviation technique.
In our case, since we deal with non-differentiable potentials, there is no large de-
viation principle. In order to overcome this difficulty, we were led to a different
approach of the zero-white-noise problem based on semi-group techniques: this is
the content of Mathieu (1995). We shall now apply these ideas to random poten-
tials.

Let us mention that the model we shall consider has been introduced at a physical
level by Marinari et al. (1983).

We make the following assumptions on B and V:

(HO) (Continuity) ¥(0) = 0 and Q. a.s. B(0) = 0. The function V is continuous
and Q. a.s. the function x — B(x) is continuous.

(H1) (Scaling property) There exists a f > 0 s.t. for any ¢ > 0, the random fields
((1/¢)B(cPx),x € R*) and B have the same law.

(H2) Q. as. the connected components of the set {x s.t. B(x) < 1} are bounded.

(H3) R=" sup,,| x|V (z)] — 0 when R — +0o0.

These hypothesis are satisfied, for instance, if # = 1, and B is a Brownian motion, or
a Bessel process, or a Brownian motion reflected at 0, and V(x) = |x|* for 0<a< %
When n > 1, we can choose for B Lévy’s Brownian motion, or its modulus (see
Mathieu (1994) for the proof of (H3)). Note that in these examples, the sample paths
of W are not differentiable.

Since we do not assume that W is differentiable, we cannot rely on Ito’s theory to
solve equation (*). In order to provide a solution to equation (*), we use the same
approach as in Mathieu (1994): Let f be a probability density on R”. Let C(R", R)
be the set of continuous functions from R” to R. For any w € C(R",R), let X* be the
solution in the sense of Dirichlet forms of the S.D.E. dX}* = dp, —(%)VW(X,W)dt, with
initial law f. Thus X* is the Markov process with Dirichlet form u — (%) S |Vu*e™.
Let P} be the law of X* on C(R,,R"). Let (&}, ¢>0) be the coordinate projections
of C(R4,R"). Still following Mathieu (1994), we denote by P, the probability on
C(R,,R") obtained by averaging PY wrt. the law of W, ie. Po(F) = EQP;V (F), for
any measurable bounded functional F. We shall use the notation E, for the expectation
w.r.t. Pf.

Our aim is to express the law of %, for large ¢ in terms of the geometry of B and
V. We shall need a few definitions from Mathieu (1994) or (1995): let w € C(R", R).
Let D be a bounded domain of R". We call D a valley if there exists @ € R s.t. D
is one of the connected components of the set {x s.t. w(x) < a}. We say that D is a
r-valley if it is a valley and if sup, w — infp w = r, where sup, w = sup, ., w(x).
We then call » the depth of D and denote it by d,(w, D).

More generally, we define the depths of w on D: for » > 0, let f(r) be the number
of r-valleys of w contained in D. For i>1, let di(w,D) = inf{r st. f(r) < i}.
For r > 0, let 4,(w) be the connected component of the set {x s.t. w(x) < r} that
contains 0. Let N,(w) be the number of r-valleys of w contained in A4,(w), and let
(Di(w),1<i<N,(w)) be the r-valleys of w contained in 4,.
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We shall prove:

Theorem 1. Let f be a probability density with compact support. There exists a
Sfamily of functions on R, x C(R",R), (a;,i € N*), s.¢.
— a;(t,w) = 0 for any t € R, whenever i > Ny(w),
— ai(t,w)=0 for any t € R,,i=z0,w € C(R",R),
— for any t and i, the function w — a;(t,w) is measurable,
- Y ;ait,w) =1 for any w and t.
Furthermore, for any bounded measurable function g

Elo((1 g )21~ Eo| Yaem) [ geteor /[

e—(log t)B:| =0
' (B)

(1)

when t tends to +oc.

Comments. (1) implies that the family of the laws of (1/(log?)#)%, under P 1 is tight.
Thus (logt)? is the “right scale”. In some examples, it is possible to deduce from (1)
that (1/(log ¢)f)%, converges in law and to compute the limit. First note that this limit
will not depend on V.

If B0 Q. as., then N, =1 and thus (1) becomes

E,Tg((1/(log 1)} )& )} — Eg [ /A I Eis / /A W e—“"g'”} ~o.

From this last formula one can get an expression for the limit in law of (1/(log?)*)Z,
(see Mathieu, 1994). But in general, since we do not know how to calculate the a;’s,
we can only get partial information on the limit of (1/(log¢)?)%,. Note in particular
that (1) implies that, for any domain D

lim inf P/[(1/(log 1)), € D1>Q[4:(B)C D]. (2)

Using the same technique as for the proof of Theorem 1, it is also possible to estimate
other quantities related to the long-time behaviour of &, such as the hitting times of a
sphere whose radius tends to +oo. This would lead to inequalities similar to (2). We
shall only quote one result: for » € R, let o, = inf{t >0 s.t. W(X,) = r}. It turns out
that the limiting law of (1/r)logo, can be written explicitly in term of the geometry
of B:

Theorem 2. Let f be a probability density with compact support. The law of (1/r)
loga, under P, converges, when r tends to +oo, to the law of d\(B,4,(B))
under Q.

Thus, in order to obtain more precise statements on the long-time behaviour of %, it
would be necessary to compute the “law” of 4;(B). This can be easily done if B is
a one-dimensional Brownian motion. To our knowledge, this problem is unsolved for
random fields indexed by R”, n > 1, such as Levy’s Brownian motion.
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Proof of Theorem 1. We follow the same method as in Mathieu (1994): for ¢ > 0 and
w € C(R",R), let X*" be the solution, in the sense of Dirichlet forms, of the S.D.E.
d X = edf, — VwW(X/")dt. As previously, let P} be the law of X**, when the
initial law is f, and let P’ be the probability on C(R,,R") defined by P “(F) =

EpPj W'(F), where We(x) = &2V (¢ %x) + B(x). Also let f,(x) = s“zﬂ”f(s‘2ﬂx)

It follows from the hypothesis H1 that the law of (¢%%,,¢>0) under P  coincides
with the law of (Z(¢**#~"¢),1>0) under P4 (see Lemma II1.2.2 of Mathieu, 1994).
Therefore, the statement of Theorem 1 is equivalent to:

2 2 _B/
E [g(Z (e )]—EQ[Zai(e‘/ﬁ,B) ge ¥ / /
7 Di(B) D

We shall in fact prove an almost sure version of (3): Let C(R"*,R) be the set of
continuous functions w, from R” to R s.t. for any a € R the connected components
of the set {x s.t. w(x) < a} are bounded. For w € C(R",R), let R\(w) be the set of
r > 0 such that:

— there exists x € 4,(w) s.t. w(x) < 0 and

— there exists p > r s.t. for every i <N,(w), there exists a p-valley, D, s.t. Di(w)C D
and do(w,D) < r.

Note that if r € Ri(w) then d1(4,(w)) > r.

Let w* be a family of functions in C(R,R") s.t. w* — w uniformly on compact sets
of R™.

We claim that, for any probability density f with compact support, if € Ry(w)

Ef. [g(Xsw (er/e )] _ Zb (8 W)/‘( ) —W/gz/A e—W/cz =0 (4)

i(w)

e—B/E’] =0 (3)
' (B)

for any bounded continuous function g, where the b;’s satisfy: b;(e,w) 20, b;(e,w) =0
if i > Ny(w), 3, bi(e,w) = 1.

Proof of (4). The proof of (4) repeats arguments of Mathieu (1994, 1995), but since
we had assumed in Mathieu (1995) that w® = w and Vw € Lo 1oc We cannot directly
apply Theorem 6. For a domain D, let " (D) = inf{t > 0 s.t. X;*¥ ¢ D}; We start
with

Lemma 1. Let D be a valley. For n > 0,
Py (2 log ™ (D)=d (w,D) — 1) — 1.

Similarly, for any probability density with support contained in D, k, and for any
n>0,

Py(e? log v (D) >di(w,D) — ) — 1.

Proof. It is sufficient to show that £y, (exp(—e@wD)=mye e’ (D)) — 0. If w® = w
for any &, then the lemma follows from Theorem II.3 of Mathieu (1994). The general
case can be handled identically.

Since Pf,;('r”’W':(A,)>e(’+”)/€2) — 1, for 7 > 0 small enough (Remember that d|(w, 4,)
> r), it is enough to prove (4) for the process X>*' reflected on the boundary of Ap(w).
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Following Mathieu (1995), for any bounded domain D with a smooth boundary, we
shall denote by ("£%*-D7 F&%'DY the smallest closed extension of the Dirichlet form
rewPuy = (£2/2) [, |Vu|2exp(—w£/82), for u € C=(D). &P is the Dirichlet
form of the Markov process ("X**"?,1>0) obtained from X** by reflection on the
boundary of D. We denote by ("P**"P,1>0) its semi-group.

Let 7" 2(dx) = exp(—w*(x)/e?)5(x)/ [, exp(—w*/e?)dx be its invariant probability
measure.

Let (—Af’wt(D), t//f’wl"D Ji>o be a spectral decomposition of the generator of 7£5""2,
with the conventions: A5" (D) = 0, y5™"P = 1, AZ* (D)< AN (D), [ |y & P R2yow-P
=1/ l//?’wn’DlﬂjE‘wc’Dyg’wa’D =0, when i # j.

Our basic tool is the following result on the asymptotics of Af’wﬁ(D): assume that
D is a valley, then for any i =1,

¢? log 4™ (D) — —diy1(w, D), (5)

(5) is proved in Theorem 2 of Mathieu (1995) when w® = w for every ¢. It can be
easily extended to the general case: indeed assume that ||w® — wl|;  5,<#. Since

ew” _ : 2 . 2 o o2
A (D)*ueé‘lfm)( / )IVul exp(— /&) / P expt-wiey

we have IA'i"W‘: (D)~ AT*(D)| < exp(10n/e?) A" (D). Thus (5) follows at once for i = 1.
The proof for the other eigenvalues is similar.

Lemma 2. Let D = D!(w) and t, = exp(r/e®), where r € Ry(w). For any probability
density k with support contained in D, for any continuous bounded function g

Ex(g(X™" (1,))) — / gy¥*"P — 0.

Proof. First assume that & is bounded.

Since r € R (w), we can choose p > r and D’ s.t. D' is a p-valley, DC D’ and
dy(D") < r. It follows from Lemma 1 that P;(e? log(t>* (D'))=p—n) — 1 fory > 0.
Since p > r, Py(e? log(t>"'(D')) > r+1n) — 1 for some n > 0.

Therefore,

() E(g(X*""(5))) — Ex(g( X" (1,))) = 0. (6)

On the other hand,

(ExgC X" (1)) / gy

2
= (/k(rPf“,W",D g-— /gys,w",D'))

<e—2A'|'""'(D’)t,., /(k/,ya,w“,D’ )Zye,w",D' \/gz,})c,w‘:,D"
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From (5) we know that &2 log(A5" (D')t;) — r — dy(w,D') > 0. Since k is bounded,
then lim sup £2 log [(k/y>*">? Yy>*>P" < 400, therefore

i) Ex(gCX>"P(1,))) - / g"P =0, )

Besides it is easy to see that » > d,(D’) implies that

iy [ar? - [0 0 ®)

(i)—(iil) yield the conclusion of the lemma.
The case of unbounded % can be treated by approximation and truncation.

Lemma 3. Let D = A,(w), N = N(w) and t, = exp(r/e?), where r € R{(w).

Ef’;[g(rXa,w",D(te)] _ Z bi(S,W)/. g e—W/gZ/\/D. )e—W/sz -0 (9)
7 (W) (W

0<igN-1

for any bounded continuous function g.

Proof. First assume that f is bounded. For k € L3(D,y>*"P), let ®(k) =
D oien e—Af'”j'(D)t,,( f kys,w“,D),/,f,"":)Dye’W'?D. Thus $°(k) is a (nonnecessarily positive)
bounded measure on D. The idea of the proof is simple: first note that ®¢(k) is
close to the law of "X&""2(z,) with initial law k(x)dx. ®¢ maps L2(D,y>*"P) onto an
N-dimensional subspace of the set of measures on D. If the support of & is contained
in Di(D), then, by the previous lemma, ®°(k) is close to y”’w’Di(W). The measures
(y>"DP") 1 <i<N) are linearly independent. Thus the range of ®* is close to the vec-
tor space spanned by the (y>*2™), 1<i<N), which is exactly what Lemma 3 says.
We now give the details of the proof:
By definition of A;,

BaCx™" ) - [ aviof
< e7M O / ey Pyyev'D / gyP.

From (5) and the definition of N, we know that lim £ log A}“‘;,W”(D)tg =r—dyy1(w,D)
> (. Therefore, for some # > 0, and for ¢ small enough:
BaCX ™ 2(0) = [ g0 WIF < exp(—en®) [pe 2yt [ @i,
(10)

For i < N, let & be a probability density with support contained in Di(D).
From Lemma 1 (applied to D = 4,(w)) , we know that Py (2 log t¥"P <r+75) — 0,
for n < d(D) - r. Hence

Er (g X" P(1,))) — Ex(g(X*" (£,))) — 0.
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Lemma 2 implies that

Er(9(X5" (8:))) — / gy 0,

Therefore, (7) implies that

/ gy / g8 (k) — O, (11)

Hence [ Ipi(.®*(k;) — 1 and fID{(w)‘I)B(k") — 0 for any i # j.

From the Lemma of the Appendix it follows that, for ¢ small enough, the measures
(®(k;), 1 <i<N) are linearly independent. On the other hand, ®¢ maps Ly(D,y>*"P)
into an N-dimensional subspace of the set of measures on D. Therefore there
exist coefficients b;(k,e,w) s.t. ®*(k) = >_,  bi(k, &, w)®(k;), in particular ®°(f,) =
> <w bi(e, w)®4(k;). Applying (7) to k = f,, we obtain that E;,(g("X>""P(1,))) —
J g®%(f:) — 0, uniformly for |g| bounded by 1. Hence, for any measurable subset of
D, 4, 0< liminf fA D(f) < limsup fA ®°(f.) <1, uniformly in 4. We can now apply
the second part of the lemma of the Annex to deduce that |b;(e,w)| <2, for any i<N
and ¢ small enough.

(7) and (8) imply that

E(gUX"P1)) = 3 bile,w) / T

i<N

= Epleex 2w - [ 980+ S b ( [ o2t - [ o)

i<N

— 0. (12)

The case of unbounded & can be treated by approximation and truncation.

It is now easy to recover the conditions on the b;’s: since b;(e,w)—P/ ("X eWLD(1) €
Di(w)) — 0, we can replace b;(g,w) by bi(e, w)VO in (9). Besides, since Y, bi(e,w) —
1, it is also possible to replace b;(¢,w) by b;(e, w)/ Zj bi(e,w) in (9).

End of the proof of (4).
The only thing we have to check in order to complete the proof of (4) is that

En (g X" 2(1,))) ~ Er.(g(X5" (£,))) — 0.

But this is a consequence of the fact that Pfg(a2 log v (D)=d(w,D) — ) — 1 for
n > 0 and dy(w,D) > r, therefore Py, (* log ¥ (D)2r+1n) — 1 for n > 0 small
enough.

Proof of Theorem 1 (Conclusion). Our aim is to show (3). There are two cases to
distinguish: either B(x) >0 for any x, or there exists x € R” s.t. B(x) < 0.

Let 4) = {w € C(R", R) s.t. there exists x s.t. w(x) < 0} and

Ay ={we€ C(R™", R) s.t. for every x w(x)=0}. Let Ry(w) be the set of » > 0 s.t.
for every x € A,(w), w(x)>=0 and there exists p > r s.t. there are no r-valleys in
A,(w) — A(w). We claim that
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Lemma 4. For every r > 0, Q. a.s. r € R{(B)U R2(B).

Proof. Let Q) — resp 2 — be the probability Q conditionally on 4; — resp 4;. Note
that the properties (H1)—(H3) are preserved under 0y or Q.

We shall prove that O1(r € Ri(B)) = 1 and Osx(r € Ry(B)) = L. Let rp(w) =
inf{r st. di(w,4,(w) > r}. It follows from the scaling property of B (H1) that
O\(ro = 0) = 1. Therefore, (i) Qi(for every r, di(w,4,(B)) > r)= 1.

We claim that for any w € C(R",R), for almost any 7, for every r-valley D, there
exists p > r and a p-valley D’ containing D, s.t. do(w,D’) < r. Indeed let D be a -
valley. For r >=#, let D, be the unique r-valley containing D, and let f(r) = da(w, D,).
For every r, f(r) < r. Therefore, if 7 is a point of continuity of f then there exists
p > r st f(p) < r. Since f is increasing, f is continuous at almost any . Since
there is at most a denumerable number of valleys of w in R", the claim is justified. In
particular:

(ii) for almost any r, (;.a.s. there exists p > r s.t. for i<N,(w), there exists a
p-valley, D, s.t. Di(w)C D and do(w,D) < r.

(i) and (ii) imply that for almost any », Qi(» € Ri(B)) = 1. But the scaling property
of B implies that Q;(» € R\(B)) does not depend on r. Therefore for any r, Q\(r €
Ry(B)) = 1. The proof that O,(r € Ry(w)) = 1 is similar: let f(r) = d2(4,(w)). Note
that if » is point of continuity of f then there exists a p > r s.t. da(4,(w)) < r,
and therefore there is only one r-valley contained in A,(w): 4,(w). The points of
discontinuity of f are denumerable. One then concludes as before.

End of the proof of (3).

(H2) and the scaling property imply that Q.a.s. for any a € R, the connected com-
ponents of the set {x s.t. B(x) < a} are bounded, i.e. B € C(R",R) Q.as.

(H3) implies that £V (¢~ %$x) — 0 uniformly on compact sets. Hence Q.a.s. W¢ — B
uniformly on compact sets.

If 1 € Ri(w) we can apply directly (4). Assume that 1 € Ry(w), then Ny(w) = 1
and D}(w) = 4,(w).

We claim that for any continuous bounded function ¢

Ef[gQx®* ()] - / gy g,
A(w)

Since the proof is identical to the proof of Lemma 2, we omit it.
Thus in both cases (4) holds. Since 1 € R{(B)U Ry(B) a.s. (4) holds as. for r =1
and therefore (3) holds.

Proof of Theorem 2. As for Theorem 1, it is sufficient to prove that &2 log " (4,(w))
converges in law under P, to d(w, 4,(w)), for any sequence of continuous functions
w® € C(R”, R) s.t. w® — w uniformly on compact sets of R"”. Let # > 0. In Lemma 1
we have proved that P/ (¢ log ¥ (4 (W) =di(w, 4,(w)) — ) — 1.

If w* = w for any &, then it follows from Theorem 4 of Mathieu (1995), that
Pf,:(s2 log ¥ (41(w)) < di(w,41(w)) +1n) — 1. The general case can be handled
identically.
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Appendix Lemma. Let k € N. Let ¢<(3 + 2k)™'. Let (v;,1<i<k) be measures
on a space E and (4;,1 <i<k) be measurable subsets of E. Assume that for every
i#j, vi(di)=1— ¢ and |vi(4;)|<e. Then (i) the v;’s are linearly independent. (ii)
Let (4;,1<i<k) be real numbers. Assume that the measure y =Y. A;v; is bounded
below by —¢ and bounded above by 1 + ¢, then for any i, |4, <2.

Proof. (i) Assume that } . v, = 0. Without any restriction, we can assume that
w120 and py =|u;| for any i. Then pyvi(41) 2w (1 —¢) and |u;vi(4))| < pye for i # 1.
Therefore, if u; # 0, then ke>1 — ¢, which is impossible.

(ii) Assume that |4;|>]|4;| for any i.

First assume that A, > 0. Then Ajvi(4,)=A(1 — ¢), and A4vi(4,)>= — e for
i#1. Since pu(4,)<1 + ¢, (—ek+ 1 — )4 <1 + ¢ and therefore 1; <2.

If 4; < 0, then 4;v;(4,)<A1(1—¢), and A;vi(4,)< —¢el; fori # 1. Since u(4,)< —¢,
(—¢k +1—¢)d1 = — ¢ and therefore 1, > — 2.
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