

Available online at www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics 29 (2008) 1582-1584

www.elsevier.com/locate/ejc

A new proof of a theorem of Mansour and Sun

Victor J.W. Guo

Department of Mathematics, East China Normal University, Shanghai 200062, People's Republic of China

Received 21 September 2007; accepted 15 November 2007 Available online 18 January 2008

Abstract

We give a new proof of a theorem of Mansour and Sun by using number theory and Rothe's identity. © 2007 Elsevier Ltd. All rights reserved.

It is well known that the number of ways of choosing k points, no two consecutive, from a collection of n points arranged on a cycle is $\frac{n}{n-k} \binom{n-k}{k}$ (see [11, Lemma 2.3.4]). A generalization of this result was obtained by Kaplansky [5], who proved that the number of k-subsets $\{x_1, \ldots, x_k\}$ of \mathbb{Z}_n such that $|x_i - x_j| \notin \{1, 2, \ldots, p\}$ $(1 \le i < j \le k)$ is $\frac{n}{n-pk} \binom{n-pk}{k}$, where $n \ge pk + 1$. Some other generalizations and related problems were studied by several authors (see [2,6,7,9]). Very recently, Mansour and Sun [8] extended Kaplansky's result as follows.

Theorem 1. Let $m, p, k \ge 1$ and $n \ge mpk + 1$. Then the number of k-subsets $\{x_1, \ldots, x_k\}$ of \mathbb{Z}_n such that $|x_i - x_j| \notin \{m, 2m, \ldots, pm\}$ for all $1 \le i < j \le k$, denoted by $f_{m,n}$, is given by $\frac{n}{n-pk} \binom{n-pk}{k}$.

Their proof needs to establish a recurrence relation and compute the residue of a Laurent series. Mansour and Sun [8] also asked for a combinatorial proof of Theorem 1. In this note, we shall give a new but not purely combinatorial proof of Theorem 1. Let p and k be fixed throughout. Let (a, b) denote the greatest common divisor of the integers a and b. We first establish the following three lemmas.

E-mail address: jwguo@math.ecnu.edu.cn.

URL: http://math.ecnu.edu.cn/~jwguo.

^{0195-6698/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2007.11.024

Lemma 2. Let (a, m) = 1 and let d be a positive integer. Then at least one of a, a + m, a + 2m, ..., a + (d - 1)m is relatively prime to d.

Proof. If (a, d) = 1, we are done. Now assume that $(a, d) = p_1^{r_1} \dots p_s^{r_s}$ and $d = p_1^{l_1} \dots p_t^{l_t}$, where $1 \le s \le t$ and p_1, \dots, p_t are distinct primes and $r_1, \dots, r_s, l_1, \dots, l_t \ge 1$. We claim that $a + p_{s+1} \dots p_t m$ is relatively prime to d. Indeed, since (a, m) = 1, we have $(p_1 \dots p_s, m) = 1$ and therefore

$$(p_1 \cdots p_s, a + p_{s+1} \cdots p_t m) = (p_1 \cdots p_s, p_{s+1} \cdots p_t m) = 1,$$

 $(p_{s+1} \cdots p_t, a + p_{s+1} \cdots p_t m) = (p_{s+1} \cdots p_t, a) = 1.$

This completes the proof. \Box

Lemma 3. Let (m, n) = d. Then there exist integers a, b such that (a, n) = 1 and am + bn = d.

Proof. Since (m, n) = d, we may write $m = m_1 d$ and $n = n_1 d$, where $(m_1, n_1) = 1$. Then there exist integers a and b such that $am_1 + bn_1 = 1$. It is clear that $(a, n_1) = 1$. Noticing that $(a + n_1 t)m_1 + (b - m_1 t)n_1 = 1$, by Lemma 2, we may assume that (a, d) = 1 and so (a, n) = 1. \Box

Lemma 4. Let $m, n \ge 1$ and (m, n) = d. Then $f_{m,n} = f_{d,n}$.

Proof. Let $\mathcal{A}_{m,n}$ denote the family of all *k*-subsets $\{x_1, \ldots, x_k\}$ of \mathbb{Z}_n such that $|x_i - x_j| \notin \{m, 2m, \ldots, pm\}$ for all $1 \le i < j \le k$. Then $f_{m,n} = |\mathcal{A}_{m,n}|$. Since (m, n) = d, by Lemma 3, there exist integers *a* and *b* such that (a, n) = 1 and am + bn = d. Let a^{-1} be the inverse of $a \in \mathbb{Z}_n$. For any $X = \{x_1, \ldots, x_k\} \in \mathcal{A}_{m,n}$, one has $Y = \{ax_1, \ldots, ax_k\} \in \mathcal{A}_{d,n}$. Conversely, for any $Y = \{y_1, \ldots, y_k\} \in \mathcal{A}_{d,n}$, one can recover *X* by taking $X = \{a^{-1}y_1, \ldots, a^{-1}y_k\}$. This proves that $X \mapsto Y$ is a bijection, and therefore $|\mathcal{A}_{m,n}| = |\mathcal{A}_{d,n}|$. \Box

Now we can give a proof of Theorem 1. By Lemma 4, it suffices to prove it for the case that n is divisible by m.

Proof of Theorem 1. Suppose $n = mn_1$. Let $\mathbb{Z}_{n,i} = \{i + mj; j = 0, ..., n_1 - 1\}$. Then $|\mathbb{Z}_{n,i}| = n_1$ and $\mathbb{Z}_n = \bigoplus_{i=0}^{m-1} \mathbb{Z}_{n,i}$. For any $X = \{x_1, ..., x_k\} \subseteq \mathbb{Z}_n$ and i = 0, ..., m - 1, define $X_i = X \cap \mathbb{Z}_{n,i}$ and $Y_i = \{j; j = 0, ..., n_1 - 1 \text{ and } i + mj \in X_i\}$. Consider Y_i as a subset of \mathbb{Z}_{n_1} . It is easy to see that $X \in \mathcal{A}_{m,n}$ if and only if $Y_i \in \mathcal{A}_{1,n_1}$ for all i = 0, ..., m - 1. Let $|Y_i| = |X_i| = k_i$. By the aforementioned Kaplansky result, we have the following expression:

$$f_{m,n} = \sum_{k_1 + \dots + k_m = k} \prod_{i=1}^m \frac{n_1}{n_1 - pk_i} \binom{n_1 - pk_i}{k_i}.$$
(1)

Note that $n \ge mpk + 1$, i.e., $n_1 \ge pk + 1$; the above expression is always well defined. Finally, by repeatedly using Rothe's identity

$$\sum_{k=0}^{n} \frac{xy}{(x+kz)(y+(n-k)z)} \binom{x+kz}{k} \binom{y+(n-k)z}{n-k} = \frac{x+y}{x+y+nz} \binom{x+y+nz}{n}$$

(see [1,3,4,10]), one sees that

$$f_{m,n} = \frac{n}{n-pk} \binom{n-pk}{k}. \quad \Box$$

Remark 1. The idea of writing \mathbb{Z}_n as a union of some pairwise non-intersecting subsets is the same as that in [8, Section 2]. However, we are unable to obtain such an expression for $f_{m,n}$ if $n \neq 0 \pmod{m}$, as mentioned by Mansour and Sun [8]. This is why we need to establish Lemma 4. Our proof may be deemed a semi-bijective proof, and finding a purely bijective proof of Theorem 1 still remains open.

References

- D. Blackwell, L. Dubins, An elementary proof of an identity of Gould's, Bol. Soc. Mat. Mexicana 11 (1966) 108–110.
- [2] W. Chu, On the number of combinations without k-separations, J. Math. Res. Exposition 7 (1987) 511–520 (in Chinese).
- [3] H.W. Gould, Some generalizations of Vandermonde's convolution, Amer. Math. Monthly 63 (1956) 84-91.
- [4] V.J.W. Guo, Bijective proofs of Gould's and Rothe's identities, Discrete Math. (2007), doi:10.1016/j.disc.2007.04.
 020.
- [5] I. Kaplansky, Solution of the problème des ménages, Bull. Amer. Math. Soc. 49 (1943) 784–785.
- [6] P. Kirschenhofer, H. Prodinger, Two selection problems revisited, J. Combin. Theory Ser. A 42 (1986) 310-316.
- [7] J. Konvalina, On the number of combinations without unit separation, J. Combin. Theory Ser. A 31 (1981) 101–107.
- [8] T. Mansour, Y. Sun, On the number of combinations without certain separations, European J. Combin. (2007) doi: 10.1016/j.ejc.2007.06.024.
- [9] H. Prodinger, On the number of combinations without a fixed distance, J. Combin. Theory Ser. A 35 (1983) 362–365.
- [10] H.A. Rothe, Formulae de serierum reversione demonstratio universalis signis localibus combinatorio-analyticorum vicariis exhibita, Leipzig, 1793.
- [11] R.P. Stanley, Enumerative Combinatorics, vol. I, Cambridge University Press, Cambridge, 1997.