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A new proof of a theorem of Mansour and Sun
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Abstract

We give a new proof of a theorem of Mansour and Sun by using number theory and Rothe’s identity.
c© 2007 Elsevier Ltd. All rights reserved.

It is well known that the number of ways of choosing k points, no two consecutive,

from a collection of n points arranged on a cycle is n
n−k

(
n−k

k

)
(see [11, Lemma 2.3.4]). A

generalization of this result was obtained by Kaplansky [5], who proved that the number of k-

subsets {x1, . . . , xk} of Zn such that |xi − x j | 6∈ {1, 2, . . . , p} (1 ≤ i < j ≤ k) is n
n−pk

(
n−pk

k

)
,

where n ≥ pk + 1. Some other generalizations and related problems were studied by several
authors (see [2,6,7,9]). Very recently, Mansour and Sun [8] extended Kaplansky’s result as
follows.

Theorem 1. Let m, p, k ≥ 1 and n ≥ mpk + 1. Then the number of k-subsets {x1, . . . , xk} of
Zn such that |xi − x j | 6∈ {m, 2m, . . . , pm} for all 1 ≤ i < j ≤ k, denoted by fm,n , is given by

n
n−pk

(
n−pk

k

)
.

Their proof needs to establish a recurrence relation and compute the residue of a Laurent
series. Mansour and Sun [8] also asked for a combinatorial proof of Theorem 1. In this note,
we shall give a new but not purely combinatorial proof of Theorem 1. Let p and k be fixed
throughout. Let (a, b) denote the greatest common divisor of the integers a and b. We first
establish the following three lemmas.
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Lemma 2. Let (a, m) = 1 and let d be a positive integer. Then at least one of a, a + m, a +

2m, . . . , a + (d − 1)m is relatively prime to d.

Proof. If (a, d) = 1, we are done. Now assume that (a, d) = pr1
1 . . . prs

s and d = pl1
1 · · · plt

t ,
where 1 ≤ s ≤ t and p1, . . . , pt are distinct primes and r1, . . . , rs, l1, . . . , lt ≥ 1. We claim that
a + ps+1 · · · pt m is relatively prime to d . Indeed, since (a, m) = 1, we have (p1 · · · ps, m) = 1
and therefore

(p1 · · · ps, a + ps+1 · · · pt m) = (p1 · · · ps, ps+1 · · · pt m) = 1,

(ps+1 · · · pt , a + ps+1 · · · pt m) = (ps+1 · · · pt , a) = 1.

This completes the proof. �

Lemma 3. Let (m, n) = d. Then there exist integers a, b such that (a, n) = 1 and am +bn = d.

Proof. Since (m, n) = d, we may write m = m1d and n = n1d, where (m1, n1) = 1. Then
there exist integers a and b such that am1 + bn1 = 1. It is clear that (a, n1) = 1. Noticing
that (a + n1t)m1 + (b − m1t)n1 = 1, by Lemma 2, we may assume that (a, d) = 1 and so
(a, n) = 1. �

Lemma 4. Let m, n ≥ 1 and (m, n) = d. Then fm,n = fd,n .

Proof. Let Am,n denote the family of all k-subsets {x1, . . . , xk} of Zn such that |xi − x j | 6∈

{m, 2m, . . . , pm} for all 1 ≤ i < j ≤ k. Then fm,n = |Am,n|. Since (m, n) = d, by Lemma 3,
there exist integers a and b such that (a, n) = 1 and am + bn = d. Let a−1 be the inverse of
a ∈ Zn . For any X = {x1, . . . , xk} ∈ Am,n , one has Y = {ax1, . . . , axk} ∈ Ad,n . Conversely,
for any Y = {y1, . . . , yk} ∈ Ad,n , one can recover X by taking X = {a−1 y1, . . . , a−1 yk}. This
proves that X 7→ Y is a bijection, and therefore |Am,n| = |Ad,n|. �

Now we can give a proof of Theorem 1. By Lemma 4, it suffices to prove it for the case that
n is divisible by m.

Proof of Theorem 1. Suppose n = mn1. Let Zn,i = {i + mj : j = 0, . . . , n1 − 1}. Then
|Zn,i | = n1 and Zn =

⊎m−1
i=0 Zn,i . For any X = {x1, . . . , xk} ⊆ Zn and i = 0, . . . , m − 1,

define X i = X ∩ Zn,i and Yi = { j : j = 0, . . . , n1 − 1 and i + mj ∈ X i }. Consider Yi as a subset
of Zn1 . It is easy to see that X ∈ Am,n if and only if Yi ∈ A1,n1 for all i = 0, . . . , m − 1. Let
|Yi | = |X i | = ki . By the aforementioned Kaplansky result, we have the following expression:

fm,n =

∑
k1+···+km=k

m∏
i=1

n1

n1 − pki

(
n1 − pki

ki

)
. (1)

Note that n ≥ mpk + 1, i.e., n1 ≥ pk + 1; the above expression is always well defined. Finally,
by repeatedly using Rothe’s identity

n∑
k=0

xy

(x + kz)(y + (n − k)z)

(
x + kz

k

) (
y + (n − k)z

n − k

)
=

x + y

x + y + nz

(
x + y + nz

n

)
(see [1,3,4,10]), one sees that

fm,n =
n

n − pk

(
n − pk

k

)
. �
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Remark 1. The idea of writing Zn as a union of some pairwise non-intersecting subsets is
the same as that in [8, Section 2]. However, we are unable to obtain such an expression for
fm,n if n 6≡ 0 (mod m), as mentioned by Mansour and Sun [8]. This is why we need to
establish Lemma 4. Our proof may be deemed a semi-bijective proof, and finding a purely
bijective proof of Theorem 1 still remains open.
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