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We develop geometric techniques to study the intersection ring of the moduli space Yg(tlr , t,) of flat 
connections on a two-manifold P of genus 9 with n marked points pl, , p,,. We find explicit homology cycles 
dual to generators of this ring, which allow us to prove recursion relations in 9 and n for their intersection numbers. 
The recursion relations in the genus 9 are related to generalizations of the Newstead Conjecture and of some 
recursion relations due to Donaldson. The recursion relations in the number n of marked points yield analogs of 
the recursion relations appearing in the work of Witten and Kontsevich on moduli spaces of punctured curves. 
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1. INTRODUCTION 

The algebraic and symplectic geometry of the moduli space pg of semi-stable rank-two 
vector bundles on a Riemann surface Cg of genus g has been extensively studied in recent 
years. One recent focal point for this work has been provided by the Verlinde formula, 
originally arising in mathematical physics, which has motivated research leading to a better 
understanding of the structure of these spaces as symplectic or Ktihler varieties. 

Much less has been said or understood from this point of view about the moduli space 
Ag of curves of genus g. Like its counterpart pg, Ag has a simple description in terms of 
characters of representations of the fundamental group of the underlying surface. For while 
the symplectic manifold underlying yg can be written as the space of characters 
Hom(nl (Cg), SU(2))/SU(2), the symplectic manifold underlying JZg can be written as the 
quotient of a component of Hom(7c1 (Cg), PSL(2, R))/PSL(2, R) by the action of the map- 
ping class group. The circle of ideas centered on the Verlinde formula has not so far resulted 
in new insight into the structure of ~8’~. 

However, mathematical physics does provide clues to the study of moduli spaces of 
curves, just as it provided the Verlinde formula for moduli spaces of stable bundles. These 
clues are the so-called Witten conjectures [9] for recursion relations among the intersection 
numbers of certain cohomology classes in A?~,., the Deligne-Mumford compactification of 
the moduli space of curves of genus g with n punctures. Recursion relations of this type were 
proved in the work of Kontsevich [7] for a moduli space of curves with marked boundaries. 
In this work the recursion relations appear as a result of complicated combinatorial 
computations [ 111. 

The purpose of this paper is to show how some simple geometry again may underlie 
these computations of mathematical physics. We avoid the moduli space J@~,” and concen- 
trate our attention on moduli spaces of vector bundles Y&t,, . . . , t,), where we shall see that 
similar recursion relations can be found. Our aim in dealing with Yg(t 1, . . . , t,) is two-fold: 
first, we are able to develop our techniques in a setting where only compact smooth 
manifolds appear, and where various methods from symplectic geometry can be used 
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unaltered. Second, our work will yield results of intrinsic interest on the geometry of the 
moduli space Yg(tl, . . . , t,): the analog of the so-called K-dV condition for xg,” will turn 
out to produce a geometric proof of the Newstead Conjecture and of its analogs for moduli 
of vector bundles of rank higher than two; while the analogs of the “Virasoro constraints” 
will be recursion relations for intersection numbers of Yg(t,, . . . , t,). 

Let us state our main results. We concentrate here on rank-two vector bundles; we shall 
have more to say about higher-rank vector bundles in Section 5. We work with a compact, 
connected, oriented two-manifold Cg of genus y, and choose n distinct points 

Pl, ... 9 pn E X9. Corresponding to each pi there can be chosen a generator ci of 

?(C9 - {PI, ... , p,}), conjugate to the curve traversing the boundary of a small disc 
containing pi. Given this setting we may consider for tr, . . . , t, E R the moduli space 

sPg(r 1, ... 2 t,) of representations p E Hom(rrl(Zg - {pi, . . . , p,}), SU(2)) such that 
tr p(Ci) = 2 cos Xti. This space is a smooth manifold if the ti are chosen appropriately; if the ti 
satisfy certain rationality conditions Yg(tl, . . . , t.) is related to a moduli space of vector 
bundles. As we shall see in Section 2.1, there exist n circle bundles T/r, . . . , V,, on 

y$(t i, . . . , t,) corresponding to each of the marked points pl, . . . , p,,. The objects of our 
study will be the intersection numbers of the Chern classes of these circle bundles. 

We shall present two ways to study these Chern classes. First, we shall see that the circle 
bundles Vi come equipped with natural connections, and hence the Chern classes cl (Vi) are 
represented by canonical formsfi. But our main focus in this paper will be on homology: as 
we shall see there exist natural homology cycles dual to these Chern classes. These will 
enable us to perform computations in the cohomology ring by intersection theory. 

Let us consider for simplicity the case of 5$(t) where t # Z. To find a cycle dual to the 
Chern class of I’,, we find (for g 2 2) a connected submanifold D of Yg(t) on whose 
complement the circle bundle possesses a section; then cl(V1) will be proportional to the 
Poincare dual of D. As it turns out we can find such a cycle for any of the usual generators 

,ag,bi, . . . , b, of ~lFg - {PI},; g iven such a generator X, we define the cycle D(X) 

ii;h, image in Yg(t) of those representations p of rcl(Cg - {pl>) where [p(X), p(ci)] = 1. As 

Xvariesovertheset{a, ,..., ag,br ,... , b,}, we obtain 2g representatives of the homology 
class dual to cr(l/,). If t $22, ,Yb(t) contains no points corresponding to reducible repres- 

entations, SO that n:= 1 (D(ai)n D(bi)) = 8. Thus we obtain 

THEOREM 1 (Newstead Conjecture). Let g 2 2. Then 

c#yg =o. 

Several proofs of this conjecture have appeared in the literature [2,6]; it can be seen to 
be a consequence of the Verlinde formula [S] or derived from knowledge of the volumes of 
the moduli spaces calculated in [2,5, lo]. We prove some generalizations of this result for 
moduli spaces corresponding to surfaces with more marked points and to groups other than 
SU(2); see Theorems 4.1 and 5.2. 

In fact, our geometric cycles allow us to do quite a bit more, and to prove recursion 
relations in the genus g for the intersection numbers of classes of the type we consider above. 
To do this we first prove, in Proposition 3.5, that cl(T/r) = - f [D(X)]*, where D(X) is 
oriented using the symplectic form o E Q2(Yg(t)). Let k E { 1, . . . , g - 11, let Dk= 
fif= 1 (D(aJn D(bJ), and let z : Dk + Yg(t) denote the inclusion. Then we have, for any 
E E H6”-““-“(Yg(t)), 
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A particularly interesting case occurs where we let E = 0.)3g-2k-2. We note that & is 

symplectomorphic to 9,-k(t) x k’, where 9,-k(t) iS equipped with a SympleCtiC form we alS0 

denote by w, and where I/ is given by the torus (S’ x S’)k, equipped with twice the usual 
symplectic form. Thus 

THEOREM 2 (Donaldson recursion relation [2]). 

s C1(v,)2k A co 3g-2k-2 

Jfq/;cf ) 

=2-kk! (‘” -;” -2)Su,ii,,m”“-3k-2. 

Geometrically the cycle D(ai) corresponds to representations p of n,(Cg - {pI}) which 
restrict to representations into the maximal torus U(1) c SU(2) on a subsurface of Cg 
which is given by a three-holed sphere bounded by curves homotopic to cl, ai, and cl * ai 
(see Fig. 1). A similar degeneration in the moduli of curves with one puncture (correspond- 
ing to representations of rcl(Cg - {pl}) in PSL(2, R) taking the generator cl to a parabolic 

element of PSL(2, R)) will correspond to stable curves with two internal nodes, correspond- 
ing to representations of nl(Zg - {pr}) in PSL(2, R) carrying c1 as well as ai and cl * Ui 
to parabolic elements of PSL(2, R) (see Fig. 2). The analogy to eq. (2.34) of [9], or at 
least to Fig. 2(b) there, should be clear. 

We proceed in a similar way to develop recursion relations in the number of marked 
points n. We now work with the moduli space sPg(tl, . . . , t,) and the Chern classes 
ri = cl( Vi). To find homology classes dual to the ri we proceed as above; we show in Section 
3.2 that the circle bundles Vi possess sections on the complement of Oi(X), where X can be 
chosen among the generators of 7c1 (Eg - { p1 , . . . , p,}) denoted by cj where i # j, and where, 
as above, L&(X) is the image in Yg(tr, . . . , t,) of those representations p of 

nr(Cg - (PI, ... , P,,}) where [p(X), p(Ci)] = 1. The first thing to notice is that Di(Cj) = Dj(Ci), 
SO that Di(cj) cannot be connected since Vi and Vj are not powers of the same circle bundle. 
The manifold Di(Cj) in fact has two components we shall label Di(cj)+ and Di(cj)-; these 
have a natural orientation coming from the symplectic form. Using considerations from the 
theory of toric varieties we shall see that if ti and tj are sufficiently small, and if ti > tj, the 

Fig. 1. The representation is reducible from SU(2) to U(1) on the three-holed sphere formed by a,, c,, and a, *cl. 
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Fig. 2. A noded surface formed when ai and c, correspond to commuting parabolic elements of SL(2, R). 

homology cycle dual to ri is given by f [Di(cj)+] - f [Di(c_J-] while that dual to rj is given 

by ~[~iicj)‘l + 4[~i(cJ-l. 
The role of the components Di(Cj)’ and Di(cj)- of Di(cj) is best understood if we look at 

the geometry of the representations corresponding to points in Di(Cj). Such representations 
degenerate to representations into the maximal torus U(1) c W(2) on the three holed 
sphere bounded by curves homotopic to ci, cj, and ci * cj (see Fig. 3). Such representations 
occur for two distinct possible values of tr p(ci * cj), which must be either 2 COs(rt(ti + tj)) or 
2 COS(X 1 ti - tj I), corresponding to the components Di(cj)+ and Di(cj) of Di(cj), respectively. 
In fact we have symplectomorphisms 

S+ :Yg(tl, . . . , fii, .*. ) fj, ... 3 t”, ti + tj) *Di(Cj)+ 

S-:Yg(tl, . . . ,t*ii, ... ,fjj, ... ,t,,Iti-tjI)~Di(Cj)-. 

Let us now consider an integral of the form 

where x E R. Our aim will be to use the explicit expression for the cycles Di(cj) to express this 
integral in term of integrals of similar forms on moduli spaces corresponding to surfaces 
with fewer marked points. For convenience, we may as well take i = n, j = n - 1. Let 

1* IDi( +Yg(tl, ..a , t,) denote the inclusions. Then 

(ri)kl . . . (r,)kn exw 

. . . (r~_l)k”-l(r,)k”-leXW) _! 
s 2 D,(‘&I)- 

E ((rl)kl . . . (r,- $-l(rJkn- lexw). 

On the other hand, we have the symplectomorphisms s+ and s_ which identify 

Wfl- A+ and D,(C,_ J- with the moduli spaces Yg(tl, . . . , tn_2, t,_ 1 + t,) and 
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Fig. 3. The representation is reducible from W(2) to U(1) on the three-holed sphere shown, formed by curves 
homotopic to cir cj, and ci * cj. 

sPe(t13 . . . , t,_ z, 1 t,_ I - t, I), which themselves are endowed with circle bundles and with 
cohomology classes which we denote by r ,’ ; likewise denote the symplectic forms on these 
spaces by o *. And in fact it will be shown that, where t, > t, _ l, 

(1 *OS*) *r,=rz form<n-2 

(l* os*)*r,_l = + rn*_l 

(1 *os+)*r, = r,‘L1. 

Thus we have the following recursion relation. 

THEOREM 3. Suppose t,_ l,t,>Oandt,_l+t,<l.Then 

s (rAkl pk’ . . . (r,+_2)k.-z(r,+_l)k.-‘+k”-1exwt 
yg4P,(t,, ,,, , t.) n 

(-1)‘~I 

- ~ 2 s .Y#@,, ,I..,,,*“_,-r.,,(r;)kl **. 
. . . (r;_$-2 (r~_I)kn-l+k*-lex~-. 

These recursion relations are very similar to the Witten conjectures as presented 
in [9]. Recall those conjectures concerned the moduli space J#~,, of curves of genus g 
with n punctures. According to Witten, there is, corresponding to each puncture pi, 
a line bundle Li on A%?~,, and a Chern class Xi E H2(xg,J. We consider integrals of the 

form 

s _ (X1)kl ..’ (X,)k. 
4. n 
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where the ki are integers satisfying xi ki = 3y + n - 3. The Witten conjectures (in the form of 
the so-called “Virasoro constraints”) then say, roughly, that 

s Mk’ . . . (j&y. = s (Xl)k +k- 1 (X,_l)kn-l + 

.@,.. .@&.-I s (Xl)kl . . . (X2)kz+k,-l . . . (X,)k.-l 

@,,I-1 

+ (Xl)h . . . (X,)k.+“.-l-l + ,.. , 

where on the right-hand side of the equation, we have used the notation Xi to denote the 
appropriate classes on the moduli space xg,,_ 1. The analogy to Theorem 3 is now clear. 
Geometrically the cycles Di(Cj) have their analogs in A%‘~,~ as representations corresponding 
to stable curves where the punctures corresponding to the ith andjth marked points reside 
on a three-punctured sphere; see Fig. 4. 

The remainder of this paper is structured as follows. In Section 2 we define the moduli 
spaces and circle bundles in question, and construct the cohomology classes Y, we wish to 
study. In Section 3 we shall construct the homology classes dual to these r,; these are the 
D,(X). The technical part of this section will be finding the precise relation between the dual 
of the D,(X) and the cohomology classes r ,,,: to do this we shall have to do some work using 
the methods of [S] and some ideas from the theory of toric varieties. The work of Section 
3 is used in Section 4 to prove Theorems l-3. Finally, in Section 5 we prove an analog of the 
Newstead Conjecture for moduli spaces corresponding to the higher-rank groups W(k) 

where k > 2. 

2. MODULI SPACES AND CIRCLE BUNDLES 

In this section, we construct the moduli spaces and circle bundles which will be the basic 
objects of study in this paper. The construction of the moduli spaces is more or less 
standard, and follows the lines of the construction given in [l, 41 for the case n = 0 and in, 

e.g. [S] where n # 0. 

Fig. 4. A noded surface formed when ci and c, correspond to commuting parabolic elements of SL(2, R). 
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2.1. Construction of the moduli spaces and bundles 

Let Eg be a compact, connected, oriented two-manifold of genus g 3 2, and let 

Pl, .‘. , pn E Cg be n distinct points in Eg. Then xl(Eg - {pl, . . . , pn]) can be described as 
the quotient of the free group on the 2g + n standard generators 

al, -*- 7 a,, h, a.0 7 bg, Cl, **+ 7 c, by the single relation nf! 1 [ai, bi] = IJ;= 1 cj; here each of 

the generators cj can be chosen to correspond in a natural way to a point pi. We take 
G = SU(2) and denote by T c G the subgroup of G consisting of diagonal matrices. Given 
t1, . . . , t,~ [w, we may consider the representation variety RB(tl, . . . ,t,)= 

{P E Hom(nl(Cg - ip1 7 *.* , PJ)~ SU(2)):tr P(Cj) = 2COS(7tJFtj)), and its quotient 
.yg(tl, . . . , t,) = Rg(tl, . . . , Q/G by the conjugation action of G. In order to guarantee the 
smoothness of yg(tl, . . . , l,), we impose a condition on the tj; this is expressed in the 
following definition. 

Definition 2.1. A set (t 1, . . . , t,,} of real numbers will be called admissible if I;= 1 Ejlj $ Z 

for all n-tuples (Ed, . . . ,&,)E{--1,0,1)“-_((~,...,0)). 

From now on we shall assume that the set (tl, . . . , tn} is admissible; and the definition of 

%(t 1, . . . , t,) shows we may as well take tl, . . . , t, c (0,l). A variation on standard argu- 
ments shows that whenever {tl, . . . , tn} is admissible, the quotient variety yJtl, . . . , t,) is 
a smooth symplectic manifold of dimension 6g + 2n - 6; we denote the symplectic form on 

=%(t,, .a. ~,)byw,4 ,,..,,, 9 or by o where there is no possibility of confusion. As we shall see 

&(Ll, *a* , t,) comes equipped with other two-forms as well. 
These two-forms will arise naturally as the Chern classes of circle bundles on 

5Pg@lP . . . , t,). We construct these as follows. Let us denote by e” the diagonal matrix ($ ,“it). 
Then, in analogy with the definition of Rg(tl, . . . , t,), we define, for each m = 1, . . . , n, the 
variety Vl(tl , . . . > 4,) by K% lr . . . ,L)= {pEHomh@g- {PI, .a. ,pn}),SU(2)):trp(cj)= 
2 COS(Tttj) and p(c,) = e’“‘m). On the space Vz(tl, . . . , t,) the group T c G acts by conjuga- 
tion, with global stabilizer ZZ c T and with quotient yg(tl, . . . , t,J. The space Vz(t, , . . . , t,,) 

is therefore a circle bundle on yg(tl, . . . , t,); let us denote the bundle projection by x,,,. We 
then have n circle bundles V,B(tl, . . . , t,,) + Yg(tl, . . . , t,), and we may consider their Chern 
classes, which we denote by 9,(tl, . . . , tn) E H2(Yg(tl , . . . , t,)) or simply r,,, where there is no 
chance of confusion. It is the ring generated by these classes that we wish to study. Before 
going on to do so we make a few remarks. 

2.2. Some remarks about the cohomology classes r,,, 

First, we note that we can actually find canonical formsf, representing the classes rm. To 
do this we construct an auxiliary space Ug(tl, . . . , tn) as follows. Let Ug(tl, . . . , t,) t GZg+” 

be defined by 

ugct,, **- ,tn)={Ai,Bi~G,i=l,...,g,Tj~GG,j=l,...,n: fi [Ai,Bi]= fi rJrleinrjrj}. 
i=l j=l 

(1) 

On the space U,(t,, . . . , t,) we may define n maps Ug(t,, . . . , t,J + G given by the l-is; 
we denote these maps by abuse of notation by Tj. The space Ue(rl, . . . , t,) also comes 
equipped with a natural action of G x T1 x .a. x T,, where Ti 2: T, and where 

(9, t 1, a*+ 3 5,) E G x T1 x .a. x T, acts on Ug(tl, . . . , tn) by 

(99 < 1, ... 7 <A’ (4, Bi9 rj} = (S-fAiS,S-lBig, tjrjg)- (2) 
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Itisthenclearthat U4(tl ,..., t,)/(GxT,x ... xT,,_~xT,+~x ... xT,)=l/,g(t, ,..., t,), 
while Us(tl, . . . , t,)/(G x Ti x ... x T,,) = ,4P,(ti, .., , t,). 

Using the space U&i, . . . , t,) we can construct a natural connection form on the circle 

bundles Vg,,,(t i, . . . , t,). Recall first that if we are given a manifold M equipped with an 
S’-action generated by a vector field [, a connection for this S’ action is a one-form 
y E R’(M) such that iiy = 1 and P’[y =0 (here z denotes interior product and 9 denotes lie 
derivative). In particular, if M = G, and we consider the left action of T on G, a connection 
form [ for this action may be constructed out of the right invariant Maurer-Cartan form is: 
if we denote by (,) the Killing form on g, then 

is such a connection. It is then easy to see that r,,, = r,*(c) E 0’ (U,(ti, . . . , t,)) is a connec- 
tion one-form for the action of T,,, on U,(ti, . . . , t,), which descends to the quotient 

V,@i, . . . , t,) by right-invariance. We denote the resulting connection form on 

V,9(ti, . . . , t,) by c,,, E Q’(V,“(t,, . . . , t,)); then 

(3) 

where the two-formf, E fi2(y$(t,, . . . , t,)) represents the Chern class r,,,. 
For our present work, another remark will be useful: we wish to see how the circle 

bundles V,9(t1, . . . , t,) arise from the Duistermaat-Heckman theorem. To see this, we note 

that as in [S], the space y$(t,, . . . , t,) can be obtained from the symplectic quotient of 
a moduli space associated to a two-manifold of genus g + n obtained from Zg by deleting 
small discs about each of the points pl, . . . , pn and attaching one-holed tori to the 

boundaries of the resulting surface. The circles bundles V,“(tr , . . . , t,) can be seen to arise 
from the levels sets of the moment map in the usual way. The Duistermaat-Heckman 
theorem [3] then gives the following result when (ti, . . . , t,) E (0,l)” c R” is in the comp- 
lement of a finite number of planes in KY: 

PROPOSITION 2.2. Suppose (t,, . . . , t,) and (t; , . . . , tJ are sujficiently close. Then the 

spaces Yg(tI, . . . , t,) and Yg(t;, . . . , t:) are difleomorphic; under this difleomorphism the 

cohomology classes [of,, ,,, , ,,I and [of;, ., , IA1 are related by 

[(G,, ,.. ,,.I - Co:;,.. ,J = i (tj - tJ)rj. 

j=l 

This remark will be helpful in allowing us to calculate which element of H,(L),(X)) 
represents the dual of r,,,. 

3. DUAL HOMOLOGY CLASSES 

In this section we shall construct cycles dual to the Chern classes r,,, defined in Section 2. 
We shall actually find a collection of such cycles, which will depend on a choice of 
a generator of rrl(Eg - {pi, . . . , p”}). The two different types of standard generators given in 
Section 2 will give rise to two different types of cycles. To obtain a cycle of the first type we 
shall choose one of the generators called ai or bi; this type of cycle will enter into the proof of 
Theorems 1 and 2. The second type of cycle will be obtained by choosing a generator called 
cj where j # m. This type of cycle will therefore be defined only when there is more than one 
marked point; it will enter into the proof of Theorem 3. 
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We construct these cycles by finding, for each choice of X among the set of standard 

generators {a,, . . . , a,, bl, . . . , b,, cl, . . . , tm,, . . . , c,,}, a submanifold D,(X) of codimension 

two of the moduli space Yg(tI, . . . , t,) on the complement of which the circle bundle 

VI% 1, . . . , t,) possesses a section. Then cl(Vz(t,, . . . , t,)) will be dual to an element of 

r*H 6e+2n-s(Dm(X)),where1:D,(X)-+~,(t,, . . . , t,) denotes the inclusion. As we shall see, 

where X is one of the Ui or bi, and when g 2 2, the submanifold D,(X) will be connected, so 
that cl(V~(tI, . . . , t,)) must be proportional to [D,,,(X)]*; we shall reduce the computation 

of the constant of proportionality to the case of genus g = 1 where it may be performed 
using the methods of [S]. 

In the case of cycles of the second type, we shall see that H6g+Zn_B(Dm(~j)) N Z 0 H. 

Indeed D,(cj) cannot be connected since D,(cj) = Dj(cm), so that both Vi(tI, . . . , tn) and 
qt,, . . . , t,) are trivial on the complement of D,(cj); but they are not powers of the same 
circle bundle. Again we shall be able to reduce the study of r,,, = cl(V,f (t 1, . . . , t,)) to the 

case of genus g = 1 and use the methods of [S] and some facts about toric varieties to find 
a cycle dual to r,,,. 

Recall that we have chosen once and for all standard generators a,, . . . , a,, 

b 1, . . . ,bg,cl, 1.. , c, for the fundamental group nI(P - (pl, . . . , p,}). We shall associate 
a submanifold D”,(X)(t,, . . . , t,) to each circle bundle V,9(tl, . . . , t,) and each of these 
generators. 

Definition 3.1. Let X E {aI, . . . , a,, bI, . . . , bg,cl, . . . , &, . . . , c,}. Let DL(X)(tl, . . . , tn) c 
.4Pg(tl, , t,) denote the image in ‘Y)B(tl, . . . , t,) of those representations p E Rg(tl, . . . , t,) 

such that [p(X), &,,)] = 1. 

When there is no possibility of confusion we shall write D,(X) for D”,(X)(t,, . . . , t,). 

The following lemma can be proved by standard methods; in Section 4 we shall produce 
a good characterization of D,(X). 

LEMMA 3.2. The subspuce D,(X) c Yg(tl, . . . , t,) is a smooth submanifold ofy$(tl, . . . , t,,), 

which is connected if g > 2 and X E {aI, . . . , ug, bI, . . . , bg}. 

The basic idea of this paper is to show that the circle bundle Vz(tI, . . . , t,) is trivial on 
the complement D,(X). This is the content of the following proposition. 

PROPOSITION 3.3. The circle bundle Vz(t,, . . . , t,)I,Ybcfl, ,,. , t,j_D,cXj has a section. 

Proof. We recall that the circle bundle Vi(tI, . . . , t,) was given by Vjf(t,, . . . , t,)= 

{p E Hom(rc,(Cg - {pr, . . . , p,}) SU(2): trp(cJ =2 COS(ntj) and p(c,) = ei”Im}, and that 
Yg(t,, . . . , tn) was the quotient of Vjf(t,, . . . , t.) by the conjugation action of T. A section 
s:Yg(t,, . . . , t,) - Rfl(W + V,(t 1, . . . , t,) can therefore be given by choosing, for each 

xE%(tI , . . . , t,) - D,(X), a representation p E Vi(tl, . . . , t,) with n,(p) = x. To do this we 
make use of the generator X; we define s(x) E Vz(tI, . . . , t,,) by fixing the conjugation action 
of T on p(X). To be concrete, we can take s(x) to be the unique representation p E nil(x) 
with p(X) having the form 

p(X) = z w ( > -w z 
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where w is a positive real number. Such a representation will always exist in n, ‘(x) so long as 
rc,‘(x) contains no representation g such that o(X) is diagonal; that is, so long as 

Cc(X), 4cj)l Z 1, or x 4 Q&O 

3.1. Homology classes of the first type 

We now restrict our attention to the submanifolds D,(ai), D,(bi), and to the case of 

surfaces of genus g 2 2 where these submanifolds are connected. In order to obtain 
a homology class from the submanifolds D,(ai) we must orient these submanifolds. Fortu- 

nately, the symplectic form provides us with a natural orientation; by the results of 
Donaldson [2], for example, we see that JD,Ca,) &gfn-4 # 0. Let us denote by [D,(ai)] the 
homology cycle obtained by orienting D,(ai) so that JD,Ca,) m3g+n-4 > 0. The following is 
now immediate. 

COROLLARY 3.4. A homology class dual to r, is given by a multiple c(~, ,(tl, . . . , t,) [D,,,(aJ] 

04” [Dm(41, or by a multiple Pg,dtll . , t,) CDm(bi)l of CDm(bi)l* 

It is at once clear that ag,Jtl, , t,) = /?,, ,(tl, . . . , t,), but as it stands now it might well 

happen that crg,,(tl, . , t,) depends in some way on g, n, m, or on the values of the tl, . . . , t,. 

As we shall see this is not the case. 

PROPOSITION 3.5. For all g, n, m, tI, . . . , t,, we have rzg,,,(tl, . . . , t,) = -$. 

Proof To prove this proposition we shall find a subvariety W c Yg(tI, . . . , t,) which is 
symplectomorphic to a moduli space of the type Yl(t,J; in other words to a moduli space 
occurring for a surface of genus g = 1 with one marked point. We shall examine the 
intersection of D,(ai) with W, and compare the result to a computation of the variation of 
the symplectic form using Proposition 2.2 and an explicit diffeomorphism of W with CP’ 
obtained by the methods of [S]. This comparison will enable us to compute cr,,,(t,, . . . , t,). 

For convenience we take m = n. We define the variety W by looking at points of 

Yg(tr, ..’ , t,) corresponding to representations p of rrl(Cg - (pl, . . , p,,}) with fixed values 

on a,, . . ,agdl, bl, ,b,-,,cl, . . . ,c,-1, and satisfying ~(flfr: [ai, bi]) = p(flJi: cj). 

Geometrically, we cut the surface Cg into a surface of genus g = 1 with one marked point, 
whose fundamental group is generated by tlg, b,, and c,, and into a subsurface C’ of genus 
g -1 with n -1 marked points, whose fundamental group is generated by 

al, . . . ,ag-l, bl, . . . , bg_l, cl, . . . ,c~_~; let i:C’ - {pl, . . . ,P~_~} +Cg - {pl, ,p,> de- 
note the inclusion. We then consider representations of nl(Cg - {pI, . . . , p,}) with some 
Jixed value on the latter surface (see Fig. 5). To be concrete, we choose representation 

pE R,(tl, . . . , tJ such that Plirn,(r-:pl, .p,_,;~ is irreducible, and that ~(nyi: [ai, bJ)= 

P(nyl: cj).+ We now consider the space of conjugacy classes of representations 

PER&l, ... ,t,) such that trp(x)=trp(x) whenever x~i*7cr(C’- {pl, . . . ,P~_~}). Now 

when a surface is decomposed into two subsurfaces, the corresponding moduli spaces satisfy 
a gluing relation; see [Z, 4,5]. In our case where we are considering representations with 
fixed values on one of the subsurfaces, the moduli space of such representations is given by 
SU(2) x Yl(tn, 0) = SU(2) x Yl(t,). Thus we can find a subvariety W = 1 x Y,(t,) of this 
space symplectomorphic to Yl(t,). To find the constant mg,Jtl, . . . , t,,), it suffices to 
consider r. jw and compare it with D,(a,) n W. 

+No such representations exist if y = n = 1; our argument can be easily modified to accomodate that case. 
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Fig. 5. The subvariety W corresponds to representations whose values are fixed away from a subsurface of genus 
one shown. 

We compute r, 1 w by Proposition 2.2, which shows that the Chern class r, is given by the 

variation of the symplectic form wfl, _., ,,. as t, varies. This result then holds also for the 
subvariety W; as t, varies the symplectic form on W varies, and its derivative is r, 1 w. On the 
other hand, the work of [2, 51 shows that W N Yl(t,) is symplectomorphic to @PI, 

equipped with the symplectic form i( 1 - t,) wcpl, where w cpl is the usual symplectic form 
on CIFD’. The identification is obtained by using the moment map ,u: W -+ [i&,+(2 - t,)] 

given by sending a conjugacy class [p] E W to p( [p]) = (l/x cos-‘($ tr(p(a,))). Then the 
image of the moment map is p(W) = [$ t,, i(2 - t,)], and the endpoints of the interval 
correspond to conjugacy classes of representations p where ~([a,, c,]) = 1; in other words 
to the points of W n D&J. On the other hand, the variation of the symplectic form on 
,4ai (t,,) is given by the cocycle dual to -i the sum of the cycles represented by the endpoints 
of the image of the moment map, that is, by -$ the sum of the north and south poles 
on CP’. 

3.2. Cycles of the second type 

We now turn our attention to the cycle D,(X) where X E {cl, . . . , c^,, . . . , c,}. The first 
point to notice is the following: 

PROPOSITION 3.6. H 6g+2n-8tDitCj)) = E 0 z. 

Proof: Points in Di(cj) correspond to representations p E Hom(rcl(Zg - {pr, . . . , p,,}), 

SU(2)) with [p(ci), p(cj)] =l. Then tr p(ci)p(cj) can take two values; it is either 2 cos n(ti + tj) 

or else 2 cos 7~( 1 ti - tjl). Let US denote the corresponding subsets of Di(cj) by Di(cj)+ and 
Di(cj)-. The representations lying in either Di(cj)+ or Di(cj)- are reducible on the three 
holed sphere subspace of Cg bounded by curves homotopic to ci, Cj and ci * cj (see Fig. 3). 
Such representations are rigid; thus Di(cj)+ and Di(cj)- are symplectomorphic to moduli 
spaces corresponding to the surface obtained from YZg by removing this three-holed sphere, 
and assigning the appropriate trace to the values of the representations on ci * Cj. In other 
words, we have symplectomorphisms 

S+ :Yg(tl, ... ) fi, ... 1 fjj, . . ) t”, ti + tj) + Di(Cj)+ 
(5) 

S-:Yg(tl, *.. ,fii, ... ,fj, ... ,tn,Iti- tjI)+Di(Cj)-. 

Note incidentally that {tl, . . . , t*i, . . . , ~j, . . . , t,, ti + tj} and (tl, . . , (3 . . . , ?j, . . . , t,, I ti - tjl} 

are admissible if { tl , . . . , tn} is. 
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Thus we have identified Di(cj) * with connected manifolds, so that they themselves must 

be connected. 
Just as in the case of D,(ai) we may orient each of these components using the symplectic 

form, by requiring sDiCC,) + m3g+n-4 > 0. Thus we obtain two generators [:i(cj)‘] and 

CDi(Cj)-l for H6g+2n-8 (Di(Cj)). NOW the computation of the dual homology class to 
r,,, reduces to the computation of two constants. Let z: Di(Cj) + Yg(tl, . . . , t,), 

E* IDi( +Yg(tl, ... , t,) denote the inclusions. 

PROPOSITION 3.7. The homology class dual to ri lies in z, H6g+2,-8(Di(cj)), and may be 

written as Cci, j,,,g(tl, . . . 3 tn)CDi(cj)+l + Pi,j,n.g(tl, ... 7 tn)CDi(cj)-l. 

AS before, the constants C(i,j, n,g(tl, . . . , t,) and Pi, j,,,g(tl, . . . , tn) may depend a priori on 

i,j,n,gortl, . . . , t,. In fact they only depend on the values of ti and tj. The final result is the 
following proposition. 

PROPOSITION 3.8. Let 0 < ti + tj < 1. The constants Cli,j,n,g(tl, . . . , t,) and Bi,j,n,g(tl, . . . , t,) 

are given by 

Mi, j,fz,g(tlt ... 3 tn) =f 
(6) 

Pi,j,n.glt19 ... , t,) = 3 Sigll(tj - ti). 

Proof: We proceed as in the proof of Proposition 3.5. In order to compute the constants 

4, j,n,g(tl 3 *.. , t,) and Pi,j,n,g(tl, ... , t,) we again make use a subvariety Y of 9Tg(tl, . . . , t,) 

which looks like a moduli space corresponding to a surface of genus g = 1, where we may 
perform the computation using Proposition 2.2 and the theory of toric varieties. In this case 
Y will be symplectomorphic to the moduli space ,4PI(ti, tj). 

We define Y in analogy with the definition of W given in Section 3.1; for convenience 
we take i = n - 1 and j = n. We consider the moduli of representations p of 

%(xg - {PI, ... > PJ) which take some fixed value on aI, . . . , a,-,, bI, . . . , 

b,-1, ~1, . . . ,c,-2, and with ~(nsi,’ [ai, bi]) = p(flj”l:cJ. Geometrically, we cut Cg into 
a surface of genus g = 1 with two marked points pn_ 1, p,,, and a surface of genus g - 1 with 
n - 2 marked points, and consider representations of 7c1(Cg - {pl, . . . , p,}) with fixed 
values on the fundamental group of the latter subsurface (see Fig. 6). As in the proof of 
Proposition 3.5, the moduli space of such representations is given by 
SU(2) x 9’I(t,_ 1, t., 0) = SU(2) x 9’(t,_ 1, t,). We may therefore choose a subvariety 
Y sumplectomorphic to Y(t,- 1, t,). TO find the constants C(i,j,n,g(tl, . . . , t,) and 

Pi,j,,,g(tl, ... , t,) it suffices to compare V,“(tl, . . . , t,) 1 y with Y n Di(Cj) ’ . 
As before, we may compute cl (Vi(t 1, . . . , t,) 1 y) using variation of the symplectic form 

by Proposition 2.2, the methods of [S] which allow us to identify Y with a toric variety, and 
the theory of toric varieties. The identification of Y with a toric variety proceeds as follows. 
We use the standard generators a,, b,, c,- 1, c, of xl (ZEg - {pI, . . . , p,,}), and define two 
moment maps pl, p2 : Y + R2 by sending a conjugacy class [p] E Y of representations of 

n1(C9 - (PI> ..’ 9 P”>) to 

(7) 
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Fig. 6. The subvariety Y is formed from representations whose values are fixed outside a subsurface of genus one 
shown. 

The results of [5] show that pi and p2 combine to give the moment map p : Y -+ R2 for an 
S’ x S’-action on Y, whose image is the convex polyhedron in R2 given by the inequalities 

0 < 2x1 + x2 < 2 
(8) 

It,-l-tt,l~X26tn-l+t. 

Now we use the following elementary fact about toric varieties. Suppose we are given 
a smooth toric variety M2” equipped with a family of symplectic forms 0,. Then the image 
of the moment map p: (M, Cl, + R” gives a family of convex polyhedra At c R” given by 
some walls Bi = (x E R”: (x, Vi) = Ai(t Suppose that as t varies, the polyhedra At are 
combinatorially identical and differ only by a linear dependence of some l,(t) on t, and that 
as t is increased, the wall B, of At moves outward. Then d/d R, is given by the cohomology 
class dual to the homology class represented by the cycle [L1(B,,,)], where the orientation 
of CL- ‘(B,) is given by requiring jr-l(B,)(RJ’- ’ > 0. 

Applying this fact to the case of the toric variety Y, we see that as t, is varied the 
symplectic form WY,, ,,_ ,f, changes by the dual of the homology class 3 [V ‘1 + f [V -1, 
where I/ + is given by 

V+ = [LF1({X2 =tn-l + tn})] = [Di(Cj)+nY] 

while 

V- =sign(t,_, -t,) [p-‘({ X2=Itn_l_tn1))]=[Di(Cj)-nY]. 

The factor of + is due to the fact that the circle action in question is not effective. 
In order to prove Theorem 3 we shall also need the following result, which can 

beprovedbycomparingD~(ck)(tl, . . . ,t,JnD$_I)(tl, . . . ,t,)withz+~s+(Dg,(c~)(t~, . . . ,L~, 
(tn-i + t,)) and z_os_(DB,(ck)(tl, . . , tn_2,1tn_l - t,l) ; alternatively we may use the ex- 
plicit formula of eq. (3) for the Chern class ri: 

PROPOSITION 3.9. Take i = n - 1, j = n, and denote the cohomology classes 

ri(tl, . . . , tn-2,tn-l +L) = c1((1/,9)(tl, . . . ,tn-2,4-l +tJ) and rf,(tl, . . . ,tn-2, It,-1 -&I) = 
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ClK31 , . . . , tn_2, 1 t,_ 1 - t, I)) by r,‘, r,, respectively; we continue to write 
r, = rE(tI, . . . , t,). Then ift. > tnMl, 

(1 * os*)*r,=r: form<n-2 

(zi os+)*r,_l = f rz.l 

(z* os+)*r, = r,‘-l. 

(9) 

4. RECURSION RELATIONS AND THE CONJECTURES OF NEWSTEAD AND WITTEN 

In this section we apply the results of Section 3 to prove Theorems l-3 of the 
Introduction. Slight generalizations of these are stated in Theorems 4.1, 4.2 and 4.5. 

4.1. The Newstead Conjecture 

We first turn our attention to the proof of Theorem 1. This is the simplest result in the 

sense that its proof depends only on the fact, stated in Proposition 3.3, that the homology 
class dual to r, is supported in D,(X) for X E {al, . . . , a,, bl, . . . , b,}; we do not require the 
computation of the dual homology class contained in Propositions 3.5 and 3.8. Recall that 
we are working with $(tl, . . . , tn) where (tl, . . , t.) is admissible. 

THEOREM 4.1. The cohomology class (r,,)‘l ... (r,,Jkn vanishes whenever Cl= 1 ki > 

2g+n-1. 

Proof: To avoid notational complications we work with the cohomology class 
(r,Jkn(r,_I)kn-l ... (r.-$-I, and assume that Cy=, ki =2g + n -1. Let us write out the 

standard generators {al, . . . , ag, bI, . . . , b,, cl, . . . , c,} of nl(Cg - {pl, . . . , p,}) as 

{x 1, ... > xzg+J, where 

I 
ai if l<i<g 

Xi =! bi-g ifg+l<i<2g 

Ci-2g if 2g+l <i<2g+n. 

(IO) 

Then by Proposition 3.3, the homology class dual to (rJke(r,- l)kn-l --- (r,- &l must be 
supported on the submanifold D c Yg(tl, . . . , t,) given by 

l-l k,- 1 k._,+k.-2 

D = fi D,_j(c,_j_l)n n D,(xi)n n D,-,(xJn ‘.. 
j=O i=l i=k, 

Zg+n-I-l 

n n Drt-~(XJ. (11) 
i=k.+k._,+ +k.-,I-I,-(f-l) 

We claim D = 8. 
To see this, note that since we have assumed Cl= 1 ki =2g + n -1, points in D are 

equivalence classes [p] of representations p of ~1 (Zg - (~1, . . . , p,}) where [p(ci), p(cj)] = 1 
for all i and j; and therefore also [p(ci), p(Xj)] = 1 for all i and j. NO such representations 
correspond to points in y$(tl, . . . , t.) where the set (tl, . . . , t.) is admissible. For such 
a representation would be conjugate to a representation 0: xl(Zg - (pl, . . . , p,>) -+ T 
satisfying flF= 1 (I) = nfi 1 a( [ai, bJ) = 1, whence xi Eiti E 22 for some n-tuple 

(E 1, ... 9 E,) E { - 1, l}“. 
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4.2. The Donaldson recursion relation 

We now proceed to the proof of Theorem 2. For this we shall need the full calculation of 

the homology class dual to Y, contained in Proposition 3.5. We actually prove the following 

generalization. 

THEOREM 4.2. Suppose k,, . . . , k, E Z, and suppose k, = 2r < 2y is even. Write k = xi ki, 

r”, = r”,(tl, . . . , t,), i-9,-I = i$‘(t,, . . . , t,). Then we have the following recursion relation: 

s (r3”l ... (r$“n(c$,, ,,, ,,,, )3g+n-3-k 
.V,U,. -.. .I,,) 

=2-‘r! 
3g+n-k-3 

r Li 
cr;-*)kl (,.,Y-;)k~-+,;,;;,, ,t”)3(g-r)+n-3-(k-2r). (12) 

.i/b_,@,, ,1,) 

To prove this theorem we make use of Proposition 3.5, which tells us that 

s (rT(tl, . . . , t,))kl ... (r,9(tl, . . . , t,))kn(co~l. ..,, tn)3q+2n-3-k 
V,(l,, .t.j 

(13) 
=2-2r 

i 
l*((rT(tl, . . . , t,))kf ... (rR(tl, . . . 3 4J)k”(d,, .r,)3g+2n-3-k). 

D 

where D = fly=,-,+, (D,(aJnD,(bJ),* and where 1: D + .Yg(t,, . . . , t,) denotes the inclu- 
sion. To make further progress we must study the submanifold D. 

PROPOSITION 4.3. There exists a symplectomorphism s : (cYq_,(fl, . . . , t,), of,T~.. J x 

((S’ x Sl)r, 2qsl x~~d ---f (D, I* my,. ,t,), where qsl xsl)’ denotes the usual symplectic form on 

(S’ x sl)*. 

Proof: Points in D are conjugacy classes [p] of representations p in V,“(tr , , t,) where 
P(ai), P(bi) E T for i > g - r. Let F = (al, . . , ag, bl, . . . , bg,cl, . . . , c,) denote the free 
group on the standard generators. The conditions for a homomorphism g: F -+ SU(2) to 
descend to a representation in V’,“(tr , . . , t,) corresponding to a point in D are then 

a(ai), o(bi) E T for i > g - r (14a) 

Q(G) E T (14b) 

~(~~[ai,bil)=o(~~(cj)). (14c) 

Thus any such representation corresponds uniquely to a pair consisting of a representa- 
tion in V,“-‘(tl, . . . , ) ( t, con I tons (14a) and (14b) and a point of (S’ x S’)* given by the d’t’ 
values of r~ on ai, bi where i > g - r. Geometrically such representations are reducible to 
T on a subsurface of genus r of Cg; see Fig. 7. The computation of the symplectic form can be 
performed using the methods of [l, 5-J; the factor of 2 is the 2 of SU(2). 

To compare the forms (I cs)*(r$(tl, . . . , t,)) and rz-;*(tI, . . . , t,J, we need the following 
lemma, which like its counterpart, Proposition 3.9, may be proved using the explicit formula 
(3) for the Chern forms fm: 

*Note the submanifolds D,(q) and D,(bJ have transverse intersections. 
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Subsurface 
of genus r 

Fig. 7. The subvariety II consists of representations which are reducible on the subsurface shown. 

LEMMA 4.4. The Chern classes rt(tI, . . , t,) and r8,-‘(tI, . . . , t,) are related by 

(I 0 s)*(rZ(t 1, . . . ) t,)) = rs,-‘(tl, . . . ) t,). (15) 

The proof of Theorem 4.2 now follows by combining Proposition 4.3 and Lemma 4.4. 

Remark. In view of Proposition 2.2, the recursion relation of Theorem 4.2 may be recast 

as follows. Let V(s, t) = I,“= 1 jyC,) e”smg(g - l)!. Then 

f V(s, t) = - ; -$ V(s, t). (16) 

4.3. Recursion relations in n 

Finally, we come to Theorem 3. Combining Propositions 3.6, 3.7, and 3.9, we have the 
following result: 

THEOREM 4.5. Let x E R, and suppose t, + t,- 1 < 1. Write r,,, = r%tl, . . . , t,), 

r,’ = $(t t t 1, se.3 n-2, n-l + t,), r, = $(tl, . . . , tne2, 1 t,_ 1 - t,l); similarly write cc) = o$,, ._. ,f,, 

co+ = a:,, . . . . f”_2rt,-,+f.% co- = ~~,,-..,t.-l.lt,~i-f.l. Then 

s 
(rAkl ... (r,) (r:)kl . . . (r~_2)k.-,(r,+_l)k”-~+k”-lex~+ 

Y&l, ,r.j 

(-lF-1 
-~ 

2 s 

(r;)kl . . . (r~_2)~-z(r=l)k”-l+k”-leXW~. 

~#@I, (,. ,L2,lf.-l--f”l) 
(17) 

3. HIGHER-RANK MODULI SPACES 

In this section we shall use methods analogous to the ones explored in Sections 2 and 

3 to prove some analogs of the Newstead Conjecture for moduli spaces corresponding to 
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representations of x1 (Cg - {pr , . . . , p,}) in W(k) where k > 2. For convenience, we concen- 

trate on the case where n = 1. 
Given a k-tuple t = (tl, . . . , tk) E Rk, let 

X(t) = 

eintl 

eint2 

e int, 

e int, I E U(k). 

Consider a two-manifold Cg with one marked point pl, as in Section 2. Suppose that 

t1 + ... + tk = 0, so that X(t) E W(k). We define the representation variety R:(t) as before 
by R:(t) = {p E Hom(rcI(Cg - (p,}), W(k)):&,) = X(t)}. On R!(t) we have k commuting 
S’ actions; the action of (errisl, . . . , enisk) E (S’)k is given by the conjugation action of X(s) on 
the representations in R:(t), where s = (sl, . . . , Sk). Let us denote the subgroup of (S’)k given 
by the ith COPY of S’ by 7’i. 

Let us now assume that the set (tI, . . . , t*iy . . . , tk} is admissible for every i. The moduli 
space Y,k(t) is then defined as the quotient R:(t)/(T, x ... x Tk)! Similarly we may define 
the circle bundles V:)“(t) for i, j = 1, . . . , k, i # j, by Vikjg(t) = R:(t)/( T1 x . . . x Pi x . . . x fj 

x ... x Tk). Let us denote the bundle projections by 7Ci.j: Vi!>” (t) + Ygk(t), and also write as 
before r:‘j” = cl(Vik;“(t)). 

To find homology classes dual to the r$” we may proceed precisely as in Section 3. We 

choose a standard generator X E {aI, . . . , a,, bl, . . . , bg} and write Di,j(X) for the subset of 
Y:(t) corresponding to representations p E R:(t) where (P(ai))i,j =O; note this condition is 
preserved by the conjugation action of (S’)k, so that Oi,j(X) is well defined. The following 

result is the analog of Proposition 3.3. 

PROPOSITION 5.1. The circle bundle vik~“(t) 1 _+(~)-_D~,~(x) has u section for any choice d 

generator X. 

Using Proposition 5.1 we may now generalize the Newstead Conjecture to the following 

result about the classes rikjg . 

THEOREM 5.2. (i) Fix j E { 1, . . . , k}. Then 

(ii) Any monomial in the Chern classes ri:jg of degree greater than (29) k(k - 1)/2 vanishes. 

Proof. To prove (i) we note that by Proposition 5.1, the homology class dual to 
(n i z j(rik;g))2g can be chosen to be supported in D = n f= 1 0 i + j(Di, j(Ul) n Di, j(bJ). We claim 

D = 0. For representations p E R:(t) corresponding to points in D must have, for each I, 

(~(a[))~, j = 0 for all i # j; since p(uJ is unitary, we must also have (p(UJ)j,i = 0 for all i # j. 
Similarly for alI 1, (pi, j = (~(b,))~, i =0 for all i # j. The representation p is then reducible, 

*Note that the diagonal subgroup in (S1)k acts trivially on Rf(t). 
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and in particular (p(ny= 1 [aI, b,]))j,j = 1, which is impossible; we have, by construction, 
that (p(ny= 1 [al, b,]))j,j = e’““, and eirrtJ # 1 by admissibility of (tl, . . . , tn>. 

The proof of (ii) is similar and will be described elsewhere. 

CONJECTURE 5.3. Any monomial in the Chern classes ri”;” of degree greater than 
(29 - l)[k(k - 1)/2] vanishes. 
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