Abstract

We have isolated cDNA clones encoding an iron-sulfur polypeptide subunit of the mitochondrial complex I of *Neurospora crassa*. The fungal cDNA library was screened by hybridisation with an heterologous probe from *Paracoccus denitrificans*. The DNA sequence of relevant isolates was determined and revealed an open reading frame encoding a precursor protein of 219 amino acid residues. The gene product is a ferredoxin-like protein that contains two cysteine-rich motives that may each bind a tetranuclear iron-sulfur cluster. The primary structure of the protein is highly homologous to the 23 kDa iron-sulfur subunit of complex I from bovine and *P. denitrificans*. Interestingly, an alanine residue within the second cluster-binding motif, which is conserved in complex I but replaced by tyrosine in similar chloroplast genes, is substituted for serine in *N. crassa*.

Keywords: Mitochondrion; Complex I; Iron-sulfur protein; cDNA; (Neurospora crassa)
the PCR product was purified with Wizard PCR Preps (Promega). We have screened 5×10^5 library phage and detected 17 positives among them. The cDNA inserts of 6 independent phage were partially sequenced on both ends, and the longest one at the 5' end was used to rescreen the library. The cDNA inserts of 2 out of 10 positive phage were further analysed, after subcloning in the pGEM4 plasmid vector [7]. The total DNA sequence was obtained by sequencing both strands of different cDNA inserts using Sequenase or Thermo-Sequenase (United States Biochemical) and cDNA-specific oligonucleotides as primers. The Sequenase recommended protocols were applied for sequencing with Thermo-Sequenase with the following modifications: labelling was performed at 42°C and the termination reactions were carried out at 72°C. Computer similarity searches in the EMBL databases were performed with FASTA [8] and other analysis of DNA and protein sequences were performed with the PC/GENE software package (IntelliGenetics).

Fig. 1 depicts the nucleotide sequence of the cDNA and the deduced amino acid sequence of the iron-sulfur subunit of complex I from *N. crassa*. The total DNA sequence is 1116 bp and encodes a precursor protein containing 219 amino acid residues, with a molecular mass of 24902 Da. We assume that the first methionine represents the initial amino acid residue, since no other ATG codon is found in the upstream sequence. The molecular weight of the resulting peptide is close to that of the bovine precursor protein and a mitochondrial targeting signal is predicted for the 34 N-terminal amino acid residues (see below). In addition, if the sequence 5' to this ATG codon is translated, the resulting protein sequence does not have the characteristics of a mitochondrial presequence. The starting point of the mature polypeptide is less clear. A computer analysis predicts that either the first 34 or, less likely, 47 amino acids represent a presequence.

Another possibility is that the mature protein of *N. crassa* results from a two-step cleavage of the precursor polypeptide, because it contains two consensus sequences for such processing [9], RXIXXS (amino acids 20–25) and...
RXFXXT (amino acids 66–71). This would yield a mature protein which is shorter than the precursor polypeptide by either 29 or 75 amino acid residues, respectively. It was previously suggested that the bovine homologue is cleaved twice to yield the mature TYKY protein [6].

As with homologues in bovine and bacterial enzymes, and similarly several ferredoxins and chloroplast gene products [5], the N. crassa protein includes two sequence motives CXXCXXCXXXCP that may bind tetranuclear [Fe-S] clusters. The 23 kDa subunit of complex I was suggested to bind the [Fe-S] cluster N-2 [6,10], a redox centre that might be directly involved in the proton-translocation activity of the enzyme. Interestingly, a highly conserved (from bacteria to mammals) alanine residue in the second [Fe-S] cluster-binding motif is replaced by serine (residue 168) in the fungal protein (Fig. 2).

In bovine complex I, this protein was suggested to be located at the interface between the ‘core’ subunits and the hydrophobic ones [10]. This is supported by recent results that locate the protein in the ‘connecting fragment’ of E. coli NDH1 [11]. Since the iron-sulfur centre N-2 was reported to be bound within membrane fragments of Neurospora complex I [12], it will be interesting to determine whether or not this protein is also located in the membrane domain of the enzyme.

This research was supported by Junta Nacional de Investigação Científica e Tecnológica from Portugal through research grants to A.V. and a fellowship to M.D., and by the Academy of Finland and the University of Helsinki. We are grateful to Mrs. N. Mota, L. Pinto and M. Rocha for technical assistance.

References