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Weights of Irreducible Cyclic Codes 

L. D. BAUMERT AND R. J. NIcELIECE* 

Jet Propulsion Laboratory, 
California Institute of Technology, Pasadena, California 91103 

With any fixed prime number  p and positive integer N, not divisible by p, 
there is associated an infinite sequence of cyclic codes. In  a previous article 
it was shown that a theorem of Davenport-Hasse reduces the calculation of 
the weight distributions for this whole sequence of codes to a single calculation 
(essentially that  of calculating the weight distribution for the simplest code 
of the sequence). The  primary object of this paper is the development of 
machinery which simplifies this remaining calculation. Detailed examples are 
given. In addition, tables are presented which essentially solve the weight 
distribution problem for all such binary codes with N < 100 and, when the 
block length is less than one million, give the complete weight enumerator. 

1. INTRODUCTION 

With any fixed prime number p and positive integer N, not divisible by 
p, we associate an infinite sequence of cyclic codes. In a previous article 
(McEliece and Rumsey, 1972) it was shown that a theorem of Davenport-  
Hasse reduces the calculation of the weight distributions for this whole 
sequence of codes to a single calculation in GF(pko), where k 0 ~ OrdN(p) = 
least integer such that pk0 ~ 1 (mod N). The primary object of this paper 
is the development of machinery which simplifies this remaining calculation; 
it turns out that the algebra of the cyclotomic number fields Q(~N) can be 
brought to bear on the problem, with favorable results. In Section 2 the 
codes are introduced; in Section 3 some theoretical results are developed and 
in Section 4 we outline the way these results will be applied; in Sections 5 
and 6 we give detailed examples of the technique; and in Section 7 we present 
a table which essentially solves the weight distribution problem for all 
irreducible binary cyclic codes with N < 100, and a table which gives the 
complete weight enumerator for aU such codes of block length less than one 
million. 

* This  paper presents the results of one phase of research carried out at the Jet 
Propulsion Laboratory, California Institute of Technology, under  Contract No. NAS 
7-100, sponsored by the National Aeronautics and Space Administration. 
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2. IRREDUCIBLE CYCLIC CODES 

Let p be a prime, q =p~' ,  F~ the finite field with q elements and 
T(~:) = ~ + ~:~ + "-" + ~:~k-1, the trace of Fq/F~. I f  n divides q - -  1, and 
if 0 is a primitive n-th root of unity in Fq,  the set C of n-tuples 

c(~) = (T(~), T(~O),..., T(~On-1)), ~ inFq 

is a cyclic code over F ,  of dimension k', where k' = ord~(p). We call C an 
(n, k) irreducible cyclic code. [Note that if k =/= k' this code a s defined, is 
degenerate, ' in that the same codeword is repeated several times. ] Now let 

= exp(2Td/p) and for ~: in Fq,  let e(~) = ~r(e), where elements from F~ are 
regarded as integers in the set {0, 1,..., p - -  1}. With each codeword c({:) we 
associate a complex exponential sum ~(f) = ~2i=0 e(f01); from ~ we can 
compute the weight of the codeword c. Let ¢ be a primitive root o f  Fq such 
that c n  = O, where N = (q - -  1)/n. Then  if i ~ j (rood N)  the codewords 
c(¢ ~) and c(¢ j) differ only by a cyclic shift, so to compute the complete weight 
distribution of the Code C it is sufficient to compute the N sums ~/i = ~?(~bi), 
i = 0, 1,..., N --  1. Thus  we are led to consider the generating function 

N--I N--I n--i 

H ( x ) =  ~ ~ h x ' =  ~ x' 2 E(¢i¢ m ) ~  ~ xina(~)e( ~ ) ( m ° d x  N - l ) ,  
i = 0  i=O ] = 0  a e  Fq* : , 

where the last sum is taken over 
ind(~) = i. 

_ _  ]g. Now let k = OrdN(p), q - -  p , 

the nonzero elements of Fq, and if c~ = ~h i, 

the sequence of (n,~, km) irreducible cyclic 
codes where n~ = ( q ~ - -  1)/N, contains all the nondegenerate (n, k) irre- 
ducible cyclic codes for which (pk _ 1)/n = N, one for each m >/ 1. [All 
codes which arise here when m > / 2  are nondegenerate;  when m = 1 the 
code may be degenerate.] I f  the associated generating functions are indexed 
H('m(x) (mod x N - -  1), the main result of McEliece and Rumsey (1972) was 
that 

--H(~)(x) ~ ( - -Hm(x ) )  m (mod x N -  1) (2.1) 

provided that the primitive root ¢~ in F¢~ satisfied 4~1, +q+'''+¢~-1 = ~b 1 = ¢. 
Thus the problem of computing the weight distributions of the whole family 
of irreducible cyclic codes with a fixed N (relatively prime to p) was reduced 
to that of computing a single polynomial H(1)(x), whose parameters n and k 
are determined uniquely by k = OrdN(p) , n = (pk _ 1)/N. 

Consider the trivial case N = 1. Here, for any prime power q -= pro, there 
are p ~ - -  1 nonzero codewords of word length n = p ~ - -  1 and in each of 
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these codewords 0 occurs p r o - l _  1 times and i occurs pm-i  times, 

l ~ i < ~ p - - 1 .  
The  codes for N = 2 are not trivial; however, the ground case (i.e., m ---- 1) 

is quite easy. So temporari ly  we limit ourselves to the determination of 
Hm(x) .  (Complete weight distributions for these codes are given at the end 
of Section 5, below.) N = 2, m = 1 and so p is odd, k = o r d N ( p ) =  1, 
n = (p  - -  1)/2. Under  cyclic shift, the nonzero codewords divide themselves 
into two sets of n codewords each. Every codeword of one set contains as 
coordinates each of the nonzero squares modulo p precisely once [i.e., 
i 2 modulo p for 1 ~< i ~< (p  - -  1)/2]. Every codeword of the other set con- 
tains each of the remaining (p  - -  1)/2 nonzero elements precisely once. Let  
p* = (--1)(~-l)/~p, then, Gauss has shown that, 

~o = i + 0 + "-" + g Ec~-~)/'l' = V ~  - 1 v ~  + 1 
2 ; ~ h =  2 " 

So 

2Ha)(x)  ~ V ~  - -  1 - -  (~/p'~ + 1)x (mod x ~ - -  1). 

3. SOME THEORETICAL RESULTS 

We now present a theorem which will aid in the calculation of Hm(x) .  

THEOREM l. H(1) = - -1 ,  and 

n ( x )  H(x  -1) ~ qx in°(-ll --  n(1 + x + "" + x u-l) (mod x N - -  1). 

Proof. H(1) = Z~#o ~(c~) = - -1  follows from Z~ ~(e,) = O. 
We now consider the second assertion. 

H(x)H(x- l )  --~ E xind(~)e(a) ~ x-ind(m~(fl) 
av~O ~3~0 

a#0,B:#0 ~:#0,B:#0 

Now 

= Y', x in°`~' ~ ,  E(fi(r + 1)). 

E + 1))= tq_i 
1 if y 

~ 0  if y =/= - -1 .  
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Therefore 

H(x)H(x -1) = x i n d ( - 1 ) ( q -  1) - -  ~ x ina(')  = qx ind(-1) - -  ~ x ind(') 

~:# 0,-1 ~ 0  

qx ind.-l) - -  n(1 + x + "." + x u - l )  (mod x N - -  1), 

since n N  = q -  1. 

COROLLARY. I f  fl is any complex N - t h  root o f  unity ~ 1, 

H ( / 3 )  H ( / 3 - 9  = q " = 

The minus sign can occur only when N is even and n is odd. Also 

H(/3)H(fi) = q. 

Proof. ind(--1)  = 0 for even q. When q is odd, ind(--1)  = (q - -  I)/2 
and then ( e xp (2~ i j /N ) )N ~ /2 =  e x p ( ~ i j n ) = - - 1  only if j and n are odd. Let  
a :/3 ~ /3 -1 .  Then  a commutes with complex conjugation, so 

I H(/3)I 2 : H(fi)H(f l )  -~ [H(/3)H(/3)] ~ = H(fl-~)H(/3 -1) = I H(/3-X)l ~ 

f rom which the second equation follows. 
T h e  corollary provides a factorization of q in the field Q(~,/3), the cyclotomic 

field generated by ~ and/3. Under  certain circumstances H(fi)  lies in a small 
subfield of Q(~,/3). We now investigate these circumstances. 

THEOREM 2. Fix  fi = exp(27ri/N). Le t  A be the automorphism of  Q(~, fl)/Q 

which maps fl --+ fi~, let g ~- ¢(q-1)/(~-1) (g  in F~ is a generator of  F~*, thus gi 
is an integer modulo p)  and let cr i : ~ --+ ~g~. Then 

AH(fi) = H(fi),  criH(fi) =/3-i(q-1)/(~-1)H(/3). 

Proof. 

aH( ) = y .  
e ~ o  

= H(fi)  since ~(od/~) = E(a). 

643/2ol:~- 5 * 
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~#0 a%0 

=/3-i(a-1)l(~-l)H(fi), 

as asserted. 

COROLLARY. I f  (q - -  1)/(p --  1) --= 0 (rood N), ~iH(/3) = H(fi), and H(#) 
lies in Q(3). 

In this ease, H(fi) in fact lies in a K-th degree subfield ~ of Q(fl) where 
k K - =  ¢(N); viz., the fixed field of the automorphism /3-+ fi~ of Q(3)/Q. 
[Here ¢ denotes Euler's function.] 

Proof. The first assertion follows from the fact that the fixed field of the 
group {1, a x , . . . ,  o'~_1} o f  automorphisms of Q(~,/3)/Q is Q(fi). The second 
follows from the fact that 2, generates a group of automorphisms of order k 
of Q(fi)/Q, and deg[Q(fi) : Q] = ¢(N). 

In order to exploit these facts about H(/3), we now need to import without 
proof several theorems from algebraic number theory. In view of the factor- 
ization H(/3)H(fi) = q = pk provided by the corollary to Theorem 1, it will 
be useful to know something about the way the ideal (p) decomposes in the 
ring of integers of the subfield ~ of Q(fi). 

The Galois group of the extension Q~ = Q(fi)/Q is isomorphic to #N,  the 
multiplicative group of the residues prime to N. Thus the Galois group of 
~?/Q is isomorphic to the factor group CN/{P}, where {p} = {1, p ..... p~-l} is 
the subgroup of qSiv generated by p. I f  a is an element of q ~ ,  let g be its 
image under the homomorphism of #N onto #N/{P}, and let al ,  a2 .... , ax 
be a complete set of coset representatives of {p} in q)N • We can now describe 
the decomposition of (p). 

THEOREM 3 [see, for example, Mann (1955, Chapter 8)]. In the ring of 
integers of g?, (p) decomposes into a product of K distinct prime ideal factors. 
They can be labeled t:'1, P2 .... , Px  in such a way that under the automorphism 
)t a : 13 ~ fia of Y2/Q the P'  s are permuted according to the rule A~ : P~ ~ P~ if  
a '  a~ = a; in ¢ ~ / ( p } .  

It  turns out that the sum H(3 ) = 7 ~ .  3Jna(~)U (~) has been studied exten- 
sively under the name of generalized Gauss sum (a.k.a. Jacobi function or 
generalized Lagrange resolvent!). In particular Stickelberger (1890) [Lang 
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(1970, pp. 90 if) is perhaps a more convenient reference] completely settled 
the question of the prime ideal decomposition of the ideal (H(/3)) in the ring 
of integers of the field Q(fi, ~). I f  m is an arbitrary integer >/0 ,  let 
m = m  o 47 mlp  47 ' ' '  be the expansion of m in the base p, and let 
w~(m) = m o 47 m 1 47 " " .  Then  Stickelberger's theorem, in the case that 
interests us, is 

THEOREU~ 4 (Stickelberger, 1890). I f  H(fi) lies in [2, then there is a 
labeling of the prime ideal factors of p which is consistent with Theorem 3 and 
such that 

(H(fi)) = e~ e2 P1 P2 "'" p~xc, 

where 

e i = w~(ain)/(p - -  1). 

COROLLARY. H(fi) is exactly divisible by p*, where 

( p -  1)t = min{w~(jn):  1 <~j < N and (j, N)  = 1}. 

Proof. This follows since min ei = t and (p) ~ / ) 1  "'" PK. 

Remark. Let t ' = m i n { w ~ ( j n ) :  1 ~ j < N } / ( p - -  1). Then  it can be 
shown that p*' is the highest power o f p  such that ~i =-- n (modp  t') for all i. 
I t  is interesting that H(fi) = 7o + ~lfi + "'" 4- ~TN-lfi N-I can sometimes be 
divisible by a higher power o f p  than t'. [See Example a in Section 6 below. 
There  w2(5n ) = 4 but t = 5.] 

Theorem 4 is not as helpful in computing H(fi) as one might at first sup- 
pose, since in general the Pi are not principal ideals, and in addition the 
question of units is troublesome. However, there is one fact about units 
which we will find useful. 

THEOREM 5 [Mann (1955, Chapter 14) contains a proof]. The only units 
of absolute value 1 in QN = Q(fi)/Q are the roots of unity 4-fi i. Thus in ~ the 
only such units are -4- the ( p -  1, N)- th  roots of unity. In particular i f  
(p --  1, N )  = 1 or 2 only -4-1 are possible. 

4. THE PLAN OF ATTACK 

We now outline how the theorems of Section 3 can be used to compute 
the polynomials H(x). 
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Step 1. Compute the values H(fia), fie = exp(27ri/d), for all divisors d 
of N. In general this can only be done up to an ambiguity of sign and of 
conjugation of the ideals Pi • Some examples are given in Sections 5 and 6. 

Step 2. Compute the values of H(xa) =- H(x)  (modfa(x)), where fa(x) is 
the d-th cyclotomic polynomial. This follows trivially from step 1, since if 

a na-1 then H(fid) = ao + alfia + "'" + a-l•a , 

H(xa) =-- a o + alx + ... + aa_lx a-1 (mod fa(x)). 

Step 3. Synthesize H(x)  from its values modulo fa(x) via the Chinese 
remainder theorem. The exact form of the CRT in this situation is given 
below for the reader's convenience, but see Section I I I .D  of Baumert (1971) 
for a proof. Incidentally, at this stage it is usually possible to resolve the 
ambiguity which occurred at step 1, since inconsistent choices of the various 
H(xa)'s usually lead to an H(x) whose coefficients are not integers. 

The explicit form of the Chinese remainder theorem in this case is 

where 

1 
H(x) =~ - -~  ~, H(xa)Bs,a(x) 

diN 

(mod x N --  1), (4.1) 

x _l 
B u . ~ ( x )  = ~ _ ~ x~ - -  1 

rig 

with/~ the M6bius function. One way to use this formula is to compute 
H(x) modulo x a - -  1 for all divisors d of N starting with d = 1 and working 
up to d ~- N. This process allows the resolution of the ambiguities of Step 1 
at a lower level than N. It  is facilitated by the criterion given below [see 
Baumert (1971) for a proof of this], which permits those candidates for 
H(xa) , not yielding integer coefficients in H(x) modulo x a --  1, to be discarded 
prior to its computation. 

INTEGER COEFFICIENT CRITERION. Suppose that, for each prime divisor 
r of d, an integral polynomial ga/,(x) is known such that H(x) ~ ga/~(x) 
modulo xa/r - -  1. Then a necessary and sufficient condition for the existence 
of an integral polynomial congruent to H(x)  modulo x a - -  1 is that 

H(xa) ga/,(x) (mod ,,-1 - ~ , f ~  ( x ) )  

for all prime divisors r of d. Here d = radl with d 1 prime to r. 

(4.2) 
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5. THE SEMIPRIMITIVE CASE 

In  this section we assume that there is a j such that p; = - -  i (mod N).  
Take  j to be the least such positive integer, then for N > 2, h = 2j, q ----- p2;, 
n = (p~J - -  1)IN. (N  = 1 is solved in Section 2 above and N = 2 is discussed 
at the end of this section.) Here H(fia) is an integer of Qa by Theorem 2 and 
its corollary. Furthermore,  it is easy to see that the Pi are fixed under complex 

• ~ i  
conjugation, for by Theorem 3 they are fixed by all automorph~sms fie --+ fla 

and so in particular by fla ~ / 3 a  -1. Thus  the factorization H(~a) H(~a) = p2j 
forces (H(fia)) = (p); and since (p  - -  1, N)  divides (p; - -  1, p; + 1) which 
is at most 2, Theorem 5 implies 

H(fia) = :~pJ for all d ~= 1, 

H(x) =-- ~pJ  (modfa(x)).  

Frequently the choice of signs is forced by the requirement that the ~/~ are 
integers; to determine signs for various d, we use congruence (4.2). We claim 
that  for each divisor d of N, 

Hm(x) =_ p~x= PJ + 1 d (1 -@ X -~ "'" @ X d-l) (mod x a - -  1), (5.1) 

where s = 0 or d/2, and proceed by induction on the number  l of (not 
necessarily distinct) primes dividing d. I f  l = 0 this is just the statement 
H(1) ~ - -1 ,  which is true by Theorem 1. For l >i 1, we use the criterion of 
Section 4 together with the induction hypothesis: 

jcp~ ==_ pJx= p~ + 1 (modr ,  f a  1 (x)) (d/r) (1 + x + ... + x~/r~-l) ,°-~ 

for all primes r dividing d. (Here d = radl with d 1 prime to r.) Now since d 
divides pJ + i, this is equivalent to 

~pJ  =- p;x = (mod r, f a  ~ (x)). (5.2) 

When d is odd, the induction hypothesis only allows s = 0 and since r is 
necessarily odd if d is, the " + "  sign obtains. So H m ( x ) ~  pi modulof , (x)  
for all divisors t va 1 of d, thus the Chinese remainder theorem assures us 
that 

H m ( x  ) =__ pj p~ -f- 1 N (1 + x + "" + x N-l) (mod x N - -  1), N odd. 
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W h e n  d is even there are four cases to consider in  the induct ion,  according 

as the pr ime r is 2 or odd and  according as s = 0 or d/2r. W h e n  s = 0 and  
r is odd then  H(1)(xa)  = pJ as above. W h e n  s = 0 and  r = 2 both  -¢-pJ satisfy 

congruence (5.2) so either form of (5.1) can occur. W h e n  s = d/2r and r is 

odd, t hen  d = radz = 2r~do by  assumpt ion  and since f~ao(X ) divides x ao -t- 1, 
it follows that  on ly  --p~ satisfies congruence (5.2). W h e n  r = 2 and  s = d/4 
congruence  (5.2) becomes 

-~-pJ ~ pJx2a-~aJ. (mod 2, fa~(x~°-~)) 

which  clearly has no solutions. Th i s  shows that  s = d/4 does not  occur, i.e., 
H(1)(xa/2) cannot  be --pJ. 

T h i s  last case shows that  for d = 2 i the only solutions are those given in  

congruence  (5.1), i.e., Ha)(x l )  = --1,  H m ( x t )  = p~ for all proper  divisors t 

of d and H(1)(xa) = :~pJ. Since d odd was handled  previously the only  remain-  

ing possibi l i ty  is that  d has bo th  even and  odd divisors. Here, since r = 2, 

s = d/4 cannot  occur, s = 0 at the d/2 level and  both  ±p~  satisfy congruence  
(5.2). However  when  r is odd, it follows from the discussion above that  
Ha)(x~/r) - :  g m ( x d )  = p~ when  s = 0 and  g(1) (xa /~)  = H(1)(xa)  = - - p J  for  
s = d/2r. Thus ,  there are two possibilities. Ei ther  H m ( x t ) = p J  for all 
divisors t ( ~ l )  of d or Hm(x~)  = --p~ whenever  2 a divides t and  H m ( x t )  = pJ 
for all the  other  divisors t(=/=l) of d. These  are, then,  the two solut ions of 

congruence  (5.1), as can be seen by  subs t i tu t ing  pr imit ive  t - th  roots of un i ty  

in  tha t  congruence.  T h u s  the induc t ion  is complete  and we finally arrive at 

H m ( x )  =_ pJx s 
p J + l  

N (1 + x + . - . + x  N-l) (mod x iv - -  1), 

where  s = 0 or N/2 .  [As we shall see later, s = 0 unless  N is even and  

(p~ + 1)IN is odd.] 
T o  compute  the ~ )  for the sequence of codes with parameters  

((p2j~ _ 1)/N, 2jm), we use formula  (3.4) in  McEliece and  Rumsey  (1972), 
wi th  t9 a complex pr imit ive N - t h  root of uni ty ,  viz., 

@ m )  __  1 N - 1  
N ~ '~-i~° ~ , (5.3) 

~=o 

where co, = - -Hm(19*) .  [This  formula is an immedia te  consequence of 
congruence  (2.1) above.] W h e n  s = 0, co 0 = - - H m ( 1 )  = 1, oJ 1 - -  - -  
~oN_ l = - H m ( 1 9 ) = - p j  and  when  s = N / 2 ,  ~o o = 1 ,  ~o z = ~ o  a -  - -  
con_ z ~-pJ,  0) 2 = co a - -  - -  coN_ 2 ----- --pJ. Thus ,  we calculate that,  with a 
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single exception, the ~/~) = ((--1)~p j~ - -  1)/N and the exceptional value is 
( ( - - 1 )m+a(N-  1)p j~ - -  1)/N. The exceptional ~/is ~?~) unless s = N/2 and 
m is odd, in which case it is ~N~2 ) . To  calculate the weights of these codes, we 
note that the ~m) here are rational integers and so [from ~/(~:) = ~i=o ai~ i] 
it follows that every nonzero element occurs equally often in the code words. 
We arrive at the following: 

THEOREM 6. Let C be an (n, k) irreducible cyclic code over F~ with 
Nn ~-- pk _ 1 = q -- 1, N > 2. I f  there exists a divisor j of k/2 for which 
pJ --= --1 (mod N), then there are only two distributions of elements from F~ 
which occur in the nonzero codewords of C: (caution, as noted above, if  
h # o rd ,p  this code is degenerate). 

Class s. (Containing n codewords) 

N 0 - -  q - 1  + 1 - - p + u ( a - - p ) ( N - - 1 ) v / q  , 
p N  p N  

N i q - - 1  1 + u ( N - -  1) V ~  i = l  ..... p - - 1 .  
p N  + p N  

Class *. [containing n ( N -  1) codewords] 

N o _ q - - 1  t -- p -- u(1--  p ) v ~  
p N  + p N  ' 

N i q - - 1  l - - u V ~  i = i , . . . , p - -  1. 
p N  + p N  

Here N i is the number  of times i occurs in the codeword, and u = -~1. 
For any particular code this sign is determined uniquely by the requirement 
that all the Ni must be nonnegative integers. 

Note that the formulas for the N i have been arranged so as to clearly 
show their deviation from the expected value ( q -  1)/pN. Also, from the 
derivation above it follows that u = (--1) ~. However, since the weight 
distribution can be uniquely determined from the fact that all the Ni's must 
be nonnegative integers, there is no need to determine explicitly the value 
of m in any particular case. 

Remark. A similar result holds for irreducible cyclic codes over GF(q) 
for arbitrary prime powers q, but  since the proof involves character sums 
instead of the exponential sums ~7, we will not present it. Theorem 6 for 
p ~- 2 was proved by Delsarte and Goethals (1970). 
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T h e  above computat ion of the weight distr ibution in this "semiprimit ive"  
case was meant  to demonstrate the general methods which we shall need for 
the examples of Section 6. However, the semiprimitive case can easily be 
handled in a less synthetic fashion and since it provides additional insight 
into the answers we present  this derivation here. Clearly it is only necessary 
to compute HCl~(x) since the weight distr ibution is derived from H~l~(x) 
exactly as above. 

LEMMA. In the semiprimitive case, with N > 2, 

H~l~(x) =_ p~x ~ 
p J + l  

N (1 + x + ... + x N-l) (mod x N - -  1) 

with s = 0 unless N is even and (p~ + 1)/N is odd; then s = N/2. 

Proof. Firs t  consider what  happens when N = pJ + 1. Here n = pJ - -  1, 
~b N = 0 generates the multiplicative group of GF(p j) and, of course, 

Now Tr(~ ") is a linear functional on GF(p j) and for y in GF(p j) we have 
Tr(~ "y) = TlJ((~ q- ~#) "y), where TI~ denotes the trace from GF(p j) to 
F ~ .  Since 711 ~ is a nontrivial linear functional so is Tr(6: ") unless 6: satisfies 
x ~; + x = 0. Thus  7/i = - -1  unless ~b i satisfies x ~ q- 1 = 0. T h e  solutions 
of this equation constitute a coset of the nonzero elements of GF(p ~) in the 
multiplicative group of GF(p 2j) since 4J i+N is a solution whenever ~h~ is, and 
so the linear functional Tr(~b i ") is trivial for precisely one value of i, 
0 ~< i <~ N - -  1. When  N is even, it  follows from - -1  = ~b (a-1)/2 = (~bN/2) ~ 

that  this distinguished value is i = N/2 and so ~/N/2 = n = p J -  1. When  
N = pJ + 1 is odd p = 2 necessarily, thus - -1  = + 1 = ~q-1 = (¢n)n and 

so T0 = n. Thus  H(1)(x) has the desired structure in the special case 
N = p ~ +  1. 

I f  N is a proper  divisor of pJ + 1 observe that  H (1) can be computed by 
reducing the solution for pJ + 1 modulo x N - -  1. F rom this, the lemma 
follows. 

Finally we consider the case N = 2. Here, when m is even (say m = 2v), 
we have, in reality, the semiprimitive case with H(2)(x) the basic polynomial  
and v playing the role of m. H(i)(x) is easily computed by means of the 
Davenpor t -Hasse  result [i.e., from congruence (2.1)] from the value of 
H(1)(x) given in Section 2 above. With  p*  = (--1)(~-l)/ep, ~ = exp(2zri/p), 
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r/0 = ~ C a, *11 = ~ ~b, where  a ranges over the  nonzero  squares  and b ranges 
over  the  nonzero  nonsquares  of GF(p), it  follows tha t  

2H'l)(x) =- 2~7o + 2~1x ~ V/p -~ - -  t - -  ( V / ~  + 1)x ( m o d  x ~ - -  1), 

2n(~)(x) = - - p *  - -  1 + ( p *  - -  1)x (mod  x ~ - -  1), 

2H(2~')(x) = - - (p * )~  - -  1 + [(p*)~ - -  1]x (mod  x ~ - -  1), 

2H(2~+~)(x) = [(p*)~ + 11% - -  [(p*)'~ - -  1]~l 

+ {[(P*)~ -I- 1 ] ~  - -  [(p*)~ - -  1]~o}X (mod  x 2 - -  1). 

T h u s  %(2,) is always one of (p* - -  1)/2, ( - -p*  - -  1)/2 and ~,(z*) takes the  o ther  
value.  S imi la r ly  2~(o 2~+1) and 2~7(12.+1~ share  the  values 

(p"  + 1) To - -  (P~' - -  1) ~ and (p~ + 1) ~h - -  (P" - -  1) ~?o. 

So we have 

THEOREM 7. Let C be an irreducible cyclic code with N = 2, q = pro, 

n = (q - -  1)/2. Then, there are n nonzero codewords of C with each of the 
following distributions of elements from F ,  . For m even 

N o = q - - 1  + ( l - - p ) ( 1  + V ~ q )  , 
2p 2p 

Ni q - - 1  I + V ~  i =  l , . . . , p - - 1 ,  

and 

N o =  q - l - I -  ( 1 - -  p ) ( 1 - -  V q )  , 
2p 2p 

N,  - q - 1  1 - - ~ / q  i = 1  .... , p - - l ,  - T U + T  
where N~ denotes the number of times j appears in the codeword. For m odd one 
distribution is 

No_q--1 +l--P, 
2p 2p 

Na -- q - l - /  1 + ~/(pq) 
2p 2p 

Nb -- q - 1  + 1- -  v/(pq) 
2p 2p 

a a nonzero square ofF~,  

b a nonzero nonsquare ofF~,  

and in the other distribution the values for Na and N~ are interchanged. 
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6. MORE EXAMPLES 

(a) p-----2, N =  35. 

Since ordze(p) =- 12 we have (n, k) = (117, 12), and since ¢(35) = 24, 
Theorem 3 above tells us that the ideal (2) splits into a product of K = 2 
prime ideals in Q36 • Now, for each divisor d of 35, let H[a] denote the value 
of H(x) = -  HI1}(x) (mod x ~ - -  1). Then  

HIll -~ - -  1 (Theorem 1), 

Hi61 = 51 - -  13x - -  13x 2 - -  13x 3 - -  13x ~ (By the semiprimitive case), 

H[71 = - -7  - -  23x - -  23x 2 + 25x 3 - -  23x 4 + 25x 6 + 25x 6 

[by the remarks in Section 3 and by the calculation at the end of Section 3 
in McEliece and Rumsey (1972). This assumes the primitive root ~ in 
GF(212) has been chosen properly.] 

Now if/3 is a primitive 35-th root of unity, the corollary to Theorem 1 
gives H(/3)H(/3)= 21~; and the corollary to Theorem 4 tells us that 25 
divides H(/3), but 26 does not. Now since (2) = P P  in the quadratic subfield 
£2 of Q36 for a prime ideal P, the only possibilities are (H(/3)) = psp7 ___ 32P~ 
or pTp6 = 32P2. Now it is easy to verify that 

2 = (/35 +/31o +/3~0)(/315 +/326 +/330) 

in £2, [Reuschle (1875) is a good source for this kind of information], and so 
p = (/36 +/310 +/32o) or (/316 -}-/3 ~5 +/3a0). Since Theorem 5 allows only 
~ 1  as units of absolute value 1 in/2,  H(/3) = +32(/35 +/310 @/320)2 or else 
~32(/316 _}_/325 _~ /330)2, and thus 

H(xz6 ) -= ±32(x  6 + X 10 + X20) 2 or ±32(x  15 + x 25 + x3°) 2. 

To resolve the ambiguity we apply criterion (4.2) above and decide that 
only the alternative 

H(xa5 ) ~ 32(x 6 + x 1° + x2°) ~ 

- 32(x 5 + x lo + 2x  16 + x ~0 + 2x  =5 + 2x ao) (mod fa6) 

will lead to an H[a61(x ) with integer coefficients. We omit the calculations, 
and present the coefficients ~7~ of H(x) (rood x z6 - -  1); 

70------27, ~ 1 = - - 1 1 ,  ~a----5, ~ 5 = 5 ,  ~7 = 5 ,  ~ 1 6 = 2 1 ;  
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here the subscripts represent a complete set of inequivalent residues rood 35 
under  the map j ~ 2j. Thus  for example since 13 ~- 3" 24 (mod 35) ~/13 = 

~/a = 5. Correspondingly the weights of the codewords are: W 0 = 72, 
W 1 = 64, W3 = 56, W 5 = 56, W 7 = 56, W15 = 48 and so the codeword 
weight enumerator  for the (117, 12) irreducible cyclic code is 

d(x )  = 1 q- 351x 4s if- 2223x ~G + 1404x 64 q- l17x 72. 

(b) p = 3 ,  N =  11. 

Since ( p - -  1, N)  = 1, the sums H(fi) lie in Q n .  3 5 ~  1(11) a n d s o  
(n, k) = (22, 5). 4(11) = 10 so K = 2 and [~  : Q] = 2. Thus  in £2, (3) = P1P~ 
for pr ime ideals P i .  In  Theorem 4 we can choose a s = 1, a 2 = 2; we com- 
pute w3(22 ) = 4, %(44) = 6 and so by Theorem 4, if fl is a primitive l l - t h  
root of unity, (H(fi)) = P12P~ 8 = 9P2. To  actually f ind/)1 and/ )2  we make 
use of the  quadratic (period) equation defining ~2 : z ~ -k z q- 3 = 0, where 
z = / 3  + fia +/3~ +/35 + fig. Thus  we are free to assume that  P~ = (z) and 
so H(13) = :j:-9z; i.e., H(xn)  = :[:9(x @ x 3 + x 4 + x 5 + xg). To resolve the 
ambigui ty  in the sign we use congruence (4.2) and HI11 = - -  1. So we calculate 
H(x) = 4 - -  5x + 4x ~ -  5x 3 -  5x 4 -  5x 5 + 4x 6 + 4x 7 + 4x s - -  5x ~ + 4x 1° 

(mod x 11 - -  1). Hence the code has 6 × 22 = 132 words with distribution 
N o ~ 1 0 ,  N 1 ~ 6 ,  N _ 1 ~ - 6  and 5 × 2 2 = 1 1 0  words with distr ibution 

No = 4, NI  = N_I = 9. 

7. T w o  TABLES 

According to the result of McEliece and Rumsey (1972), the calculation 
of the weight distr ibution of any irreducible cyclic code over GF(p)  with a 
fixed N =  ( p k  1)In is reduced to a calculation in GF(pko), where 
k 0 z ordN(p). In  this paper we have seen that  this calculation can in fact be 
done in a K- th  degree subfield of the cyclotomic field QN, where koK = 6(N)  
[at least when (pko _ 1)/(p - -  1) ~ 0 (rood N)],  and that  if N divides an 
integer of the form pJ + 1 the calculation can be done explicitly. We  should 
admit  that  while these results in principle apply to every N and p, so far we 
have only successfully applied these techniques where K ~ 1 or 2. 

Thus  for p ~ 2, the H-polynomial  [i.e., H(X)(x)] can be computed if 
(a) k o is small enough so that the calculation in GF(2 ko) can be carried out 
directly, (b) if 2 j ~ - l ( m o d N )  for some j ,  or (c) if ¢ ( N ) = 2 k  o. The  
smallest N which cannot be handled by any of these methods is N = 187, 
for which K ~-4 ,  k 0 = 40. Table  I gives all of these H-polynomials  for 
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N < 100. I n  T a b l e  I a c o n s i d e r a b l y  c o n d e n s e d  f o r m a t  has  b e e n  adop ted ,  

w h i c h  is bes t  e x p l a i n e d  b y  e x a m p l e .  T h u s  c o n s i d e r  t h e  e n t r y  N = 51 : 

(0, 5)(1, 1)(3, 1)(5, - - 3 ) (9 ,  - -3 ) (11 ,  1)(17, 5)(19, 1). T h i s  m e a n s  t h a t  i f  w e  

se t  H m ( x )  --= ~7o + ~h x + "'" + ~750 xS° ( m o d  x 51 - -  1), t h a t  70 = 5, ~71 = 1, 

~7~ = 1, ~ = - -3 , . . . ,  ~719 = 1. T o  f ind  an ~b n o t  l is ted,  one  uses  t h e  r e l a t ion  

7/j = ~2J ; e.g. ,  ~741 = ~11 = 1 s ince  41 ~ 11 • 26 ( m o d  51). Also ,  b e c a u s e  o f  

t h e  c o m p l e t e  so lu t i on  to  t h e  w e i g h t  d i s t r i b u t i o n  p r o b l e m  in  t h e  s e m i p r i m i t i v e  

case  g i v e n  in  Sec t i on  5, we  o m i t  t h o s e  va lues  o f  N w h i c h  d iv ide  an  i n t e g e r  

T A B L E  I 

Binary H-Polynomials,  N < 100 (See text for key) 

N H(x) 

7 
15 
21 
23 
31 
35 
39 
45 
47 
49 
51 
55 
63 

69 
71 
73 
75 
77 
79 
85 

87 
89 
91 

93 

95 

(0 ,  - -  1 ) ( 1 ,  1 ) ( 3 ,  - -  1) 

(0, 1)(1, 1)(3, --1)(5, 1)(7, - -1)  
(0 ,  - -  1 ) ( 1 ,  - -  1 ) ( 3 ,  3 ) ( 5 ,  - -  1 ) ( 7 ,  3 ) ( 9 ,  - -  1)  
(0 ,  - -  2 3 ) ( 1 ,  - -  7 ) ( 5 ,  9 )  

(0, --1)(1, 1)(3, 1)(5, --1)(7, --1)(11, --1)(15, 1) 
(0 ,  - -  2 7 ) ( 1 ,  - -  1 1 ) ( 3 ,  5 ) ( 5 ,  5 ) ( 7 ,  5 ) ( 1 5 ,  21) 
(0, 41)(1, 9)(3, --7)(7, --7)(13, 9) 
(0 ,  - -  5 ) ( 1 ,  - -  5 ) ( 3 ,  1 9 ) ( 5 ,  1 1 ) ( 7 ,  3 ) ( 9 ,  - -  1 3 ) ( 1 5 ,  - -  5 ) ( 2 1 ,  - -  13 )  

(0, --2255)(•, --207)(5, 305) 
(0, --337)(1, 47)(3, --81)(7, 687)(21, --337) 
(0, 5)(1, 1)(3.1)(5, --3)(9, --3)(11, 1)(17, 5)(19, 1) 
(0, -- 391)(1, -- 135)(3, 121)(5, 121)(11. -- 135) 
(0, 1)(1, 1)(3, 1)(5, --1)(7, 1)(9. 1)(11, --1)(13.1)(15, --1)(21, --1)(23, --1) 

(27, 1)(31, -- 1) 
(0, 1651)(1, 115)(3, 115)(5. --  141)(15, --  141)(23, --  397) 
(0, 169609)(1, 5769)(7, --  10615) 
(0, --  1)(1, --  1)(3, --  1)(5, --  1)(9, --  1)(11, --  1)(13, -- 1)(17, 7)(25, - -  1) 
(0, 541)(1, 29)(3, --67)(5, 221)(7, --3)(15, 29)(25, 221)(35, --291) 
(0, 27515)(1, --  133)(3, 891)(7, -- 5253)(11, --  133)(33, 891) 
(0, 452945)(1, 59729)(3, --71343) 
(0, 3)(1, --  1)(3, -- 1)(5, --  1)(7, 3)(9, --  1)(13, 3)(• 5, --  1)(17, 3)(2•, --  1) 

(29, -- •)(37, --  1) 
(0, 13465)(•, 1177)(3, . 871) (5 ,  --871)(29, 1177) 
( 0 ,  - -  1 ) ( 1 ,  - -  1 ) ( 3 ,  7 ) ( 5 ,  7 ) ( 9 ,  - -  1 ) ( 1 1 ,  - -  1 ) ( 1 3 ,  - - 9 ) ( • 9 ,  - -  • ) (33 ,  - -  1) 

(0, 29)(1, --3)(3, --3)(7, --3)(9, --3)(11, --3)(13, --3)(17, 13)(19, --3) 
(39, 13) 

(0 ,  - - 9 ) ( 1 ,  - -  1 ) ( 3 ,  7 ) ( 5 ,  - -  5 ) ( 7 ,  - -  1 ) ( 9 ,  3 ) ( 1 1 ,  3 ) ( 1 5 ,  3 ) ( 1 7 ,  - -  1 ) ( 2 1 ,  - -  5 )  
(23, 3)(31, -- 1)(33, -- 1)(45, -- 1) 

(0, 42081)(1, 25697)(5, 9313)(7, --23455)(19, --72607) 



WEIGHTS OF CYCLIC CODES 173 

H 

~o 
o~o 

- o  

r ~  

5 
c~ 

r~  

o 

o 

8 

=o 

% 



174  BAUMERT AND MC~LIEC~ 

~o  ~ -  



WEIGHTS OF CYCLIC CODES 175 

of the form 25 + 1; i.e., N = 3, 5, 9, 11, 13, 17, 19, 25, 27, 33, 37, 41, 43, 53, 
57, 59, 61, 65, 67, 81, 83, 97, 99. 

Finally, in Table I I  we give the complete weight enumerators for the 
89 irreducible binary cyclic codes with N < 100 and n < 1000000, listed in 
order of increasing n. In  such codes, the nonzero codewords divide themselves 
into N equivalence classes of n words each under the cyclic shift. The  enum- 
erator tells how many of these equivalence classes have each weight. Thus, 
for the (23, 11) N = 89 code the entry 82212a616 n means that there are 
22 × 23 words of weight 8, 56 × 23 of weight 12, and 11 × 23 of weight 16. 
A superscript "s" on a value of N means that N divides 25 + 1, and so only 
two different weights occur, according to Delsarte and Goethals (1970), or 
Section 5. 
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