The saturation of convergence on the interval \([0, 1]\) for the \(q\)-Bernstein polynomials in the case \(q > 1\) \(\ast\)

Zhuangzhi Wu

School of Computer Science and Engineering, Beihang University, Beijing 100091, People’s Republic of China

Abstract

In the note, we consider saturation of convergence on the interval \([0, 1]\) for the \(q\)-Bernstein polynomials of a continuous function \(f\) for arbitrary fixed \(q > 1\). We show that the rate of uniform convergence on \([0, 1]\) is \(o(q^{-n})\) if and only if \(f\) is linear. The result is sharp in the following sense: it ceases to be true if we replace "\(o\)" by "\(O\).

\(\ast\) Supported by Beijing Natural Science Foundation (Project no. 1062004) and by National Natural Science Foundation of China (Project no. 10871132).

E-mail address: zzwu@buaa.edu.cn.

1. Introduction

Let \(q > 0\). For any non-negative integer \(k\), the \(q\)-integer \([k]_q\) is defined by

\[[k]_q := 1 + q + \cdots + q^{k-1} \quad (k = 1, 2, \ldots), \quad [0]_q := 0; \]

and the \(q\)-factorial \([k]_q\) by

\[[k]_q! := [1]_q[2]_q \cdots [k]_q \quad (k = 1, 2, \ldots), \quad [0]_q! := 1. \]

For integers \(k, n\) with \(0 \leq k \leq n\), the \(q\)-binomial coefficient is defined by (see [2, p. 12])

\[\binom{n}{k}_q := \frac{[n]_q!}{[k]_q![n-k]_q!}. \]

In [6], Phillips proposed the \(q\)-Bernstein polynomials: for each positive integer \(n\), and \(f \in C[0, 1]\), the \(q\)-Bernstein polynomial of \(f\) is

\[B_{n,q}(f, x) := \sum_{k=0}^{n} f \left(\frac{[k]_q}{[n]_q} \binom{n}{k}_q x^k \prod_{i=0}^{n-k-1} (1 - q^i x) \right). \]

Note that for \(q = 1\), \(B_{n,q}(f, x)\) is the classical Bernstein polynomial \(B_n(f, x)\):

\[B_n(f, x) := \sum_{k=0}^{n} f \left(\frac{k}{n} \right) \binom{n}{k}(1-x)^{n-k}. \]
In recent years, the q-Bernstein polynomials have been investigated intensively and a comprehensive review of the results on q-Bernstein polynomials along with extensive bibliography on the subject is given in [4]. From these researches we know that for $q \neq 1$, the convergence properties of the q-Bernstein polynomials differ essentially from those of the classical ones. In the case $q > 1$, the q-Bernstein polynomials are no longer positive operators. The lack of positivity makes the investigation of convergence in the case $q > 1$ essentially more difficult. However, for a function analytic in a disc $U_R := \{ z \in \mathbb{C}; \; |z| < R \}$ $(R > q)$, it was proved in [3] that the rate of convergence of $\{B_{n,q}(f, z)\}$ to $f(z)$ has the order q^{-n} (versus $1/n$ for the classical Bernstein polynomials). In the note, we consider saturation of convergence of the q-Bernstein polynomials for arbitrary fixed $q > 1$. Denote by $C[0, 1]$ (or $C^0[0, 1]$, $1 \leq n \leq \infty$) the space of all continuous (corresponding, n times continuously differentiable) functions on $[0, 1]$ equipped with the uniform norm $\| \cdot \|$. $A(n) = o(B(n))$ represents $\lim_{n \to \infty} A(n)/B(n) = 0$. For the saturation of convergence in the complex domain of the q-Bernstein polynomials in the case $q > 1$, we have the following two theorems:

Theorem A. (See [8].) Let $R > q > 1$. If a function f is analytic in the disc $U_R = \{ z \in \mathbb{C}; \; |z| < R \}$, then $\|B_{n,q}(f, z) - f(z)\| = o(q^{-n})$ as $n \to \infty$ for infinite number of points having an accumulation point on $U_{R/q}$ if and only if f is linear.

Theorem B. (See [5].) Suppose that a function f is analytic in U_1 and continuous on $\{ z \in \mathbb{C}; \; |z| \leq 1 \}$. If

$$\max_{|z| \leq 1} |B_{n,q}(f, z) - f(z)| = o(q^{-n}) \quad \text{as} \quad n \to \infty,$$

then f is a linear function.

We remark that the condition of analyticity of f in Theorems A and B cannot be canceled, since in the proofs of Theorems A and B we need to expand $f(z)$ into the power series. In the note we use a completely different method and obtain the following saturation of convergence on the interval $[0, 1]$ for the q-Bernstein polynomials for fixed $q > 1$.

Theorem 1. Let $q > 1$ and $f \in C[0, 1]$. Then

$$\|B_{n,q}(f) - f\| = \sup_{x \in [0, 1]} |B_{n,q}(f, x) - f(x)| = o(q^{-n}), \quad \text{as} \quad n \to \infty, \quad (1.1)$$

if and only if f is a linear function.

Remark 1. The above result is sharp in the following sense: the notation “o” cannot be replaced by the notation “O”. Indeed, $\sup_{x \in [0, 1]} |B_{n,q}(t^2, x) - x^2| = O(q^{-n})$ as $n \to \infty$, however, $f(x) = x^2$ is not a linear function.

The next theorem shows that if we add the condition that f is convex on $[0, 1]$, then the condition in Theorem 1 can be weakened.

Theorem 2. Let $q > 1$, $f \in C[0, 1]$, and f be convex on $[0, 1]$. If f has the derivatives at $\frac{1}{q^m}$, $m = 1, 2, \ldots$, and satisfies

$$\left|B_{n,q}\left(f, \frac{1}{q^m}\right) - f\left(\frac{1}{q^m}\right)\right| = o(q^{-n}) \quad \text{as} \quad n \to \infty, \quad m = 1, 2, \ldots, \quad (1.2)$$

then f is linear on $[0, 1]$.

Remark 2. In the case $q \in (0, 1)$, the saturation of convergence for the q-Bernstein polynomials was obtained by Wang in [7]. Although properties of convergence of the q-Bernstein polynomials are completely different for the cases $q < 1$ and $q > 1$, there is some similarity concerning saturation. See Theorem 4 in [7] for comparison.

2. Proofs of Theorems 1–2

Let $q > 1$ and $f \in C[0, 1]$. In [3], among others, Ostrovskas shows for each $m = 0, 1, 2, \ldots$,

$$\lim_{n \to \infty} B_{n,q}\left(f, \frac{1}{q^m}\right) = f\left(\frac{1}{q^m}\right).$$

Based on this, we show the following deeper result. It can be viewed as a discrete analogue of Voronovskaya’s Theorem for q-Bernstein polynomials for fixed $q > 1$.

Lemma 1. Let $q > 1$. If $f \in C^1[0, 1]$, then for each $m = 1, 2, \ldots$,

$$\lim_{n \to \infty} q^n \left(B_{n,q}\left(f, \frac{1}{q^m}\right) - f\left(\frac{1}{q^m}\right)\right) = \left(1 - \frac{1}{q^m}\right) \left(\frac{f\left(\frac{1}{q^m}\right) - f(1)}{1 - \frac{1}{q^m}} - f'\left(\frac{1}{q^m}\right)\right). \quad (2.1)$$
Proof. Let the \(q \)-Bernstein base polynomials \(p_{n,k}(q; x) \) be defined by

\[
p_{n,k}(q; x) := \binom{n}{k} q^{k} \prod_{s=0}^{n-k-1} (1 - q^s x).
\]

Then

\[
p_{n,n-k}(q; x) \left(q; \frac{1}{q^m} \right) = 0 \quad \text{for } m < k \leq n,
\]

and for \(0 \leq k \leq m \),

\[
p_{n,n-k}(q; x) \left(q; \frac{1}{q^m} \right) = \binom{n}{k} q^{k} \prod_{s=0}^{n-k-1} \left(1 - \frac{q^{k+1}}{q^m} \right) = \left(q^n - 1 \right) \cdots \left(q^{n-k} - 1 \right) \frac{1}{q^m} \prod_{s=0}^{m-k-1} \left(1 - \frac{1}{q^s} \right) = q^{n(k-m)} \prod_{s=0}^{m-k-1} \left(1 - \frac{1}{q^s} \right).
\]

It follows from the definition of \(B_{n,q}(f, x) \) and (2.2) that

\[
B_{n,q} \left(f, \frac{1}{q^m} \right) = \sum_{k=0}^{n} f \left(\frac{[n-k]_q}{[n]_q} \right) p_{n,n-k}(q; \frac{1}{q^m}) = \sum_{k=0}^{m} f \left(\frac{[n-k]_q}{[n]_q} \right) p_{n,n-k}(q; \frac{1}{q^m}).
\]

Hence,

\[
I := \lim_{n \to \infty} q^n \left(B_{n,q} \left(f, \frac{1}{q^m} \right) - f \left(\frac{1}{q^m} \right) \right) = \lim_{n \to \infty} q^n \sum_{k=0}^{n-2} f \left(\frac{[n-k]_q}{[n]_q} \right) p_{n,n-k}(q; \frac{1}{q^m}) \lim_{n \to \infty} q^n \sum_{k=0}^{m} f \left(\frac{[n-m+k]_q}{[n]_q} \right) p_{n,n-m+k}(q; \frac{1}{q^m}) =: I_1 + I_2 + I_3.
\]

Since \(f \in C[0, 1] \) and for \(0 \leq k \leq m \),

\[
\lim_{n \to \infty} \frac{[n-k]_q}{[n]_q} = \frac{1}{q^k},
\]

we get

\[
\lim_{n \to \infty} f \left(\frac{[n-k]_q}{[n]_q} \right) = f \left(\frac{1}{q^k} \right), \quad 0 \leq k \leq m.
\]

By (2.3) and (2.5) we get for \(0 \leq k \leq m - 2 \),

\[
\lim_{n \to \infty} q^n f \left(\frac{[n-k]_q}{[n]_q} \right) p_{n,n-k}(q; \frac{1}{q^m}) = \lim_{n \to \infty} \frac{m!}{[m]_q} f \left(\frac{1}{q^m} \right) = 0,
\]

and therefore,

\[
I_1 = 0.
\]

Let us compute \(I_2 \). Since

\[
\lim_{n \to \infty} q^n p_{n,n-m+1}(q; \frac{1}{q^m}) = \lim_{n \to \infty} [m]_q \left(1 - \frac{1}{q^m} \right) \cdots \left(1 - \frac{1}{q^{n-m+2}} \right) = [m]_q,
\]

by (2.5) we get

\[
I_2 = \lim_{n \to \infty} q^n f \left(\frac{[n-m+1]_q}{[n]_q} \right) p_{n,n-m+1}(q; \frac{1}{q^m}) = [m]_q f \left(\frac{1}{q^{m-1}} \right).
\]
Finally, we compute I_3. From (2.3) we have
\[
I_3 = \lim_{n \to \infty} q^n \left(f \left(\frac{[n-m]_k}{[n]_q} \right) \left(1 - \frac{1}{q^n} \right) \cdots \left(1 - \frac{1}{q^{n+m-1}} \right) - f \left(\frac{1}{q^m} \right) \right)
\]
\[
= \lim_{n \to \infty} q^n \left(f \left(\frac{[n-m]_k}{[n]_q} \right) - f \left(\frac{1}{q^m} \right) \right) \left(1 - \frac{1}{q^n} \right) \cdots \left(1 - \frac{1}{q^{n+m-1}} \right)
\]
\[
+ \lim_{n \to \infty} f \left(\frac{1}{q^m} \right) q^n \left(\left(1 - \frac{1}{q^n} \right) \cdots \left(1 - \frac{1}{q^{n+m-1}} \right) \right) - 1
\]
\[
=: I_4 + I_5. \tag{2.8}
\]
Note that $f \in C^1[0, 1]$. Then
\[
I_4 = \lim_{n \to \infty} q^n \left(f \left(\frac{[n-m]_k}{[n]_q} \right) - f \left(\frac{1}{q^m} \right) \right) \left(1 - \frac{1}{q^n} \right) \cdots \left(1 - \frac{1}{q^{n+m-1}} \right)
\]
\[
= \lim_{n \to \infty} f \left(\frac{[n-m]_k}{[n]_q} \right) - f \left(\frac{1}{q^m} \right) \frac{q^{n-m} - q^n}{q^n - 1} = -f' \left(\frac{1}{q^m} \right) \left(1 - \frac{1}{q^m} \right). \tag{2.9}
\]
On the other hand, we have
\[
\lim_{n \to \infty} q^n \left(\left(1 - \frac{1}{q^n} \right) \cdots \left(1 - \frac{1}{q^{n+m-1}} \right) \right) - 1 = -(1 + q + \cdots + q^{m-1}) = -[m]_q,
\]
which, together with (2.8) and (2.9), implies
\[
I_3 = -f' \left(\frac{1}{q^m} \right) \left(1 - \frac{1}{q^m} \right) - [m]_q f \left(\frac{1}{q^m} \right). \tag{2.10}
\]
Combining with (2.4), (2.6), (2.7), and (2.10), we get
\[
I = [m]_q \left(f \left(\frac{1}{q^{m-1}} \right) - f \left(\frac{1}{q^m} \right) \right) - \left(1 - \frac{1}{q^m} \right) f' \left(\frac{1}{q^m} \right)
\]
\[
= \left(1 - \frac{1}{q^m} \right) \left(f \left(\frac{1}{q^{m-1}} \right) - f \left(\frac{1}{q^m} \right) \right) \left(\frac{1}{q^{m-1}} - \frac{1}{q^m} \right) f' \left(\frac{1}{q^m} \right).
\]
The proof of Lemma 1 is complete. \qed

Remark 3. From the proof of Lemma 1, we know that the condition $f \in C^1[0, 1]$ can be weakened. In fact, if a continuous function $f(x)$ on $[0, 1]$ has the left derivatives at the points $\frac{1}{q^m}$, $m = 1, 2, \ldots$, then (2.1) holds with the derivatives replaced by the left derivatives.

Proof of Theorem 1. We note that $B_{n,q}(f) = f$ whenever f is a linear function, so it suffices to prove that f is linear if
\[
\|B_{n,q}(f) - f\| = \sup_{x \in [0,1]} |B_{n,q}(f,x) - f(x)| = o(q^{-n}) \quad \text{as} \quad n \to \infty.
\]
Denote by Π_n the space of all algebraic polynomials of degree at most n, and by $E_n(f)$ the best approximation of $f(x)$ by Π_n in $C[0,1]$, i.e.,
\[
E_n(f) = \inf_{g \in \Pi_n} \|f - g\|.
\]
Obviously,
\[
E_n(f) \leq \|f - B_{n,q}(f)\| = o(q^{-n}).
\]
By the theorem of Bernstein about characterization of the best approximation of analytic functions by polynomials (see [1]), we know that f is analytic in some open region containing $[0, 1]$ in the complex plane. Then $f \in C^\infty[0, 1]$. By Lemma 1 and (1.1), we know for each $m = 1, 2, \ldots$,
\[
f' \left(\frac{1}{q^m} \right) = \frac{f\left(\frac{1}{q^{m-1}} \right) - f \left(\frac{1}{q^m} \right)}{\frac{1}{q^{m-1}} - \frac{1}{q^m}} = f'(\xi_m), \quad \xi_m \in \left(\frac{1}{q^m}, \frac{1}{q^{m-1}} \right).
\]
Hence, for each \(m = 1, 2, \ldots \), \(f''(\eta_m) = 0 \) for some \(\eta_m \in (\frac{1}{q^m}, \frac{1}{q^{m-1}}) \). Since \(f \) (and hence \(f'' \)) is analytic in some open region containing [0, 1], by the Unicity Theorem for analytic functions we get \(f'' = 0 \). Thus, \(f \) is linear. Theorem 1 is proved. \(\square \)

In order to prove Theorem 2, we need the following lemma:

Lemma 2. Suppose that \(f \in C[a, b] \) and \(f \) is convex on \([a, b] \). If

\[
\frac{f(b) - f(a)}{b - a} = f'_+(a),
\]

then \(f \) is linear on \([a, b] \).

Proof. Let \(g(x) = f(x) - (f(a) + \frac{f(b) - f(a)}{b - a}(x - a)) \) for \(x \in [a, b] \). Then \(g(a) = g(b) = 0 \), \(g'_+(a) = 0 \), and \(g(x) \) is convex and continuous on \([a, b] \). Hence, \(g(x) \leq 0 \) for \(x \in [a, b] \), and \(g \) has the left and right derivatives \(g_- \) and \(g'_+ \) on \([a, b] \). Assume that \(g \) attains the minimum at \(\xi \in (a, b) \). Obviously, \(g'_{-}(\xi) \leq 0 \). Note that for any \(x \in (a, \xi) \), we have

\[
0 = g'_+(a) \leq g'_{-}(x) \leq g'_{+}(x) \leq g'_{-}(\xi) \leq 0,
\]

which means \(g'(x) = 0 \) for \(x \in (a, \xi) \) and therefore, \(g(x) = g(a) = 0 \) for \(x \in [a, \xi] \). Since \(g(\xi) = 0 \) is the minimum of \(g \) on \([a, b] \), we get that \(g(x) \geq 0 \) for \(x \in [a, b] \). It follows that \(g = 0 \) and \(f \) is linear on \([a, b] \). Lemma 2 is proved. \(\square \)

Proof of Theorem 2. By Remark 3 and (1.2), we know that for each \(m = 1, 2, \ldots \),

\[
\frac{f\left(\frac{1}{q^m}\right) - f\left(\frac{1}{q^{m+1}}\right)}{\frac{1}{q^m} - \frac{1}{q^{m+1}}} = f'_\left(\frac{1}{q^m}\right) = f'_\left(\frac{1}{q^{m+1}}\right).
\]

It follows from Lemma 2 that for each \(m = 1, 2, \ldots \), \(f \) is linear on \([\frac{1}{q^m}, \frac{1}{q^{m+1}}] \). Note that for each \(m = 1, 2, \ldots \), \(f \) is piecewise linear on \([\frac{1}{q^m}, 1]\) and has the derivatives at the knots \(\frac{1}{q^k}, k = 1, 2, \ldots, m - 1 \). Hence, \(f \) is linear on \([\frac{1}{q^{m+1}}, 1]\), and by continuity \(f \) is linear on \([0, 1]\). The proof of Theorem 2 is complete. \(\square \)

Acknowledgment

The author is very grateful to the anonymous referee for his useful comments and suggestions that helped to improve the presentation of the paper.

References