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INTRODUCTION 

Let V be an n-dimensional vector space over a field K of characteristic 
not 2 and as usual let G&,(K) and X,,,(K) be the general and special linear 
groups of V. Let Q be a quadratic form of Witt index v 2 1 on V whose 
associated symmetric bilinear form, given by 

B(x, Y) = Q(x + Y I- Q(x) - Q(Y ), h YE K 

is non-degenerate, and let O,(K), SO,(K) and GO,(K) be the orthogonal, 
special orthogonal and general orthogonal groups of Q. 

In [S], Dye showed that if n is even and if i? is a field of characteristic 2, 
then considered as a subgroup of the symplectic group Sp,(F), O,(R) is 
maximal in Sp,(R) if and only if E is perfect. In [6], he proved the 
maximality in X.,(K) of S&,(K) n GSp,(K) (for n > 4); he denoted the lat- 
ter group by SC+@,(K). In this paper we consider a situation that may be 
considered analogous to both of these results. Ideally one would like to 
prove the maximality in X,(K) of SO,(K). However, SO,(K) is usually 
properly contained in its normaliser in Z,,(K); the normaliser is GO,(K) n 
Z,(K) which we denote by SGO,(K) (adapting Dye’s notation) and call 
the special general orthogonal group of Q. It will follow from Lemma 1 
that SGO,(K) is the stabilizer in S&(K) of the set of singular l-dimen- 
sional subspaces of V. In Sections 2 and 3 we prove the theorems stated 
below. In Section 4 we give conditions for GO,(K) to be maximal in 
G&(K) and for SO,(K) to be maximal in S&,(K) (Theorems III and V). 

* This work was carried out while the author held the Earl Grey Memorial Fellowship at 
the University of Newcastle upon Tyne. 
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We also consider the projective groups PSGO,(K) and PSO,(K) and give 
conditions for them to be maximal in PSLJK). 

THEOREM I. If n 2 3, then any proper subgroup of SL,(K) containing 
SO,(K) lies in SGOJK). 

A Corollary to this theorem is that SGO,(K) is maximal in SL,(K) when 
n 2 3. We are then also able to determine the subgroups of SL,(K) contain- 
ing SO,(K). Unfortunately, the theorem cannot be extended to the case 
n = 2 as SO,(K) stabilizes each of two l-dimensional subspaces; there 
thereby arise two reducible subgroups containing SO,(K) that don’t lie in 
SGO,(K). Although for finite fields of order > 11 it is clear from [2] or 
[12] that any proper subgroup of SL,(K) containing SO,(K) lies either in 
SGO,(K) or one of the given reducible subgroups, it is not clear that this 
can be extended to infinite fields. However, in most cases, we can still prove 
the maximality of SGO,(K) in SL,(K). 

THEOREM II. If n = 2, then SGO,(K) is maximal in SL,(K), except when 
K=GF(q) with q< 11. 

Dye comments in [S] that his result there is unusual in that it is 
“geometric” but not true for all fields of characteristic 2. In contrast, when 
the characteristic is not 2 there are only exceptions for very small fields. 
One reason for this difference is that any element of a field of characteristic 
not 2 may be expressed as the difference between two squares, whereas in 
the characteristic 2 case the same may only be said of perfect fields. 

Our approach is geometric in nature, although there are differences 
between the cases n 2 3 and n = 2. We show that any subgroup of SL,(K) 
properly containing SO,(K) but not lying in SGO,( K) (properly containing 
SGO,(K) if n = 2) contains a generating set of transvections for SL,(K). In 
the proof of Theorem II we use the known maximality of SGO,(K) in 
SL,(K) for finite K (see Result 1). The maximality of SGOJK) in SL,(K) is 
also known for finite K (see Result 2), although the case K= GF(3) is the 
only one that we assume. 

1. FURTHER NOTATION AND PRELIMINARY RESULTS 

Our notation mostly follows [4]. We note only that the conjugate of a 
subspace U will be written u’ and that when U is non-isotropic and E,(K) 
is a subgroup of GO,(K), the subgroup of E,(K) consisting of those 
elements that fix each vector in U’ will be denoted by E(U). 

The following results are stated in terms of our notation; we follow stan- 
dard practice in writing, for example, SL,(K) = SL,(q) when K = GF(q). 
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Result 1 (Dickson [2]). If K= GF(q), then SGO,(q) is maximal in 
SL,(q) except when q < 11. 

Dickson actually lists the subgroups of PSL,(q) (rather than those of 
SL,(q)) and the exceptional cases are more neatly described in this form; 
that the exceptional cases may be considered by reference to PSL,(q) 
follows from the fact that SGO,(K) contains the centre of SL,(K). It may 
be seen from Dickson’s list that 

PSG0,(3) < V4 < PSL,(3), 

PSGO,( 5) < A, < PSL,( 5), 

PSG0,(7) < S4 < PSL,(7), 

PSG0,(9) < S4 < PSL,(9), 

PSGO,(ll)<A,<PSL,(ll), 

where V, is the four group and A4, A 5 and S4 are alternating and sym- 
metric groups. In each case, the given group is maximal in PSL,(q) and 
contains PSGO,(q) as a maximal subgroup. 

Result 2 (Mitchell [9]). If K=GF’(q), then SGO,(q) is maximal in 
SJxq). 

A transvection in SL,(K) is a map of the form 

:vl+v+p(v).x, 

where x is a non-zero vector in V and p is a linear form on V with 
p(x)=O; it is said to be centred on x and to have axis p-‘(O). For each 
pair of subspaces P E H of dimension 1 and n - 1, respectively, the sub- 
group of SL,(K) generated by all transvections with x E P and p - ‘(0) = H 
will be denoted by X(P, H); this subgroup is sometimes known as a sub- 
group of root type. If a group generated by transvections contains X(P, H), 
then P and H are said to be respectively a centre and an axis for that 
group. As McLaughlin pointed out in [S], the following result is true for 
any K, even though originally stated only for GF(2). 

Result 3 (McLaughlin [8]). If E is an irreducible subgroup of SL,(K) 
generated by subgroups of root type and if X(P, H,), X(P, Hz) < P for 
some P and for distinct axes H, and H,, then P= SLJK). 

The general orthogonal group is defined by GO,,(K) = {g E GL,(K): 
Q( gx) = &Q(x), Vx E V} where I, E K is dependent on g and is called the 
multiplicator of g. The set of all 2, is a subgroup M(Q) of the mul- 
tiplicative group K* of K. The elements in GO,(K) with multiplicator 1 
form O,(K), and the elements in O,(K) with determinant 1 form SO,,(K). 
As GO,(K) contains the centre of GLJK), it follows that (K*)2 < M(Q); if 
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n is odd, then M(Q) = (K*)2 (cf. [4, p. 773). If n is even, then the structure 
of M(Q) is not known in general, but is known in particular cases: if 
K= @, then M(Q) = K*; if K= R, then M(Q) = K* when v = n/2 and (K*)2 
otherwise; if K is finite, then M(Q) = K*. 

LEMMA 1. GO,,(K) is the stabilizer in GL,(K) of the set of singular 
l-dimensional subspaces of V. 

Proof: We need only show that if gE GL,(K) stabilizes the set of 
singular l-dimensional subspaces, then g E GO,(K). Let a, b E V be singular 
vectors such that B(a, b)= 1. As g(a + b) must be non-singular, 
(g(a), g(b)) is hyperbolic and, multiplying g by an appropriate element of 
O,(K) if necessary, we may assume that g(a) = a and g(b) = Ib for some 
,l~ K*; thus Q(g(v)) = nQ(v) for all v E (a, b). For CE (a, b)‘, neither 
(g(c), a) nor (g(c), b) can be hyperbolic, so g(c) E (a, b)‘. Now c + a - 
Q(c). b is singular, so Q(g(c)) = IQ(c). Hence g E GO,(K) with mul- 
tiplicator 12. 1 

Let us now write G = SGO,( K) and Go = SO,(K) and let F< SL,(K) 
such that G,<F but F4 G if n>3 and G<F if n=2; we show that 
F= SL,(K). As G does not act transitively on the l-dimensional subspaces 
of V, it is clear that G # SL,(K). 

2. THE CASE n > 3 

We assume throughout this section that n > 3. 

PROPOSITION 1. There exists f E F\(F n G) and a non-zero singular vec- 
tor x E V such that f(x) = x. 

Proof We begin by proving the statement of the proposition when 
n = 3 and use it for n 2 4. As Witt’s theorem (cf. [ 1, p. 711) may be amen- 
ded to show that G, acts transitively on the non-zero singular vectors, it 
will suffice to find f and x such that f(x) is singular. 

Suppose that n = 3 and let h E F\(Fn G); then h does not normalise Go. 
Let z be the central element of O,(K) taking v to -v for all VE V, then as 
O,(K) is generated by its symmetries (cf. [3]), {la: c a symmetry} is a 
generating set for G,. Thus for some symmetry 0, lh-‘oh $ Go; moreover 
lh-‘oh 4 G because otherwise the fixed space of h-‘ah, having dimension 2, 
would contain a non-singular vector implying that h- ‘ah and therefore 
lhk’ah has multiplicator 1, i.e., that lh -‘ah E Go, a contradiction. Let W be 
the fixed space of hk’ah. If W contains a non-zero singular vector, then we 
may take f = lh-‘ah. Otherwise W is anisotropic and hence non-isotropic. 
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Let c1 be the symmetry centred on W’ and let h, =a,hP’oh~F\(Fn G), 
then W is the fixed space of h, which must therefore be a transvection cen- 
tred on a vector in W. Let v E W’\(O), write h,(v)=v+w where WE Wand 
let u E (w )’ n w{O}; then (u, v, w} is an orthogonal base for V. Let 
USE (u, v)\(v) such that II,,+ w  is singular; except when K= GF(3) and 
Q(w)=Q(u)= -Q(v) (in which case, as v+w and v+2w=h,(v+w) are 
both singular, we may take f = h, and x = v + w) u0 exists because either 
(u, v ) is hyperb o ic 1 and therefore contains a vector 4 with Q(6) = -Q(w) 
or (u, v ) is anisotropic in which case v > 1 implies that (u, v ) contains a 
vector Q with Q(i) = -Q(w), and except when K= GF(3) and (u, v) is 
hyperbolic (where if Q(w)= -Q( u we may take u0 = u) the irreducibility ) 
of the action of 0( (u, v ) ) on (u, v ) ensures that there is a vector in 
(u, v)\(a) with the properties of 8. Now let go be the symmetry centred 
on II,; then h,ra,h,roO is a non-trivial transvection centred on w  and hav- 
ing fixed space (w, uO). Thus we may take f= h, UJ,,~, rug and x = w  + II,,. 

Suppose now that n b 4 and let h E F\(Fn G); then h does not normalise 
G,,. As Go is generated by involutions with fixed space dimension n - 2 (cf. 
[ 3]), there is such an element g for which h ~ ‘gh 4 G,. Any element of G 
whose fixed space is not totally singular fixes a non-singular vector, i.e., has 
multiplicator 1 and therefore lies in Go; as the fixed space of h - ‘gh has 
dimension n - 2, it can only be totally singular if n - 2 < v <n/2, i.e., n = 4 
and v = 2, so with the one possible exception, h -‘gh 4 G. If n = 4 and v = 2, 
then a refinement of the argument is required: another generating set for G, 
is the set of hyperbolic rotations, i.e., elements whose fixed spaces are the 
conjugates of hyperbolic 2-dimensional subspaces (cf. [3]), which in this 
case implies that the fixed spaces are themselves hyperbolic 2-dimensional 
subspaces. Suppose that h-‘Gob 6 G and that g, is a hyperbolic rotation 
with h&‘g,h$ G,,, and let P be the fixed space of g,; then h-‘P, the fixed 
space of hp’g,h, must be totally singular. For any g,EG,, h-‘g,hE G 
implies that hp ‘g,h . h-‘P = hk’g,P is totally singular; as G, acts trans- 
itively on the hyperbolic 2-dimensional subspaces (from Witt’s theorem) it 
follows that h-‘P, is totally singular for any hyperbolic 2-dimensional sub- 
space P,. But any vector lies in a hyperbolic 2-dimensional subspace (cf. 
[4]) implying that every vector of he’ V is singular, which is absurd. Hence 
h -‘Gob 4 G and we may choose an involution g as above with h ~ ‘gh 4 G. 

Let h,=h-‘gh and let W be the fixed space of h,; then dim W=n-2 
and h, is an involution. If W contains a non-zero singular vector then we 
may take x to be such a vector and take f = h,. Otherwise W is 
anisotropic, hence non-isotropic, and V= WCB W’. Let u E W, v E W’ be 
non-zero vectors such that u +v is singular (such exist since not every 
singular vector can lie in W’); then u and v are non-isotropic, and h,(v) = 
-v + w  for some w  E W (as h, is an involution). Let 1 E G, be the map with 
fixed space W taking z to -z for all ZE IV’, let h,=zh,, let U, be a 
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2-dimensional subspace of W containing u and w  (U, is necessarily non- 
isotropic) and let U = U, + (v); then dim U= 3, U is non-isotropic but not 
anisotropic, and h2 U = U. Now consider the restriction 6, of h, to U, & 
fixes each vector of U1 and takes v to v + w, and so has determinant 1. Let 
SO,(K) and SGO,(K) be respectively the special orthogonal and special 
general orthogonal groups of the restriction of Q to U. If &E SGO,(K) 
then &(x) is singular for any singular vector x E U so we may takef= h,. 
Otherwise SO,(K) < (SO,(K), I$) 4 SGO,(K) and we may apply the case 
n = 3 with (SO,(K), &) in place of F, giving an element?of (SO,(K), &) 
(withT#SGO,(K)) that fixes a non-zero singular vector of U. As SO,(K) 
may be identified with the subgroup SO(U) of Go, it follows that 7 is the 
restriction of some f~ (SO(U), h,) (with f$ G), i.e., f~ E\(Fn G) and f 
lixes a non-zero singular vector, as required. 

PROPOSITION 2. If K # GF(3) then there is a transvection in F whose cen- 
tre is a non-zero singular vector x and whose axis is (x>‘, 

Proof Let x be a non-zero singular vector for which there exists 
feE\(Fn G) such that f(x) = x. Let G,, = Stab,,(x), let G = Stab,(x) 
and let P= Stab,(x); then F 4 G. We consider the orbits of P acting on 
the l-dimensional subspaces of V. The orbits of G, other than { (x) } lie in 
two classes, %‘, and ‘%;, consisting respectively of those inside and those 
outside (x)‘. By Witt’s theorem there is one orbit Q of singular l-dimen- 
sional subspaces in %$ and one orbit of non-singular l-dimensional sub- 
spaces for each element of K*/(K*)2, i.e., if u and v are non-singular vectors 
outside (x )‘, then (u ) and (v ) are in the same orbit of G, if and only if 
Q(u)/Q(v) is a square in K; any hyperbolic 2-dimensional subspace con- 
taining x but not lying in (x)’ contains a representative of each orbit in 
%$. In %‘1 we need only note that if VE (x>‘\(x), then (v) and (v+~x) 
are in the same orbit of G,, for all 1 E K and that if v 2 2, then there is one 
orbit A of singular l-dimensional subspaces, except when n = 4 in which 
case there are two, A, and A,, corresponding to the totally singular 
2-dimensional subspaces of V containing x. We show that under F the orbit 
52 is joined to another orbit of ‘&. 

Suppose first that P does not fix (x)‘, i.e., for some h E P and some 
VE (x)‘\(x), h(v)4 (x)‘; then h(v, x) = (h(v), x) is hyperbolic. Thus 
the l-dimensional subspaces (v + 1x) (2 E K) lie in the same orbit of c?,, 
and (h (v + ix ): 3, E K} is a subset of 9YZ containing a representative of each 
orbit of w2, Hence under F, the orbit of G, containing (v) is joined to each 
orbit of %‘*, from which it follows that all the orbits in ‘%‘* are joined 
under E 

Suppose now that F fixes (x)‘; then P fixes @ and y. If v = 1 then 
D u { (x ) } is the set of all singular l-dimensional subspaces of V and by 
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Lemma 1 cannot therefore be fixed by F, so Q must be joined to some 
other orbit in V&. If v 3 2 and n > 4 (resp. v = 2 and n = 4) and A (resp. 
A,uA,)islixedby~,thenasSZuAu{(x)} (resp.QuA,uA,u{(x))) 
is the set of singular l-dimensional subspaces of I’, it follows that p does 
not fix Q and so joins Q to some other orbit in VZ. If h E P and (v) E A 
(resp. (v) E A, u A*) such that h(v) $ A (resp. h(v) C$ A, u A*), then there 
is a singular vector w  such that B(x, w) #O but B(v, w) =O. All but one 
(i.e., at least three) of the l-dimensional subspaces of (v, w  ) lie in 9, but 
as h(v) is non-singular, h( v, w  ) has at most two singular l-dimensional 
subspaces, so h maps an element of Q to a non-singular l-dimensional sub- 
space, i.e., F joins D to another orbit in %$. 

Let fi E P and let y be a singular vector outside (x)’ such that f,(y) is 
non-singular and outside (x )‘. Then (x, y ) and (x, fi( y ) ) = f, (x, y ) are 
both hyperbolic, so by Witt’s theorem there exists g, E G, such that 
g,f,(x, y) = (x, y); there further exists ge Stab,,(x, y) such that 
gg,f,(x)=x. We can now write gg,f,(y)=ax+fly with a,j3#0 (asf,(y) 
is non-singular). Let 5 EK\{O, 1, -l}, let g, E SO((x, y)) be the map 
(x,Y)H(SX Y’Y) and let .f2=g;1kglfl)-1 g2gglfl; then fAx)=x, 
.MY)=Y+r-Y5-5-‘) ax and for z E (x, y)‘, f2(z) = z + yx + 6y where 
y,6~Kdependon~.Letr~SO((x,y))bethemap(x,y)~(-x, -y)and 
let f3 = Ifilfi; then f3(x)=x,f3(y)=y+2c-1(<-<-1)ax and for 
z E (x, y)‘, f3(z) = z + qx where v] E K depends on z. Let f4 = zf3 rf3; then 
f4(x)=x,f4(Y)=Y+45?(5-5-‘) ax and ,&(z) = z for all z E (x, y )‘. As 
45p1(t-t-1)aZ0,f4 is a transvection whose centre is x and whose axis 
is (x)‘. 1 

PROFWITION 3. rfK#GF(3), then F=SL,(K). 

ProoJ Let z be a transvection in F with centre x (non-zero and 
singular) and axis (x)‘, let y be a singular vector such that B(x, y) = 1 and 
write z(y) = y + Ax where 1 E K\{ O}. For p E K*, let rP be the transvection 
with centre x and axis (x)’ that takes y to y + plx, and let K, = {ALE K*; 
T,EF} u (0); then as 7;’ =zelr and z~,,z~,,=z,,+~,,, K, is an additive sub- 
group of K. For 5 E K*, let g, E SO( (x, y)) be the map (x, y)~ (5x, <-‘y); 
then wg, ~ 1 = rc2 E F, so K, contains every square in K. As any element of 
K may be written as the difference of two squares, it follows that K, = K. 
Hence F contains every transvection with centre x and axis (x)‘, i.e., 
W(x), (x)‘)dF. 

As Go acts transitively on the non-zero singular vectors of V and as 
gX( (x), (x)‘) g-l =X( (g(x)), (g(x))‘), it follows that F contains every 
transvection whose centre is singular and whose axis is conjugate to the 
centre. Thus if F, is the subgroup of F consisting of all the elements that fix 
(x, y ) and fix every vector in (x, y )‘, then F, contains X( (x ), (x )‘) and 
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X( (y ), (y )‘). Thus F, acts transitively on the l-dimensional subspaces of 
(x, y) and if WE (x, y)\(O), then F contains X((w), (w) + (x, y)‘)= 
Jx(<x), (x>‘W1 where f~ F, such that f (x ) = (w ). Choose any 
non-singular vector v E (x, y )‘, let UE (x, y) such that Q(u)= Q(V), 
let WE <x, y> n (u)‘\(O) and let g, eSO((u, v)) be the map 
(u,v)H(-v,u);theng,X((w), (w)+(x,y)‘)g;‘<Fandisasubgroup 
of root type with centre (w) and axis g,((w) + (x, y}‘) # (w) + (x, y)‘. 
Hence if i: is the subgroup of F generated by the subgroups of root type of 
F, then (w ) is a centre for E with more than one axis. 

By Result 3, to show that E= S&(K) and hence that F= SLJK), it 
remains to show that E is irreducible. Let U be a non-zero subspace of V 
fixed by p; then as for any non-zero singular vector a, X((a), (a)‘) fixes 
U if and only if either a E U or U& (a)‘, every singular vector in V lies in 
either U or U’. As the singular vectors span V, dimensional considerations 
imply that U is non-isotropic, so I/= U@ u’; moreover U cannot be 
anisotropic. As the sum of non-zero singular vectors of U and U’ would be 
a singular vector lying outside both, u’ must be anisotropic and so every 
singular vector lies in U. Hence U = I/ and F = SL,(K). 1 

PROPOSITION 4. Zf K = GF( 3), then F = SL,( K). 

Proof. We argue by induction on n. If n = 3, then, given that 
SGO,(K) = SO,(K) for K= GF(3), F= S&(K) by Result 2. This means 
that if n > 4 and if we could find a non-isotropic (n - l)-dimensional sub- 
space U of V and an element of F,(Fn G) fixing U and every vector in U’, 
then F would contain SL,- ,(K) acting as the special linear group on U 
and as the identity on u’. Thus there would be a centre for F in U with 
more than one axis containing U’; moreover F would act transitively on 
the l-dimensional subspaces of V, so proceeding as in the proof of 
Proposition 2, Result 3 would imply that F= SLJK). Notice that 
SGOJK) = SO,,(K) when n is odd and SO,(K) is a subgroup of SGO,(K) 
of index 2 when n is even. 

Suppose that n > 4 and that the statement of the proposition is true for 
spaces of dimension <n. As in the proof of Proposition 2, there existsfg F 
such that f(x) = x and f(y) = GIX + fly, where x and y are singular vectors 
such that B(x, y) # 0 and where a, /I E K*; we may assume that B(x, y) = 1. 
We first show that there exists a non-singular vector v and an element 
h E F\(Fn G) such that h fixes v but not (v)‘. If CI = B = -1, then we may 
take v=x-y and h=f where i~SO((x,y)) takes x and y to -x 
and -y, respectively; if c1= 1, fl= -1, then we may take v = x + y and 
h = if with i as above. If fl= 1, if p E G, is the product of symmetries 
centred on x - y and a non-singular vector in (x, y )’ and if h = 
(pfp)-‘f(pfp)=pf-‘pfpf then h(x+y)=(cr-1)x-ay and h(x-y)= 
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-(a+l)x-ay;thusifa=lwemaytakev=x-yandifa=-lwemay 
take v = x + y, and v and h have the required properties. 

Now consider the map & on (v)’ obtained by letting h(w) (w E (v)‘) be 
the (v)’ component of h(w), and let G,,, G and E? be respectively the 
special orthogonal, special general orthogonal and special linear groups on 
(v)’ (with respect to the restriction of Q where appropriate); then LEE? 
and G, has the same action as SO( (v)‘). 

If fin G,, then we can multiply h by an element of SO( (v)‘) to obtain a 
non-trivial transvection h, centred on v; we may now find a non-singular 
vector u E (v)’ that lies in the axis of h,, so that if U = (u)‘, then U is an 
(n - 1)-dimensional non-isotropic subspace fixed by h, E F\(Fn G) with 
each vector in U’ fixed by h,; as indicated above, this leads to the con- 
clusion that F = SL,( K). 

If &E G\G,, then as (v)’ is spanned by non-zero singular vectors and as 
G, acts transitively on those non-zero singular vectors, there is such a vec- 
tor w  with h(w)+ (v)’ and there is an element ~EG~ (corresponding to 
some gE SO( (v)‘)) such that g&w) = w, i.e., gh(w) = w  + Av with A= )1. 
But now (gh)* fixes v without fixing (v)’ (so (gh)*$ G), and the 
corresponding element of r? is (g&)’ which lies in G,. Thus we can now 
apply the argument from the previous case, with (gh)* in place of h. 

Finally, if fig G, then by induction (& G,) = fi. Thus given an 
orthogonal base {vi, v2,..., v,~,} for (v)’ with Q(v,) = -Q(v2) = Q(V), 
there exists A, E (/;, Go), corresponding to some h, E (h, SO( (v)‘)), such 
that h,(v,)=v,, h1(v2) = -v, and L,(v,) =vi for i2 3. It follows that 
h,(v)=v,h,(v,)=v,+A,v,h,(v,)= -v,+A,v and hl(vi)=vj+Aiv (i>3) 
for some A,, A2 ,..., A,-, E K. Therefore h3(v) = v, h3(v,) = -v2 + 12v, 
h3(v2)=v,-A,v,h3(v,)=vi (i>3) and v+v, is singular but h3(v+v2)= 
(1 --Il,)v+v, is non-singular, so h3$G. We now take U= (v,~ ,)‘. The 
subspace U is non-isotropic of dimension n - 1, and h3 fixes U and every 
vector in U’ = (v,~, ), so as indicated at the beginning of the proof, an 
induction argument leads to the conclusion that F= SLJK). 

We have proved that if F< SL,(K) and G,, 6 F but F 4 G, then 
F= SLJK). In other words, any proper subgroup of SL,(K) containing 
SO,,(K) lies in SGO,(K). Thus we have proved Theorem I. 1 

Let M, be the subgroup of M(Q) consisting of the multiplicators of 
elements of SGO,(K). 

COROLLARY TO THEOREM I. rf n 2 3, then SGO,(K) is a maximal sub- 
group of SL,(K), and the proper subgroups of SL,(K) containing SO,,(K) are 
in one-to-one correspondence with the subgroups of M, 

ProoJ The maximality of SGO,(K) in SL,(K) is immediate from 
Theorem I. 
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Let 0: G + M1 be the map taking g to its multiplicator; then 8 is an 
epimorphism with kernel G,, so that the subgroups of G containing G, are 
in one-to-one correspondence with the subgroups of M,. By Theorem I, 
the proper subgroups of SL,(K) containing G, lie in G, and the result 
follows. 1 

3. THE CASE n = 2 

We now assume that n = 2; then G < F. Let x and y be singular vectors 
such that B(x, y) = 1; we shall write the elements of SL,(K) as 2 x 2 
matrices with respect to the base {x, y > of V. Let 

where L E EC\(O); then any element of G may be written as either g, or gg, 
for some 1 E K\ { 0) and hj. normalises G. Alternatively G may be charac- 
terised as the subgroup of SL,(K) consisting of the matrices with two zero 
entries. 

PROPOSITION 5. F contains a transvection centred on x, except when 
lKl< 11. 

Proof. Let fo F\G. If f has a zero entry, then by multiplying f by 
suitable elements of G we may readily construct a transvection centred on 
x, so we may suppose that all the entries of f are non-zero. Writing 
f = (&), if fil = p, then we may replace f by ga ‘f and thus assume that 
fi, = 1. Let y = fiz ; then hy ‘Fh, contains a transvection centred on x if and 
only if F does, so we could replace F by h; lFh, and f by h; ‘fh,. Thus we 
may assume that fil = fiz = 1, so 

for some a E K\{O, - 11. Let K, be the prime subfield of K and let K,(a) be 
the minimal subfield of K containing a; then SGO,(K,,(a)) and SL,(KJa)) 
may be embedded in G and SL,(K), respectively, as groups of matrices 
with respect to the base {x, y}. Hence we need only construct a transvec- 
tion centred on x in (f, SGO,(K,(a))). Suppose that K,, # GF(3) and that 
a# -4, -2, 1, 3 and let 

f * =f - k(;?,m, f -k(ti+4/u+2)fg3,4f -lb& l/a-3)fgg(a+ 1)/d 
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Then writing f * = (fi;c) we claim that J’& = 0 and that j”Ti = 0 if and only if 
p(a) = 0 for some non-zero polynomial pi &[t]. First note that in 
proving the claim we may replace elements g?,,& by 

A Y2 0 
g,/a = o p . 

( > 

Next let fl=f~1g(2,a)f-‘~(1+4,1+2) and let f2=ht3~4f-1~~r-l/a-33) 
fgkt (a+ 1)i2f; then 

f = (a+4)*(a3+4a2+8a+4) -(a+2)4 
1 -a(a + 4)* (a + 2)* a(a + 4)(a + 2)* 

and 

-(a-1)4(9-7a)+7(a-3)2(4a2-(a+1)3) 
fi=(7a(a+l)(a-l)4+(7a+16)(a-3)2(4a2-(a+l)3) 

12(a+l)(a-1)2(a-3) 

) 12(a+l)(a-l)*(a-3)(a+4) ’ 

Asfi f2 is a scalar multiple off * we see that indeed f f2 = 0 and that f T, = 0 
if and only if p(a) = 0 where p(t) E K,,[t] and p(O) = -2*. 32. In fact 

p(t) = 32[3t6 + 9t5 - 4t4 - 23t3 - 241t* - 228t - 72-J 

but we don’t need this. 
Hence if K0 # GF(3), then f * has exactly one zero entry and so F con- 

tains a transvection centred on x, except when a = -4, - 2, 1, 3 or a root 
of p(t). 

Suppose that K,, = Q, let L E x\{O, 1, - 1 } such that A(a + 1) - II- ‘a, 
A-‘(a+ 1)-Aa#O and let p=(A(a+ 1)-A-la); then 

f-'gl.f= ( 
A(a+ 1)-A-la (i-A-‘)(a+ 1) 

-(;I-K’)a A-‘(a+ 1)-La > 

so g; ‘f -‘gl f E F\G. As at the beginning of this proof we may consider 
h, g;'f -ig,jrfh,’ in place of g;’ f -‘g, f and h,Fh;’ in place of F, where 
q=p[(A-Z’)(a+ l)]-‘. Now 

k,g;'f-'g,fh,' 

( 
1 1 = 

-(A-Iw-1)2a(a+1) l-(A-A-‘)*a(a+l) > 

so we may construct a transvection centred on x in h,Fhq ’ (and thus also 
in F) unless -(A-A-‘)‘a(a+ 1) is one of -4, -2, 1, 3 or is a root ofp(t). 
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But there are an infinite number of possible values of (2 -A-‘)*. Hence F 
contains a transvection centred on x. 

If K0 is finite of characteristic > 11 and if a = -4, -2, 1, 3 or a root of 
p(t), then K,(a) is finite. By Result 1, SGO,(K,(a)) is therefore maximal in 
SL,(K,(a)), so (A SGO,(K,(a))) contains a transvection centred on x. 
Similarly if K0 = GF(5), GF(7) or GF( 11) and either K is finite, or c( is a 
root of p(t) but CI $ K,, then we can apply Result 1. Suppose that 
5 6 ( KO( < 11, that CI E K0 and that K is infinite; then there exists I E K such 
that [K,(I): K0 J > 4. Noting that n(a + 1) -J-ICC, I-‘(cc + 1) - Acr # 0, we 
may construct h, g; ‘f- ‘gnfh; I as in the case K, = Q. Then since 
-(A-A-‘)* a(a + 1) 6 K,, h,Fh;’ (and thus also F) contains a transvec- 
tion centred on x. 

Finally, suppose that K,, = GF(3). If K is finite, then F contains a trans- 
vection centred on x, by Result 1. If K is infinite, then as above, for some 
AEK, [K,,(A):K,,]>4 and so if aEKO, then -(A-A-‘)*tl(tl+l)#K,,. 
Thus we may assume that c( # KO. Let 

f ** =f -‘g,*- I,l+lJfgJ 

ThenS,:* = 0; and f *f* = 0 if and only if 

a4-a3+a2+ 1 =o. 

Hence f ** has exactly one zero entry and so F contains a transvection cen- 
tred on x, except when c( is a root of the polynomial 

PI(f) = t4 - t3 + t2 + 1. 

Now pi(r) is irreducible over K,, so if CI is a root of pi(t), then K,(a) is a 
finite field of order 81; hence by Result 1, (A SGO,(K,(a))) contains a 
transvection centred on x. 1 

Remark. In the proof of Proposition 5, there appears a product of 
twelve matrices; this approach could be simplified or avoided in many 
cases, but would still appear necessary when K is a field of characteristic 0 
in which - 1 is a non-square. 

Proof of Theorem II. By Proposition 5, there is a transvection T E F 
centred on x. An argument used in the proof of Proposition 3 may now be 
applied: as F contains g5 rg; l for each 4: E K\ (0) and as every element of K 
may be expressed as the difference of two squares, F contains every trans- 
vection centred on x. Therefore Stab,x acts transitively on the l-dimen- 
sional subspaces of V other than (x), so F acts transitively on the 
l-dimensional subspaces of V, and hence F contains every transvection in 
Z,(K). As &C,(K) is generated by its transvections, it follows that 
F= X,(K), so G is maximal in X,(K). 1 
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4. RELATED RESULTS 

In this section we consider some groups associated with SGO,(K), 
namely, GO,(K), PGO,(K), PSGOJK), SO,(K) and HO,(K), and con- 
sider when they may be maximal in G&(K), PGL,(K), J’S&,(K), S&,(K) 
and P%,(K), respectively. We state conditions for maximality and inter- 
pret these conditions for algebraically closed fields and for R and GF(q). 
We denote the centre of G&(K) by Z and recall that it lies inside GO,(K). 

Let J be the subgroup of K* consisting of the determinants of elements 
of GO,(K). If J< K*, then GO,,(K) cannot be maximal in GL,(K), being 
contained in the subgroup {g E: GLJK): det g E J} of GL,(K). If J= K* 
and if GO,,(K) < E < GL,(K), then SGO,(K) < En SLJK), so that GO,,(K) 
is maximal in GL,(K) if SGOJK) is maximal in SL,(K); in the live excep- 
tional cases of Theorem II, close inspection of Dickson’s list of subgroups 
of P&(q) (cf. 121) or of Wagner’s clearer description of these subgroups 
(cf. [12]) yields the maximality of PGO,(q) in PGL,(q) when q = 7,9 or 
11, but shows that PG0,(3) < D,< PGL,(3) and that PG0,(5) < S, < 
PGL,(S), where D4 is the dihedral group of order 8. We now need to deter- 
mine when J= K*. If n is odd, then GO,,(K) = Z. SO,(K), so J consists of 
the nth powers of elements of K*. If H is even, say, n = 2m, then J consists 
of the elements + il” with I E M(Q) (cf. [4]). Thus from Theorems I 
and II, we have 

THEOREM III. If n is odd, then GO,(K) is maximal in GL,(K) if and only 

if 

{I”:kK*}=K*. 

Zf n is even, with n = 2m, and if K# GF(3), GF(5) when n = 2, then 
GO,(K) is maximal in CL,(K) if and only if 

{AM, --A”: kM(Q)} = K*. 

As Z < GO,,(K), the following result is immediate. 

THEOREM IV. PGOJK) is maximal in PGLJK) if and only if GO,(K) is 
maximal in GL,(K); PSGO,(K) is maximal in PSL,(K) if and only if 
SGO,(K) is maximal in SLJK). 

Now consider SO,(K). Clearly SO,(K) is maximal in SL,(K) if and only 
if SGO,(K) is maximal in SL,(K) and every element of SGOJK) has mul- 
tiplicator 1. Noting the information given about J above and noting that if 
n = 2 and K = GF(q), then - 1 E M(Q), we have the following: 
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THEOREM V. If n is odd, then SO,(K) is maximal in SL,(K) $ and only 
ty 1 has no non-trivial nth roots in K. 

Ifn is even, with n = 2m, then SO,,(K) is maximal in SL,(K) if and only if 
-1 has no mth roots in M(Q) and 1 has no non-trivial mth roots in M(Q). 

An equivalent formulation of the second part of Theorem V would be 
that if n is even, then SO,(K) is maximal in SL,(K) if and only if 1 has no 
non-trivial nth roots in M(Q). 

A more interesting question is that of the maximality of PSO,(K) in 
PSL,(K). Denoting Zn SL,(K) by 2,) we consider the equivalent question 
of the maximality of SO,(K). 2, in SL,(K), which then becomes a question 
of whether or not SGO,(K) = SO,(K) * 2,. If n is odd, then the equality is 
immediate. Suppose that n is even, say, n = 2m, and let M, and M2 be the 
subgroups of M(Q) consisting of the multiplicators of elements of SGO,(K) 
and SO,,(K). Zi, respectively; then M, < (K*)*. Given the structure of J, 
we may characterize 44, as the subgroup of M(Q) the mth powers of whose 
elements are + 1, and we may characterize M, as the subgroup of (K*)* 
the mth powers of whose elements are 1. If g E SGO,(K) with multiplicator 
I, then g6 SO,(K)* 2, if and only if ;I E Ivi,. Thus if n = 2m, then 
SGO,(K) = SO,,(K) * Z1 if and only if - 1 has no mth roots in M(Q) and 
every mth root of 1 in M(Q) is a square in K*. As a direct consequence we 
have the following result, noting that - 1 E M(Q) when n is even and 
K = GF(q). 

THEOREM VI. If n is odd, then PSO,(K) is maximal in PSL,(K). 
If n is even, with n = 2m, then PSO,(K) is maximal in PSL,(K) if and 

only if - 1 has no m th roots in M(Q) and every m th root of 1 in M(Q) is a 
square in K*. 

We noted in Section 1 that if K= C, then M(Q) = K*; more generally, 
the same is true of any algebraically closed field. From Theorems III, 
V and VI we obtain 

THEOREM VII. Let K be algebraically closed. Then 

(i) GO,,(K) is maximal in GL,(K); 

(ii) SO,(K) is maximal in SL,(K) ifand only ifn is a power of an odd 
prime p and K has characteristic p; 

(iii) PSO,( K) is maximal in PSL,(K) if and only if n is odd. 

If K = R, then M(Q) = K* if v = n/2 and (K*)’ otherwise. We deduce 

481/96/l-13 
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THEOREM VIII. Let K= R. Then 

(i) GO,(K) is maximal in GL,(K); 

(ii) SO,,(K) is maximal in SL,(K) if and only if v <n/2; 

(iii) PSO,(K) is maximal in PSL,(K) if and only if v < n/2. 

Now suppose that K= GF(q); then K* is cyclic of order q - 1. Let a be a 
generator of K*. For any positive integer k, there are no non-trivial kth 
roots of 1 in K* if and only if (k, q - 1) = 1; equivalently {Ik: I E K*} = K* 
if and only if (k, q - 1) = 1. Both these statements may be deduced from 
consideration of when the map K* -+ K*, AH Ak is a bijection. Suppose 
that n is even, say, n = 2m; then M(Q) = K*. Let d = (m, q - l), 
d, = (m, (q - 1)/2). In determining when {I”, -A”: 1 E K* } = K*, there are 
several possibilities to consider; note that 1 {A”: 1 E K* > ( = (q - 1)/d. If 
d>2, then d,> 1 and {Am, -A”:AEK*}#K* because 2(q-l)/d<q-1. 
If d=2=d,, then m/2 is odd, so (a’q-1”4)m=(-l)m’2= -1, whence 
A”= --pm for some A,,~EK* and so {~““:IEK*}n(-~“:1EK*}#Rf; 
thus {Am, -A”:A~K*}#K*.Ifd=2andd,=l,then(q-1)/2isoddbut 
m is even, so - 1 has no mth roots in K*, whence {Am: A E K*} n 
{-A”:~EK*}=@, i.e., {A”, -A”:AEK*}=K*. If d=l, then 
{A”‘: /z E K*} = K*, so certainly {A”‘, -1”: /1. E K*} = K*. Thus {Am, -1”: 
A E K* } = K* if and only if d, = 1. Next we note that, as (2m, q - 1) 3 2, 
there will always be either an mth root of - 1 in M(Q) or a non-trivial mth 
root of 1 in M(Q). It remains to determine when, if ever, - 1 has no mth 
roots in M(Q) and every mth root of 1 in M(Q) is a square in K*. If m/d, 
is odd, then for r = (q - 1)/2d2, (cC)~ = (- l)“jd2 = -1, so - 1 has an mth 
root in M(Q). If m/d, is even, then (q - 1)/2dz is odd and with 
r=(q-1)/2d2, CC is non-square, but (cC’)~=(~~-~)~~~~~= 1, so 1 has an 
mth root that is a non-square. Hence it is never the case that - 1 has no 
mth roots in M(Q) and that every mth root of 1 in M(Q) is a square in K*. 
From Theorems III, V and VI, we deduce 

THEOREM IX. Let K = GF(q) and let n = 2m when n is even. Then 

(i) Zf n is odd, then GO,,(K) is maximal in GL,(K) if and only if 
(n,q-l)=l. 
If n is even, then GO,(K) is maximal in GL,(K) if and only if 
(m, (q- 1)/2)= 1, and q#3 or 5 when n=2. 

(ii) SO,,(K) is maximal in SL,(K) if and only if n is odd and 
(n, q- l)= 1. 

(iii) PSO,( K) is maximal in PSL,( K) if and only if n is odd. 



SUBGROUPS OF THE SPECIAL LINEAR GROUP 193 

REFERENCES 

1. N. BOURBAKI, “Algebre,” Actual&% Sci. Indust. No. 1272, Chap. IX, Hermann, Paris, 
1959. 

2. L. E. DICKSON, “Linear Groups with an Exposition of the Galois Field Theory,” Teubner, 
Leipzig, 1901. 

3. J. DIEUDONN& “Sur les Groupes Classiques,” 3rd ed., Hermann, Paris, 1967. 
4. J. DIEUDONNB, “La Geometric des Groupes Classiques,” 3rd ed., Springer-Verlag, Berlin, 

1971. 
5. R. H. DYE, On the maximality of the orthogonal groups in the symplectic group in 

characteristic two, Math. Z. 172 (1980), 203-212. 
6. R. H. DYE, Maximal subgroups of G&,(K), S&,,(K), PG&,(K) and PSL,(K) associated 

with symplectic polarities, J. Algebra 66 (1980), l-l 1. 
7. 0. H. KING, Maximal subgroups of the classical groups associated with non-isotropic 

subspaces of a vector space, J. Algebra 73 (1981) 350-375. 
8. J. MCLAUGHLIN, Some subgroups of SL,(F,), Illinois J. Murh. 13 (1969) 1088115. 
9. H. H. MITCHELL, Determination of the ordinary and modular ternary linear groups, 

Trans. Amer. Math. Sot. 12 (191 l), 207-242. 
10. J. A. TODD, “Projective and Analytic Geometry,” Pitman, London, 1947. 
11. B. L. VAN DER WAERDEN, “Gruppen von Linearen Transformationen,” Chelsea, New 

York, 1948. 
12. A. WAGNER, Collineation groups generated by homologies of order greater than 2, Geom. 

Dedicata 7 (1978), 387-398. 


