On Subgroups of the Special Linear Group Containing the Special Orthogonal Group

Oliver King*
School of Mathematics, The University, Newcastle upon Tyne, NE1 7RU, England

Communicated by J. Tits
Received February 25, 1983

Introduction

Let V be an n-dimensional vector space over a field K of characteristic not 2 and as usual let $G L_{n}(K)$ and $S L_{n}(K)$ be the general and special linear groups of V. Let Q be a quadratic form of Witt index $v \geqslant 1$ on V whose associated symmetric bilinear form, given by

$$
B(\mathbf{x}, \mathbf{y})=Q(\mathbf{x}+\mathbf{y})-Q(\mathbf{x})-Q(\mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in V,
$$

is non-degenerate, and let $O_{n}(K), S O_{n}(K)$ and $G O_{n}(K)$ be the orthogonal, special orthogonal and general orthogonal groups of Q.

In [5], Dye showed that if n is even and if \tilde{K} is a field of characteristic 2 , then considered as a subgroup of the symplectic group $S p_{n}(\tilde{K}), O_{n}(\tilde{K})$ is maximal in $S p_{n}(\tilde{K})$ if and only if \tilde{K} is perfect. In [6], he proved the maximality in $S L_{n}(K)$ of $S L_{n}(K) \cap G S p_{n}(K)$ (for $n \geqslant 4$); he denoted the latter group by $S G S p_{n}(K)$. In this paper we consider a situation that may be considered analogous to both of these results. Ideally one would like to prove the maximality in $S L_{n}(K)$ of $S O_{n}(K)$. However, $S O_{n}(K)$ is usually properly contained in its normaliser in $S L_{n}(K)$; the normaliser is $G O_{n}(K) \cap$ $S L_{n}(K)$ which we denote by $S G O_{n}(K)$ (adapting Dye's notation) and call the special general orthogonal group of Q. It will follow from Lemma 1 that $S G O_{n}(K)$ is the stabilizer in $S L_{n}(K)$ of the set of singular 1-dimensional subspaces of V. In Sections 2 and 3 we prove the theorems stated below. In Section 4 we give conditions for $G O_{n}(K)$ to be maximal in $G L_{n}(K)$ and for $S O_{n}(K)$ to be maximal in $S L_{n}(K)$ (Theorems III and V).

[^0]We also consider the projective groups $\operatorname{PSGO}_{n}(K)$ and $\mathrm{PSO}_{n}(K)$ and give conditions for them to be maximal in $P S L_{n}(K)$.

Theorem I. If $n \geqslant 3$, then any proper subgroup of $S L_{n}(K)$ containing $S O_{n}(K)$ lies in $S G O_{n}(K)$.

A Corollary to this theorem is that $S G O_{n}(K)$ is maximal in $S L_{n}(K)$ when $n \geqslant 3$. We are then also able to determine the subgroups of $S L_{n}(K)$ containing $S O_{n}(K)$. Unfortunately, the theorem cannot be extended to the case $n=2$ as $\mathrm{SO}_{2}(\mathrm{~K})$ stabilizes each of two 1 -dimensional subspaces; there thereby arise two reducible subgroups containing $\mathrm{SO}_{2}(\mathrm{~K})$ that don't lie in $S G O_{2}(K)$. Although for finite fields of order >11 it is clear from [2] or [12] that any proper subgroup of $S L_{2}(\mathrm{~K})$ containing $\mathrm{SO}_{2}(\mathrm{~K})$ lies either in $\mathrm{SGO}_{2}(\mathrm{~K})$ or one of the given reducible subgroups, it is not clear that this can be extended to infinite fields. However, in most cases, we can still prove the maximality of $S G O_{2}(K)$ in $S L_{2}(K)$.

Theorem II. If $n=2$, then $S G O_{n}(K)$ is maximal in $S L_{n}(K)$, except when $K=G F(q)$ with $q \leqslant 11$.

Dye comments in [5] that his result there is unusual in that it is "geometric" but not true for all fields of characteristic 2. In contrast, when the characteristic is not 2 there are only exceptions for very small fields. One reason for this difference is that any element of a field of characteristic not 2 may be expressed as the difference between two squares, whereas in the characteristic 2 case the same may only be said of perfect fields.

Our approach is geometric in nature, although there are differences between the cases $n \geqslant 3$ and $n=2$. We show that any subgroup of $S L_{n}(K)$ properly containing $S O_{n}(K)$ but not lying in $S G O_{n}(K)$ (properly containing $S G O_{n}(K)$ if $n=2$) contains a generating set of transvections for $S L_{n}(K)$. In the proof of Theorem II we use the known maximality of $\mathrm{SGO}_{2}(\mathrm{~K})$ in $S L_{2}(K)$ for finite K (see Result 1). The maximality of $S G O_{3}(K)$ in $S L_{3}(K)$ is also known for finite K (see Result 2), although the case $K=G F(3)$ is the only one that we assume.

1. Further Notation and Preliminary Results

Our notation mostly follows [4]. We note only that the conjugate of a subspace U will be written U^{\prime} and that when U is non-isotropic and $E_{n}(K)$ is a subgroup of $G O_{n}(K)$, the subgroup of $E_{n}(K)$ consisting of those elements that fix each vector in U^{\prime} will be denoted by $E(U)$.

The following results are stated in terms of our notation; we follow standard practice in writing, for example, $S L_{n}(K)=S L_{n}(q)$ when $K=G F(q)$.

Result 1 (Dickson [2]). If $K=G F(q)$, then $S G O_{2}(q)$ is maximal in $S L_{2}(q)$ except when $q \leqslant 11$.
Dickson actually lists the subgroups of $P S L_{2}(q)$ (rather than those of $\left.S L_{2}(q)\right)$ and the exceptional cases are more neatly described in this form; that the exceptional cases may be considered by reference to $P S L_{2}(q)$ follows from the fact that $\mathrm{SGO}_{2}(K)$ contains the centre of $S L_{2}(K)$. It may be seen from Dickson's list that

$$
\begin{gathered}
P S G O_{2}(3)<V_{4}<P S L_{2}(3) \\
P S G O_{2}(5)<A_{4}<P S L_{2}(5) \\
P S G O_{2}(7)<S_{4}<P S L_{2}(7) \\
P S G O_{2}(9)<S_{4}<P S L_{2}(9) \\
P S G O_{2}(11)<A_{5}<P S L_{2}(11),
\end{gathered}
$$

where V_{4} is the four group and A_{4}, A_{5} and S_{4} are alternating and symmetric groups. In each case, the given group is maximal in $P S L_{2}(q)$ and contains $\mathrm{PSGO}_{2}(q)$ as a maximal subgroup.

Result 2 (Mitchell [9]). If $K=G F(q)$, then $\mathrm{SGO}_{3}(q)$ is maximal in $S L_{3}(q)$.

A transvection in $S L_{n}(K)$ is a map of the form

$$
: \mathbf{v} \mapsto \mathbf{v}+\rho(\mathbf{v}) \cdot \mathbf{x},
$$

where \mathbf{x} is a non-zero vector in V and ρ is a linear form on V with $\rho(\mathbf{x})=0$; it is said to be centred on \mathbf{x} and to have axis $\rho^{-1}(0)$. For each pair of subspaces $P \subseteq H$ of dimension 1 and $n-1$, respectively, the subgroup of $S L_{n}(K)$ generated by all transvections with $\mathbf{x} \in P$ and $\rho{ }^{1}(0)=H$ will be denoted by $X(P, H)$; this subgroup is sometimes known as a subgroup of root type. If a group generated by transvections contains $X(P, H)$, then P and H are said to be respectively a centre and an axis for that group. As McLaughlin pointed out in [8], the following result is true for any K, even though originally stated only for $G F(2)$.

Result 3 (McLaughlin [8]). If \hat{F} is an irreducible subgroup of $S L_{n}(K)$ generated by subgroups of root type and if $X\left(P, H_{1}\right), X\left(P, H_{2}\right) \leqslant \widehat{F}$ for some P and for distinct axes H_{1} and H_{2}, then $\hat{F}=S L_{n}(K)$.

The general orthogonal group is defined by $G O_{n}(K)=\left\{g \in G L_{n}(K)\right.$: $\left.Q(g \mathbf{x})=\lambda_{g} Q(\mathbf{x}), \forall \mathbf{x} \in V\right\}$ where $\lambda_{g} \in K$ is dependent on g and is called the multiplicator of g. The set of all λ_{g} is a subgroup $M(Q)$ of the multiplicative group K^{*} of K. The elements in $G O_{n}(K)$ with multiplicator 1 form $O_{n}(K)$, and the elements in $O_{n}(K)$ with determinant 1 form $S O_{n}(K)$. As $G O_{n}(K)$ contains the centre of $G L_{n}(K)$, it follows that $\left(K^{*}\right)^{2} \leqslant M(Q)$; if
n is odd, then $M(Q)=\left(K^{*}\right)^{2}$ (cf. [4, p. 77]). If n is even, then the structure of $M(Q)$ is not known in general, but is known in particular cases: if $K=\mathbb{C}$, then $M(Q)=K^{*}$; if $K=\mathbb{R}$, then $M(Q)=K^{*}$ when $\nu=n / 2$ and $\left(K^{*}\right)^{2}$ otherwise; if K is finite, then $M(Q)=K^{*}$.

Lemma 1. $G O_{n}(K)$ is the stabilizer in $G L_{n}(K)$ of the set of singular 1 -dimensional subspaces of V.
Proof. We need only show that if $g \in G L_{n}(K)$ stabilizes the set of singular 1-dimensional subspaces, then $g \in G O_{n}(K)$. Let $\mathbf{a}, \mathbf{b} \in V$ be singular vectors such that $B(\mathbf{a}, \mathbf{b})=1$. As $g(\mathbf{a}+\mathbf{b})$ must be non-singular, $\langle g(\mathbf{a}), g(\mathbf{b})\rangle$ is hyperbolic and, multiplying g by an appropriate element of $O_{n}(K)$ if necessary, we may assume that $g(\mathbf{a})=\mathbf{a}$ and $g(\mathbf{b})=\lambda \mathbf{b}$ for some $\lambda \in K^{*}$; thus $Q(g(\mathbf{v}))=\lambda Q(\mathbf{v})$ for all $\mathbf{v} \in\langle\mathbf{a}, \mathbf{b}\rangle$. For $\mathbf{c} \in\langle\mathbf{a}, \mathbf{b}\rangle^{\prime}$, neither $\langle g(\mathbf{c}), \mathbf{a}\rangle$ nor $\langle g(\mathbf{c}), \mathbf{b}\rangle$ can be hyperbolic, so $g(\mathbf{c}) \in\langle\mathbf{a}, \mathbf{b}\rangle^{\prime}$. Now $\mathbf{c}+\mathbf{a}-$ $Q(\mathbf{c}) \cdot \mathbf{b}$ is singular, so $Q(g(\mathbf{c}))=\lambda Q(\mathbf{c})$. Hence $g \in G O_{n}(K)$ with multiplicator λ. 【

Let us now write $G=S G O_{n}(K)$ and $G_{0}=S O_{n}(K)$ and let $F \leqslant S L_{n}(K)$ such that $G_{0}<F$ but $F \leqslant G$ if $n \geqslant 3$ and $G<F$ if $n=2$; we show that $F=S L_{n}(K)$. As G does not act transitively on the 1 -dimensional subspaces of V, it is clear that $G \neq S L_{n}(K)$.

2. The Case $n \geqslant 3$

We assume throughout this section that $n \geqslant 3$.
Proposition 1. There exists $f \in F \backslash(F \cap G)$ and a non-zero singular vector $\mathbf{x} \in V$ such that $f(\mathbf{x})=\mathbf{x}$.

Proof. We begin by proving the statement of the proposition when $n=3$ and use it for $n \geqslant 4$. As Witt's theorem (cf. [1, p. 71]) may be amended to show that G_{0} acts transitively on the non-zero singular vectors, it will suffice to find f and \mathbf{x} such that $f(\mathbf{x})$ is singular.
Suppose that $n=3$ and let $h \in F \backslash(F \cap G)$; then h does not normalise G_{0}. Let l be the central element of $O_{3}(K)$ taking \mathbf{v} to $-\mathbf{v}$ for all $\mathbf{v} \in V$, then as $O_{3}(K)$ is generated by its symmetries (cf. [3]), $\{\tau \sigma: \sigma$ a symmetry $\}$ is a generating set for G_{0}. Thus for some symmetry $\sigma, h^{-1} \sigma h \notin G_{0}$; moreover $\tau h^{-1} \sigma h \notin G$ because otherwise the fixed space of $h^{-1} \sigma h$, having dimension 2, would contain a non-singular vector implying that $h^{-1} \sigma h$ and therefore $i h^{-1} \sigma h$ has multiplicator 1, i.e., that $h^{-1} \sigma h \in G_{0}$, a contradiction. Let W be the fixed space of $h^{-1} \sigma h$. If W contains a non-zero singular vector, then we may take $f=t h^{-1} \sigma h$. Otherwise W is anisotropic and hence non-isotropic.

Let σ_{1} be the symmetry centred on W^{\prime} and let $h_{1}=\sigma_{1} h^{-1} \sigma h \in F \backslash(F \cap G)$, then W is the fixed space of h_{1} which must therefore be a transvection centred on a vector in W. Let $\mathbf{v} \in W^{\prime} \backslash\{\mathbf{0}\}$, write $h_{1}(\mathbf{v})=\mathbf{v}+\mathbf{w}$ where $\mathbf{w} \in W$ and let $\mathbf{u} \in\langle\mathbf{w}\rangle^{\prime} \cap W\{\mathbf{0}\}$; then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is an orthogonal base for V. Let $\mathbf{u}_{0} \in\langle\mathbf{u}, \mathbf{v}\rangle\left\langle\langle\mathbf{v}\rangle\right.$ such that $\mathbf{u}_{0}+\mathbf{w}$ is singular; except when $K=G F(3)$ and $Q(\mathbf{w})=Q(\mathbf{u})=-Q(\mathbf{v})$ (in which case, as $\mathbf{v}+\mathbf{w}$ and $\mathbf{v}+2 \mathbf{w}=h_{1}(\mathbf{v}+\mathbf{w})$ are both singular, we may take $f=h_{1}$ and $x=\mathbf{v}+\mathbf{w}$) \mathbf{u}_{0} exists because either $\langle\mathbf{u}, \mathbf{v}\rangle$ is hyperbolic and therefore contains a vector $\hat{\mathbf{u}}$ with $Q(\hat{\mathbf{u}})=-Q(\mathbf{w})$ or $\langle\mathbf{u}, \mathbf{v}\rangle$ is anisotropic in which case $v \geqslant 1$ implies that $\langle\mathbf{u}, \mathbf{v}\rangle$ contains a vector $\hat{\mathbf{u}}$ with $Q(\hat{\mathbf{u}})=-Q(\mathbf{w})$, and except when $K=G F(3)$ and $\langle\mathbf{u}, \mathbf{v}\rangle$ is hyperbolic (where if $Q(\mathbf{w})=-Q(\mathbf{u})$ we may take $\mathbf{u}_{0}=\mathbf{u}$) the irreducibility of the action of $O(\langle\mathbf{u}, \mathbf{v}\rangle)$ on $\langle\mathbf{u}, \mathbf{v}\rangle$ ensures that there is a vector in $\langle\mathbf{u}, \mathbf{v}\rangle \backslash\langle\hat{\mathbf{u}}\rangle$ with the properties of $\hat{\mathbf{u}}$. Now let σ_{0} be the symmetry centred on \mathbf{u}_{0}; then $h_{1} l \sigma_{0} h_{1} l \sigma_{0}$ is a non-trivial transvection centred on \mathbf{w} and having fixed space $\left\langle\mathbf{w}, \mathbf{u}_{0}\right\rangle$. Thus we may take $f=h_{1} l \sigma_{0} h_{1} l \sigma_{0}$ and $\mathbf{x}=\mathbf{w}+\mathbf{u}_{0}$.

Suppose now that $n \geqslant 4$ and let $h \in F \backslash(F \cap G)$; then h does not normalise G_{0}. As G_{0} is generated by involutions with fixed space dimension $n-2$ (cf. [3]), there is such an element g for which $h^{-1} g h \notin G_{0}$. Any element of G whose fixed space is not totally singular fixes a non-singular vector, i.e., has multiplicator 1 and therefore lies in G_{0}; as the fixed space of $h^{-1} g h$ has dimension $n-2$, it can only be totally singular if $n-2 \leqslant v \leqslant n / 2$, i.e., $n=4$ and $v=2$, so with the one possible exception, $h^{-1} g h \notin G$. If $n=4$ and $v=2$, then a refinement of the argument is required: another generating set for G_{0} is the set of hyperbolic rotations, i.e., elements whose fixed spaces are the conjugates of hyperbolic 2-dimensional subspaces (cf. [3]), which in this case implies that the fixed spaces are themselves hyperbolic 2-dimensional subspaces. Suppose that $h^{-1} G_{0} h \leqslant G$ and that g_{1} is a hyperbolic rotation with $h^{-1} g_{1} h \notin G_{0}$, and let P be the fixed space of g_{1}; then $h^{-1} P$, the fixed space of $h^{-1} g_{1} h$, must be totally singular. For any $g_{2} \in G_{0}, h^{-1} g_{2} h \in G$ implies that $h^{-1} g_{2} h \cdot h^{-1} P=h^{-1} g_{2} P$ is totally singular; as G_{0} acts transitively on the hyperbolic 2-dimensional subspaces (from Witt's theorem) it follows that $h^{-1} P_{2}$ is totally singular for any hyperbolic 2-dimensional subspace P_{2}. But any vector lies in a hyperbolic 2 -dimensional subspace (cf. [4]) implying that every vector of $h^{-1} V$ is singular, which is absurd. Hence $h^{-1} G_{0} h \leqslant G$ and we may choose an involution g as above with $h^{-1} g h \notin G$.

Let $h_{1}=h^{-1} g h$ and let W be the fixed space of h_{1}; then $\operatorname{dim} W=n-2$ and h_{1} is an involution. If W contains a non-zero singular vector then we may take \mathbf{x} to be such a vector and take $f=h_{1}$. Otherwise W is anisotropic, hence non-isotropic, and $V=W \oplus W^{\prime}$. Let $\mathbf{u} \in W, \mathbf{v} \in W^{\prime}$ be non-zero vectors such that $\mathbf{u}+\mathbf{v}$ is singular (such exist since not every singular vector can lie in $\left.W^{\prime}\right)$; then \mathbf{u} and \mathbf{v} are non-isotropic, and $h_{1}(\mathbf{v})=$ $-\mathbf{v}+\mathbf{w}$ for some $\mathbf{w} \in W$ (as h_{1} is an involution). Let $l \in G_{0}$ be the map with fixed space W taking \mathbf{z} to $-\mathbf{z}$ for all $\mathbf{z} \in W^{\prime}$, let $h_{2}=i h_{1}$, let U_{1} be a

2-dimensional subspace of W containing \mathbf{u} and \mathbf{w} (U_{1} is necessarily nonisotropic) and let $U=U_{1}+\langle\mathrm{v}\rangle$; then $\operatorname{dim} U=3, U$ is non-isotropic but not anisotropic, and $h_{2} U=U$. Now consider the restriction \widehat{h}_{2} of h_{2} to $U ; \widehat{h}_{2}$ fixes each vector of U_{1} and takes \mathbf{v} to $\mathbf{v}+\mathbf{w}$, and so has determinant 1 . Let $\mathrm{SO}_{3}(\mathrm{~K})$ and $\mathrm{SGO}_{3}(\mathrm{~K})$ be respectively the special orthogonal and special general orthogonal groups of the restriction of Q to U. If $\hat{h}_{2} \in S G O_{3}(K)$ then $\hat{h}_{2}(\mathbf{x})$ is singular for any singular vector $\mathbf{x} \in U$ so we may take $f=h_{2}$. Otherwise $\mathrm{SO}_{3}(\mathrm{~K})<\left\langle\mathrm{SO}_{3}(\mathrm{~K}), \widehat{h}_{2}\right\rangle \$ \mathrm{SGO}_{3}(\mathrm{~K})$ and we may apply the case $n=3$ with $\left\langle\mathrm{SO}_{3}(\mathrm{~K}), \hat{h}_{2}\right\rangle$ in place of F, giving an element \hat{f} of $\left\langle\mathrm{SO}_{3}(\mathrm{~K}), \hat{h}_{2}\right\rangle$ (with $\hat{f} \notin \mathrm{SGO}_{3}(\mathrm{~K})$) that fixes a non-zero singular vector of U. As $\mathrm{SO}_{3}(\mathrm{~K})$ may be identified with the subgroup $S O(U)$ of G_{0}, it follows that \hat{f} is the restriction of some $f \in\left\langle S O(U), h_{2}\right\rangle$ (with $f \notin G$), i.e., $f \in F \backslash(F \cap G)$ and f fixes a non-zero singular vector, as required.

Proposition 2. If $K \neq G F(3)$ then there is a transvection in F whose centre is a non-zero singular vector \mathbf{x} and whose axis is $\langle\mathbf{x}\rangle^{\prime}$.

Proof. Let \mathbf{x} be a non-zero singular vector for which there exists $f \in F \backslash(F \cap G)$ such that $f(\mathbf{x})=\mathbf{x}$. Let $\tilde{G}_{0}=\operatorname{Stab}_{\sigma_{0}}\langle\mathbf{x}\rangle$, let $\tilde{G}=\operatorname{Stab}_{G}\langle\mathbf{x}\rangle$ and let $\tilde{F}=\operatorname{Stab}_{F}\langle\mathbf{x}\rangle$; then $\tilde{F} 末 \tilde{G}$. We consider the orbits of \tilde{F} acting on the 1 -dimensional subspaces of V. The orbits of \tilde{G}_{0} other than $\{\langle\mathbf{x}\rangle\}$ lie in two classes, \mathscr{C}_{1} and \mathscr{C}_{2}, consisting respectively of those inside and those outside $\langle\mathbf{x}\rangle$ '. By Witt's theorem there is one orbit Ω of singular 1-dimensional subspaces in \mathscr{C}_{2} and one orbit of non-singular 1-dimensional subspaces for each element of $K^{*} /\left(K^{*}\right)^{2}$, i.e., if \mathbf{u} and \mathbf{v} are non-singular vectors outside $\langle\mathbf{x}\rangle^{\prime}$, then $\langle\mathbf{u}\rangle$ and $\langle\mathbf{v}\rangle$ are in the same orbit of \widetilde{G}_{0} if and only if $Q(\mathbf{u}) / Q(\mathbf{v})$ is a square in K; any hyperbolic 2 -dimensional subspace containing \mathbf{x} but not lying in $\langle\mathbf{x}\rangle^{\prime}$ contains a representative of each orbit in \mathscr{C}_{2}. In \mathscr{C}_{1} we need only note that if $\mathbf{v} \in\langle\mathbf{x}\rangle^{\prime} \backslash\langle\mathbf{x}\rangle$, then $\langle\mathbf{v}\rangle$ and $\langle\mathbf{v}+\lambda \mathbf{x}\rangle$ are in the same orbit of \widetilde{G}_{0} for all $\lambda \in K$ and that if $v \geqslant 2$, then there is one orbit Δ of singular 1 -dimensional subspaces, except when $n=4$ in which case there are two, Δ_{1} and Δ_{2}, corresponding to the totally singular 2 -dimensional subspaces of V containing \mathbf{x}. We show that under \tilde{F} the orbit Ω is joined to another orbit of \mathscr{C}_{2}.
Suppose first that \tilde{F} does not fix $\langle\mathbf{x}\rangle^{\prime}$, i.e., for some $h \in \tilde{F}$ and some $\mathbf{v} \in\langle\mathbf{x}\rangle \backslash\langle\mathbf{x}\rangle, h(\mathbf{v}) \notin\langle\mathbf{x}\rangle^{\prime} ;$ then $h\langle\mathbf{v}, \mathbf{x}\rangle=\langle h(\mathbf{v}), \mathbf{x}\rangle$ is hyperbolic. Thus the 1 -dimensional subspaces $\langle\mathbf{v}+\lambda \mathbf{x}\rangle(\lambda \in K)$ lie in the same orbit of \tilde{G}_{0}, and $\{h\langle\mathbf{v}+\lambda \mathbf{x}\rangle: \lambda \in K\}$ is a subset of \mathscr{C}_{2} containing a representative of each orbit of \mathscr{C}_{2}. Hence under \tilde{F}, the orbit of \widetilde{G}_{0} containing $\langle\mathbf{v}\rangle$ is joined to each orbit of \mathscr{C}_{2}, from which it follows that all the orbits in \mathscr{C}_{2} are joined under \tilde{F}.
Suppose now that \tilde{F} fixes $\langle\mathbf{x}\rangle^{\prime} ;$ then \tilde{F} fixes \mathscr{C}_{1} and \mathscr{C}_{2}. If $v=1$ then $\Omega \cup\{\langle\mathbf{x}\rangle\}$ is the set of all singular 1-dimensional subspaces of V and by

Lemma 1 cannot therefore be fixed by \tilde{F}, so Ω must be joined to some other orbit in \mathscr{C}_{2}. If $v \geqslant 2$ and $n>4$ (resp. $v=2$ and $n=4$) and Δ (resp. $\Delta_{1} \cup \Delta_{1}$) is fixed by \widetilde{F}, then as $\Omega \cup \Delta \cup\{\langle\mathbf{x}\rangle\}$ (resp. $\Omega \cup \Delta_{1} \cup \Delta_{2} \cup\{\langle\mathbf{x}\rangle\}$) is the set of singular 1-dimensional subspaces of V, it follows that \tilde{F} does not fix Ω and so joins Ω to some other orbit in \mathscr{C}_{2}. If $h \in \tilde{F}$ and $\langle v\rangle \in \Delta$ (resp. $\langle\mathbf{v}\rangle \in \Delta_{1} \cup \Delta_{2}$) such that $h\langle\mathbf{v}\rangle \notin \Delta$ (resp. $h\langle\mathbf{v}\rangle \notin \Delta_{1} \cup \Delta_{2}$), then there is a singular vector \mathbf{w} such that $B(\mathbf{x}, \mathbf{w}) \neq 0$ but $B(\mathbf{v}, \mathbf{w})=0$. All but one (i.e., at least three) of the 1 -dimensional subspaces of $\langle\mathbf{v}, \mathbf{w}\rangle$ lie in Ω, but as $h(\mathbf{v})$ is non-singular, $h\langle\mathbf{v}, \mathbf{w}\rangle$ has at most two singular 1-dimensional subspaces, so h maps an element of Ω to a non-singular 1-dimensional subspace, i.e., \tilde{F} joins Ω to another orbit in \mathscr{C}_{2}.

Let $f_{1} \in \tilde{F}$ and let \mathbf{y} be a singular vector outside $\langle\mathbf{x}\rangle^{\prime}$ such that $f_{1}(\mathbf{y})$ is non-singular and outside $\langle\mathbf{x}\rangle^{\prime}$. Then $\langle\mathbf{x}, \mathbf{y}\rangle$ and $\left\langle\mathbf{x}, f_{1}(\mathbf{y})\right\rangle=f_{1}\langle\mathbf{x}, \mathbf{y}\rangle$ are both hyperbolic, so by Witt's theorem there exists $g_{1} \in G_{0}$ such that $g_{1} f_{1}\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle$; there further exists $g \in \operatorname{Stab}_{G_{0}}\langle\mathbf{x}, \mathbf{y}\rangle$ such that $g g_{1} f_{1}(\mathbf{x})=\mathbf{x}$. We can now write $g g_{1} f_{1}(\mathbf{y})=\alpha \mathbf{x}+\beta \mathbf{y}$ with $\alpha, \beta \neq 0$ (as $f_{1}(\mathbf{y})$ is non-singular). Let $\xi \in K \backslash\{0,1,-1\}$, let $g_{2} \in S O(\langle\mathbf{x}, \mathbf{y}\rangle)$ be the map $(\mathbf{x}, \mathbf{y}) \mapsto\left(\xi \mathbf{x}, \xi^{-1} \mathbf{y}\right)$ and let $f_{2}=g_{2}^{-1}\left(g g_{1} f_{1}\right)^{-1} g_{2} g g_{1} f_{1}$; then $f_{2}(\mathbf{x})=\mathbf{x}$, $f_{2}(\mathbf{y})=\mathbf{y}+\xi^{-1}\left(\xi-\xi^{-1}\right) \alpha \mathbf{x}$ and for $\mathbf{z} \in\langle\mathbf{x}, \mathbf{y}\rangle^{\prime}, f_{2}(\mathbf{z})=\mathbf{z}+\gamma \mathbf{x}+\delta \mathbf{y}$ where $\gamma, \delta \in K$ depend on \mathbf{z}. Let $l \in S O(\langle\mathbf{x}, \mathbf{y}\rangle)$ be the $\operatorname{map}(\mathbf{x}, \mathbf{y}) \mapsto(-\mathbf{x},-\mathbf{y})$ and let $f_{3}=1 f_{2} t f_{2} ;$ then $f_{3}(\mathbf{x})=\mathbf{x}, f_{3}(\mathbf{y})=\mathbf{y}+2 \xi^{-1}\left(\xi-\xi^{-1}\right) \alpha \mathbf{x}$ and for $\mathbf{z} \in\langle\mathbf{x}, \mathbf{y}\rangle^{\prime}, f_{3}(\mathbf{z})=\mathbf{z}+\eta \mathbf{x}$ where $\eta \in K$ depends on \mathbf{z}. Let $f_{4}=\imath f_{3} f_{3}$; then $f_{4}(\mathbf{x})=\mathbf{x}, f_{4}(\mathbf{y})=\mathbf{y}+4 \xi^{-1}\left(\xi-\xi^{-1}\right) \alpha \mathbf{x}$ and $f_{4}(\mathbf{z})=\mathbf{z}$ for all $\mathbf{z} \in\langle\mathbf{x}, \mathbf{y}\rangle^{\prime}$. As $4 \xi^{-1}\left(\xi-\xi^{-1}\right) \alpha \neq 0, f_{4}$ is a transvection whose centre is \mathbf{x} and whose axis is $\langle\mathbf{x}\rangle^{\prime}$.

Proposition 3. If $K \neq G F(3)$, then $F=S L_{n}(K)$.
Proof. Let τ be a transvection in F with centre \mathbf{x} (non-zero and singular) and axis $\langle\mathbf{x}\rangle^{\prime}$, let \mathbf{y} be a singular vector such that $B(\mathbf{x}, \mathbf{y})=1$ and write $\tau(\mathbf{y})=\mathbf{y}+\lambda \mathbf{x}$ where $\lambda \in K \backslash\{0\}$. For $\mu \in K^{*}$, let τ_{μ} be the transvection with centre \mathbf{x} and axis $\langle\mathbf{x}\rangle^{\prime}$ that takes \mathbf{y} to $\mathbf{y}+\mu \lambda \mathbf{x}$, and let $K_{1}=\left\{\mu \in K^{*}\right.$; $\left.\tau_{\mu} \in F\right\} \cup\{0\}$; then as $\tau_{\mu}^{-1}=\tau_{-\mu}$ and $\tau_{\mu_{1}} \tau_{\mu_{2}}=\tau_{\mu_{1}+\mu_{2}}, K_{1}$ is an additive subgroup of K. For $\xi \in K^{*}$, let $g_{\xi} \in S O(\langle\mathbf{x}, \mathbf{y}\rangle)$ be the map ($\left.\mathbf{x}, \mathbf{y}\right) \mapsto\left(\xi \mathbf{x}, \xi^{-1} \mathbf{y}\right)$; then $g_{\xi} \tau g_{\xi^{-1}}=\tau_{\xi^{2}} \in F$, so K_{1} contains every square in K. As any element of K may be written as the difference of two squares, it follows that $K_{1}=K$. Hence F contains every transvection with centre \mathbf{x} and axis $\langle\mathbf{x}\rangle^{\prime}$, i.e., $X\left(\langle\mathbf{x}\rangle,\langle\mathbf{x}\rangle^{\prime}\right) \leqslant F$.

As G_{0} acts transitively on the non-zero singular vectors of V and as $g X\left(\langle\mathbf{x}\rangle,\langle\mathbf{x}\rangle^{\prime}\right) g^{-1}=X\left(\langle g(\mathbf{x})\rangle,\langle g(\mathbf{x})\rangle^{\prime}\right)$, it follows that F contains every transvection whose centre is singular and whose axis is conjugate to the centre. Thus if F_{1} is the subgroup of F consisting of all the elements that fix $\langle\mathbf{x}, \mathbf{y}\rangle$ and fix every vector in $\langle\mathbf{x}, \mathbf{y}\rangle^{\prime}$, then F_{1} contains $X\left(\langle\mathbf{x}\rangle,\langle\mathbf{x}\rangle^{\prime}\right)$ and
$X\left(\langle\mathbf{y}\rangle,\langle\mathbf{y}\rangle^{\prime}\right)$. Thus F_{1} acts transitively on the 1-dimensional subspaces of $\langle\mathbf{x}, \mathbf{y}\rangle$ and if $\mathbf{w} \in\langle\mathbf{x}, \mathbf{y}\rangle \backslash\{\mathbf{0}\}$, then F contains $X\left(\langle\mathbf{w}\rangle,\langle\mathbf{w}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{\prime}\right)=$ $f X\left(\langle\mathbf{x}\rangle,\langle\mathbf{x}\rangle^{\prime}\right) f^{-1}$ where $f \in F_{1}$ such that $f\langle\mathbf{x}\rangle=\langle\mathbf{w}\rangle$. Choose any non-singular vector $\mathbf{v} \in\langle\mathbf{x}, \mathbf{y}\rangle$ ', let $\mathbf{u} \in\langle\mathbf{x}, \mathbf{y}\rangle$ such that $Q(\mathbf{u})=Q(\mathbf{v})$, let $\mathbf{w} \in\langle\mathbf{x}, \mathbf{y}\rangle \cap\langle\mathbf{u}\rangle^{\prime} \backslash\{\mathbf{0}\}$ and let $g_{1} \in S O(\langle\mathbf{u}, \mathbf{v}\rangle)$ be the map $(\mathbf{u}, \mathbf{v}) \mapsto(-\mathbf{v}, \mathbf{u})$; then $g_{1} X\left(\langle\mathbf{w}\rangle,\langle\mathbf{w}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{\prime}\right) g_{1}^{-1} \leqslant F$ and is a subgroup of root type with centre $\langle\mathbf{w}\rangle$ and axis $g_{1}\left(\langle\mathbf{w}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{\prime}\right) \neq\langle\mathbf{w}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{\prime}$. Hence if \hat{F} is the subgroup of F generated by the subgroups of root type of F, then $\langle\boldsymbol{w}\rangle$ is a centre for \hat{F} with more than one axis.
By Result 3, to show that $\hat{F}=S L_{n}(K)$ and hence that $F=S L_{n}(K)$, it remains to show that \hat{F} is irreducible. Let U be a non-zero subspace of V fixed by \hat{F}; then as for any non-zero singular vector $\mathbf{a}, X\left(\langle\mathbf{a}\rangle,\langle\mathbf{a}\rangle^{\prime}\right)$ fixes U if and only if either $\mathbf{a} \in U$ or $U \subseteq\langle\mathbf{a}\rangle^{\prime}$, every singular vector in V lies in either U or U^{\prime}. As the singular vectors span V, dimensional considerations imply that U is non-isotropic, so $V=U \oplus U^{\prime}$; moreover U cannot be anisotropic. As the sum of non-zero singular vectors of U and U^{\prime} would be a singular vector lying outside both, U^{\prime} must be anisotropic and so every singular vector lies in U. Hence $U=V$ and $F=S L_{n}(K)$.

Proposition 4. If $K=G F(3)$, then $F=S L_{n}(K)$.
Proof. We argue by induction on n. If $n=3$, then, given that $S G O_{3}(K)=S O_{3}(K)$ for $K=G F(3), F=S L_{n}(K)$ by Result 2 . This means that if $n \geqslant 4$ and if we could find a non-isotropic ($n-1$)-dimensional subspace U of V and an element of $F \backslash(F \cap G)$ fixing U and every vector in U^{\prime}, then F would contain $S L_{n-1}(K)$ acting as the special linear group on U and as the identity on U^{\prime}. Thus there would be a centre for F in U with more than one axis containing U^{\prime}; moreover F would act transitively on the 1 -dimensional subspaces of V, so proceeding as in the proof of Proposition 2, Result 3 would imply that $F=S L_{n}(K)$. Notice that $S G O_{n}(K)=S O_{n}(K)$ when n is odd and $S O_{n}(K)$ is a subgroup of $S G O_{n}(K)$ of index 2 when n is even.
Suppose that $n \geqslant 4$ and that the statement of the proposition is true for spaces of dimension $<n$. As in the proof of Proposition 2, there exists $f \in F$ such that $f(\mathbf{x})=\mathbf{x}$ and $f(\mathbf{y})=\alpha \mathbf{x}+\beta \mathbf{y}$, where \mathbf{x} and \mathbf{y} are singular vectors such that $B(\mathbf{x}, \mathbf{y}) \neq 0$ and where $\alpha, \beta \in K^{*}$; we may assume that $B(\mathbf{x}, \mathbf{y})=1$. We first show that there exists a non-singular vector \mathbf{v} and an element $h \in F \backslash(F \cap G)$ such that h fixes \mathbf{v} but $\operatorname{not}\langle\mathbf{v}\rangle^{\prime}$. If $\alpha=\beta=-1$, then we may take $\mathbf{v}=\mathbf{x}-\mathbf{y}$ and $h=t f$ where $\imath \in S O(\langle\mathbf{x}, \mathbf{y}\rangle)$ takes \mathbf{x} and \mathbf{y} to $-\mathbf{x}$ and $-\mathbf{y}$, respectively; if $\alpha=1, \beta=-1$, then we may take $\mathbf{v}=\mathbf{x}+\mathbf{y}$ and $h=1 f$ with \imath as above. If $\beta=1$, if $\rho \in G_{0}$ is the product of symmetries centred on $\mathbf{x}-\mathbf{y}$ and a non-singular vector in $\langle\mathbf{x}, \mathbf{y}\rangle^{\prime}$ and if $h=$ $(\rho f \rho)^{-1} f(\rho f \rho)=\rho f^{-1} \rho f \rho f \rho$ then $h(\mathbf{x}+\mathbf{y})=(\alpha-1) \mathbf{x}-\alpha \mathbf{y}$ and $h(\mathbf{x}-\mathbf{y})=$
$-(\alpha+1) \mathbf{x}-\alpha \mathbf{y}$; thus if $\alpha=1$ we may take $v=\mathbf{x}-\mathbf{y}$ and if $\alpha=-1$ we may take $\mathbf{v}=\mathbf{x}+\mathbf{y}$, and \mathbf{v} and h have the required properties.

Now consider the map \hat{h} on $\langle\mathbf{v}\rangle^{\prime}$ obtained by letting $\hat{h}(\mathbf{w})\left(\mathbf{w} \in\langle\mathbf{v}\rangle^{\prime}\right)$ be the $\langle\mathbf{v}\rangle^{\prime}$ component of $h(\mathbf{w})$, and let \hat{G}_{0}, \hat{G} and \hat{H} be respectively the special orthogonal, special general orthogonal and special linear groups on $\langle\mathbf{v}\rangle^{\prime}$ (with respect to the restriction of Q where appropriate); then $\bar{h} \in \hat{H}$ and \hat{G}_{0} has the same action as $S O\left(\langle v\rangle^{\prime}\right)$.

If $\hat{h} \in \hat{G}_{0}$, then we can multiply h by an element of $S O\left(\langle\mathbf{v}\rangle^{\prime}\right)$ to obtain a non-trivial transvection h_{1} centred on \mathbf{v}; we may now find a non-singular vector $\mathbf{u} \in\langle\mathbf{v}\rangle^{\prime}$ that lies in the axis of h_{1}, so that if $U=\langle\mathbf{u}\rangle^{\prime}$, then U is an ($n-1$)-dimensional non-isotropic subspace fixed by $h_{1} \in F \backslash(F \cap G)$ with each vector in U^{\prime} fixed by h_{1}; as indicated above, this leads to the conclusion that $F=S L_{n}(K)$.

If $\hat{h} \in \widehat{G} \backslash \widehat{G}_{0}$, then as $\langle\mathbf{v}\rangle^{\prime}$ is spanned by non-zero singular vectors and as \hat{G}_{0} acts transitively on those non-zero singular vectors, there is such a vector \mathbf{w} with $h(\mathbf{w}) \notin\langle\mathbf{v}\rangle^{\prime}$ and there is an element $\hat{g} \in \hat{G}_{0}$ (corresponding to some $g \in S O\left(\langle\mathbf{v}\rangle^{\prime}\right)$) such that $\hat{g} \hat{h}(\mathbf{w})=\mathbf{w}$, i.e., $g h(\mathbf{w})=\mathbf{w}+\lambda \mathbf{v}$ with $\lambda= \pm 1$. But now $(g h)^{2}$ fixes \mathbf{v} without fixing $\langle\mathbf{v}\rangle^{\prime}$ (so $(g h)^{2} \notin G$), and the corresponding element of \hat{H} is $(\hat{g} h)^{2}$ which lies in \hat{G}_{0}. Thus we can now apply the argument from the previous case, with $(g h)^{2}$ in place of h.

Finally, if $\hat{h} \notin \hat{G}$, then by induction $\left\langle\hat{h}, \hat{G}_{0}\right\rangle=\hat{H}$. Thus given an orthogonal base $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n-1}\right\}$ for $\langle\mathbf{v}\rangle^{\prime}$ with $Q\left(\mathbf{v}_{1}\right)=-Q\left(\mathbf{v}_{2}\right)=Q(\mathbf{v}$; there exists $\hat{h}_{1} \in\left\langle\hat{h}, \hat{G}_{0}\right\rangle$, corresponding to some $h_{1} \in\left\langle h, S O\left(\langle\mathbf{v}\rangle^{\prime}\right)\right\rangle$, such that $\hat{h}_{1}\left(\mathbf{v}_{1}\right)=\mathbf{v}_{2}, \hat{h}_{1}\left(\mathbf{v}_{2}\right)=-\mathbf{v}_{1}$ and $\hat{h}_{1}\left(\mathbf{v}_{i}\right)=\mathbf{v}_{i}$ for $i \geqslant 3$. It follows that $h_{1}(\mathbf{v})=\mathbf{v}, h_{1}\left(\mathbf{v}_{1}\right)=\mathbf{v}_{2}+\lambda_{1} \mathbf{v}, h_{1}\left(\mathbf{v}_{2}\right)=-\mathbf{v}_{1}+\lambda_{2} \mathbf{v}$ and $h_{1}\left(\mathbf{v}_{i}\right)=\mathbf{v}_{i}+\lambda_{i} \mathbf{v}(i \geqslant 3)$ for some $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1} \in K$. Therefore $h^{3}(\mathbf{v})=\mathbf{v}, h^{3}\left(\mathbf{v}_{1}\right)=-\mathbf{v}_{2}+\lambda_{2} \mathbf{v}$, $h^{3}\left(\mathbf{v}_{2}\right)=\mathbf{v}_{1}-\lambda_{1} \mathbf{v}, h^{3}\left(\mathbf{v}_{i}\right)=\mathbf{v}_{i}(i \geqslant 3)$ and $\mathbf{v}+\mathbf{v}_{2}$ is singular but $h^{3}\left(\mathbf{v}+\mathbf{v}_{2}\right)=$ $\left(1-\lambda_{1}\right) \mathbf{v}+\mathbf{v}_{1}$ is non-singular, so $h^{3} \notin G$. We now take $U=\left\langle\mathbf{v}_{n-1}\right\rangle^{\prime}$. The subspace U is non-isotropic of dimension $n-1$, and h^{3} fixes U and every vector in $U^{\prime}=\left\langle\mathbf{v}_{n-1}\right\rangle$, so as indicated at the beginning of the proof, an induction argument leads to the conclusion that $F=S L_{n}(K)$.

We have proved that if $F \leqslant S L_{n}(K)$ and $G_{0} \leqslant F$ but $F \leqslant G$, then $F=S L_{n}(K)$. In other words, any proper subgroup of $S L_{n}(K)$ containing $S O_{n}(K)$ lies in $S G O_{n}(K)$. Thus we have proved Theorem I.

Let M_{1} be the subgroup of $M(Q)$ consisting of the multiplicators of elements of $S G O_{n}(K)$.

Corollary to Theorem I. If $n \geqslant 3$, then $S G O_{n}(K)$ is a maximal subgroup of $S L_{n}(K)$, and the proper subgroups of $S L_{n}(K)$ containing $S O_{n}(K)$ are in one-to-one correspondence with the subgroups of M_{1}.

Proof. The maximality of $S G O_{n}(K)$ in $S L_{n}(K)$ is immediate from Theorem I.

Let $\theta: G \rightarrow M_{1}$ be the map taking g to its multiplicator; then θ is an epimorphism with kernel G_{0}, so that the subgroups of G containing G_{0} are in one-to-one correspondence with the subgroups of M_{1}. By Theorem I, the proper subgroups of $S L_{n}(K)$ containing G_{0} lie in G, and the result follows.

3. The Case $n=2$

We now assume that $n=2$; then $G<F$. Let \mathbf{x} and \mathbf{y} be singular vectors such that $B(\mathbf{x}, \mathbf{y})=1$; we shall write the clements of $S L_{2}(K)$ as 2×2 matrices with respect to the base $\{\mathbf{x}, \mathbf{y}\}$ of V. Let

$$
h_{\lambda}=\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right), \quad g_{\lambda}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right), \quad g=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

where $\lambda \in K \backslash\{\mathbf{0}\}$; then any element of G may be written as either g_{λ} or $g g_{\lambda}$ for some $\lambda \in K \backslash\{0\}$ and h_{λ} normalises G. Alternatively G may be characterised as the subgroup of $S L_{2}(K)$ consisting of the matrices with two zero entries.

Proposition 5. F contains a transvection centred on \mathbf{x}, except when $|K| \leqslant 11$.

Proof. Let $f \in F \backslash G$. If f has a zero entry, then by multiplying f by suitable elements of G we may readily construct a transvection centred on \mathbf{x}, so we may suppose that all the entries of f are non-zero. Writing $f=\left(f_{i i}\right)$, if $f_{11}=\beta$, then we may replace f by $g_{\beta}^{-1} f$ and thus assume that $f_{11}=1$. Let $\gamma=f_{12}$; then $h_{\gamma}^{-1} F h_{\gamma}$ contains a transvection centred on \mathbf{x} if and only if F does, so we could replace F by $h_{\gamma}^{-1} F h_{\gamma}$ and f by $h_{\gamma}^{-1} f h_{\gamma}$. Thus we may assume that $f_{11}=f_{12}=1$, so

$$
f=\left(\begin{array}{cc}
1 & 1 \\
\alpha & \alpha+1
\end{array}\right)
$$

for some $\alpha \in K \backslash\{0,-1\}$. Let K_{0} be the prime subfield of K and let $K_{0}(\alpha)$ be the minimal subfield of K containing α; then $S G O_{2}\left(K_{0}(\alpha)\right)$ and $S L_{2}\left(K_{0}(\alpha)\right)$ may be embedded in G and $S L_{2}(K)$, respectively, as groups of matrices with respect to the base $\{\mathbf{x}, \mathbf{y}\}$. Hence we need only construct a transvection centred on \mathbf{x} in $\left\langle f, S G O_{2}\left(K_{0}(\alpha)\right)\right\rangle$. Suppose that $K_{0} \neq G F(3)$ and that $\alpha \neq-4,-2,1,3$ and let

$$
f^{*}=f^{-1} g_{(2 / \alpha)} f^{-1} g_{(\alpha+4 / \alpha+2)} f g_{3 / 4} f^{-1} g_{(\alpha-1 / \alpha-3)} f g g_{(\alpha+1) / 2} f .
$$

Then writing $f^{*}=\left(f_{i j}^{*}\right)$ we claim that $f_{22}^{*}=0$ and that $f_{11}^{*}=0$ if and only if $p(\alpha)=0$ for some non-zero polynomial $p(t) \in K_{0}[t]$. First note that in proving the claim we may replace elements $g_{\gamma / \delta}$ by

$$
\hat{g}_{\gamma / \delta}=\left(\begin{array}{cc}
\gamma^{2} & 0 \\
0 & \delta^{2}
\end{array}\right)
$$

Next let $f_{1}=f^{-1} \hat{g}_{(2 / \alpha)} f^{-1} \hat{g}_{(\alpha+4 / \alpha+2)}$ and let $f_{2}=f \hat{g}_{3 / 4} f^{-1} \hat{g}_{(x-1 / \alpha-3)}$ $f g \hat{g}_{(\alpha+1) / 2} f$; then

$$
f_{1}=\left(\begin{array}{cc}
(\alpha+4)^{2}\left(\alpha^{3}+4 \alpha^{2}+8 \alpha+4\right) & -(\alpha+2)^{4} \\
-\alpha(\alpha+4)^{2}(\alpha+2)^{2} & \alpha(\alpha+4)(\alpha+2)^{2}
\end{array}\right)
$$

and

$$
f_{2}=\left(\begin{array}{c}
-(\alpha-1)^{4}(9-7 \alpha)+7(\alpha-3)^{2}\left(4 \alpha^{2}-(\alpha+1)^{3}\right) \\
7 \alpha(\alpha+1)(\alpha-1)^{4}+(7 \alpha+16)(\alpha-3)^{2}\left(4 \alpha^{2}-(\alpha+1)^{3}\right) \\
12(\alpha+1)(\alpha-1)^{2}(\alpha-3) \\
12(\alpha+1)(\alpha-1)^{2}(\alpha-3)(\alpha+4)
\end{array}\right) .
$$

As $f_{1} f_{2}$ is a scalar multiple of f^{*} we see that indeed $f_{22}^{*}=0$ and that $f_{11}^{*}=0$ if and only if $p(\alpha)=0$ where $p(t) \in K_{0}[t]$ and $p(0)=-2^{8} \cdot 3^{2}$. In fact

$$
p(t)=32\left[3 t^{6}+9 t^{5}-4 t^{4}-23 t^{3}-241 t^{2}-228 t-72\right]
$$

but we don't need this.
Hence if $K_{0} \neq G F(3)$, then f^{*} has exactly one zero entry and so F contains a transvection centred on \mathbf{x}, except when $\alpha=-4,-2,1,3$ or a root of $p(t)$.

Suppose that $K_{0}=\mathbb{Q}$, let $\lambda \in K \backslash\{0,1,-1\}$ such that $\lambda(\alpha+1)-\lambda^{-1} \alpha$, $\lambda^{-1}(\alpha+1)-\lambda \alpha \neq 0$ and let $\mu=\left(\lambda(\alpha+1)-\lambda^{-1} \alpha\right)$; then

$$
f^{-1} g_{\lambda} f=\left(\begin{array}{cc}
\lambda(\alpha+1)-\lambda^{-1} \alpha & \left(\lambda-\lambda^{-1}\right)(\alpha+1) \\
-\left(\lambda-\lambda^{-1}\right) \alpha & \lambda^{-1}(\alpha+1)-\lambda \alpha
\end{array}\right)
$$

so $g_{\mu}^{-1} f^{-1} g_{\lambda} f \in F \backslash G$. As at the beginning of this proof we may consider $h_{\eta} g_{\mu}^{-1} f^{-1} g_{\lambda} f h_{\eta}^{-1}$ in place of $g_{\mu}^{-1} f^{-1} g_{\lambda} f$ and $h_{\eta} F h_{\eta}^{-1}$ in place of F, where $\eta=\mu\left[\left(\lambda-\lambda^{-1}\right)(\alpha+1)\right]^{-1}$. Now

$$
\begin{aligned}
& h_{\eta} g_{\mu}^{-1} f^{-1} g_{\lambda} f h_{\eta}^{-1} \\
& \quad=\left(\begin{array}{cc}
1 & 1 \\
-\left(\lambda-\lambda^{-1}\right)^{2} \alpha(\alpha+1) & 1-\left(\lambda-\lambda^{-1}\right)^{2} \alpha(\alpha+1)
\end{array}\right)
\end{aligned}
$$

so we may construct a transvection centred on \mathbf{x} in $h_{\eta} F h_{\eta}^{-1}$ (and thus also in F) unless $-\left(\lambda-\lambda^{-1}\right)^{2} \alpha(\alpha+1)$ is one of $-4,-2,1,3$ or is a root of $p(t)$.

But there are an infinite number of possible values of $\left(\lambda-\lambda^{-1}\right)^{2}$. Hence F contains a transvection centred on \mathbf{x}.

If K_{0} is finite of characteristic >11 and if $\alpha=-4,-2,1,3$ or a root of $p(t)$, then $K_{0}(\alpha)$ is finite. By Result $1, S G O_{2}\left(K_{0}(\alpha)\right)$ is therefore maximal in $S L_{2}\left(K_{0}(\alpha)\right)$, so $\left\langle f, S G O_{2}\left(K_{0}(\alpha)\right)\right\rangle$ contains a transvection centred on \mathbf{x}. Similarly if $K_{0}=G F(5), G F(7)$ or $G F(11)$ and either K is finite, or α is a root of $p(t)$ but $\alpha \notin K_{0}$, then we can apply Result 1 . Suppose that $5 \leqslant\left|K_{0}\right| \leqslant 11$, that $\alpha \in K_{0}$ and that K is infinite; then there exists $\lambda \in K$ such that $\left[K_{0}(\lambda): K_{0}\right]>4$. Noting that $\lambda(\alpha+1)-\lambda^{-1} \alpha, \lambda^{-1}(\alpha+1)-\lambda \alpha \neq 0$, we may construct $h_{\eta} g_{\mu}^{-1} f^{-1} g_{\lambda} f h_{\eta}^{-1}$ as in the case $K_{0}=\mathbb{Q}$. Then since $-\left(\lambda-\lambda^{-1}\right)^{2} \alpha(\alpha+1) \notin K_{0}, h_{\eta} F h_{\eta}^{-1}$ (and thus also F) contains a transvection centred on \mathbf{x}.
Finally, suppose that $K_{0}=G F(3)$. If K is finite, then F contains a transvection centred on \mathbf{x}, by Result 1 . If K is infinite, then as above, for some $\lambda \in K,\left[K_{0}(\lambda): K_{0}\right]>4$ and so if $\alpha \in K_{0}$, then $-\left(\lambda-\lambda^{-1}\right)^{2} \alpha(\alpha+1) \notin K_{0}$. Thus we may assume that $\alpha \notin K_{0}$. Let

$$
f^{* *}=f^{-1} g_{(\alpha-1 / \alpha+1)} f g_{\alpha} f .
$$

Then $f_{11}^{* *}=0$; and $f_{22}^{* *}=0$ if and only if

$$
\alpha^{4}-\alpha^{3}+\alpha^{2}+1=0 .
$$

Hence $f^{* *}$ has exactly one zero entry and so F contains a transvection centred on \mathbf{x}, except when α is a root of the polynomial

$$
p_{1}(t)=t^{4}-t^{3}+t^{2}+1 .
$$

Now $p_{1}(t)$ is irreducible over K_{0}, so if α is a root of $p_{1}(t)$, then $K_{0}(\alpha)$ is a finite field of order 81; hence by Result $1,\left\langle f, S G O_{2}\left(K_{0}(\alpha)\right)\right\rangle$ contains a transvection centred on \mathbf{x}.

Remark. In the proof of Proposition 5, there appears a product of twelve matrices; this approach could be simplified or avoided in many cases, but would still appear necessary when K is a field of characteristic 0 in which -1 is a non-square.

Proof of Theorem II. By Proposition 5, there is a transvection $\tau \in F$ centred on \mathbf{x}. An argument used in the proof of Proposition 3 may now be applied: as F contains $g_{\xi} \operatorname{tg}_{\xi}^{-1}$ for each $\xi \in K \backslash\{0\}$ and as every element of K may be expressed as the difference of two squares, F contains every transvection centred on \mathbf{x}. Therefore $\operatorname{Stab}_{F} \mathbf{x}$ acts transitively on the 1 -dimensional subspaces of V other than $\langle\mathbf{x}\rangle$, so F acts transitively on the 1 -dimensional subspaces of V, and hence F contains every transvection in $S L_{2}(K)$. As $S L_{2}(K)$ is generated by its transvections, it follows that $F=S L_{2}(K)$, so G is maximal in $S L_{2}(K)$.

4. Related Results

In this section we consider some groups associated with $S G O_{n}(K)$, namely, $G O_{n}(K), P G O_{n}(K), P S G O_{n}(K), S O_{n}(K)$ and $P S O_{n}(K)$, and consider when they may be maximal in $G L_{n}(K), P G L_{n}(K), P S L_{n}(K), S L_{n}(K)$ and $P S L_{n}(K)$, respectively. We state conditions for maximality and interpret these conditions for algebraically closed fields and for \mathbb{R} and $G F(q)$. We denote the centre of $G L_{n}(K)$ by Z and recall that it lies inside $G O_{n}(K)$.

Let J be the subgroup of K^{*} consisting of the determinants of elements of $G O_{n}(K)$. If $J<K^{*}$, then $G O_{n}(K)$ cannot be maximal in $G L_{n}(K)$, being contained in the subgroup $\left\{g \in G L_{n}(K)\right.$: $\left.\operatorname{det} g \in J\right\}$ of $G L_{n}(K)$. If $J=K^{*}$ and if $G O_{n}(K)<E \leqslant G L_{n}(K)$, then $S G O_{n}(K)<E \cap S L_{n}(K)$, so that $G O_{n}(K)$ is maximal in $G L_{n}(K)$ if $S G O_{n}(K)$ is maximal in $S L_{n}(K)$; in the five exceptional cases of Theorem II, close inspection of Dickson's list of subgroups of $P S L_{2}(q)$ (cf. [2]) or of Wagner's clearer description of these subgroups (cf. [12]) yields the maximality of $P G O_{2}(q)$ in $P G L_{2}(q)$ when $q=7,9$ or 11, but shows that $\mathrm{PGO}_{2}(3)<D_{4}<P G L_{2}(3)$ and that $P G O_{2}(5)<S_{4}<$ $P G L_{2}(5)$, where D_{4} is the dihedral group of order 8 . We now need to determine when $J=K^{*}$. If n is odd, then $G O_{n}(K)=Z \cdot S O_{n}(K)$, so J consists of the nth powers of elements of K^{*}. If n is even, say, $n=2 m$, then J consists of the elements $\pm \lambda^{m}$ with $\lambda \in M(Q)$ (cf. [4]). Thus from Theorems I and II, we have

Theorem III. If n is odd, then $G O_{n}(K)$ is maximal in $G L_{n}(K)$ if and only if

$$
\left\{\lambda^{n}: \lambda \in K^{*}\right\}=K^{*}
$$

If n is even, with $n=2 m$, and if $K \neq G F(3), G F(5)$ when $n=2$, then $G O_{n}(K)$ is maximal in $G L_{n}(K)$ if and only if

$$
\left\{\lambda^{m},-\lambda^{m}: \lambda \in M(Q)\right\}=K^{*}
$$

As $Z \leqslant G O_{n}(K)$, the following result is immediate.

Theorem IV. $P G O_{n}(K)$ is maximal in $P G L_{n}(K)$ if and only if $G O_{n}(K)$ is maximal in $G L_{n}(K) ; P S G O_{n}(K)$ is maximal in $P S L_{n}(K)$ if and only if $S G O_{n}(K)$ is maximal in $S L_{n}(K)$.

Now consider $S O_{n}(K)$. Clearly $S O_{n}(K)$ is maximal in $S L_{n}(K)$ if and only if $S G O_{n}(K)$ is maximal in $S L_{n}(K)$ and every element of $S G O_{n}(K)$ has multiplicator 1 . Noting the information given about J above and noting that if $n=2$ and $K=G F(q)$, then $-1 \in M(Q)$, we have the following:

Theorem V. If n is odd, then $S O_{n}(K)$ is maximal in $S L_{n}(K)$ if and only if 1 has no non-trivial nth roots in K.

If n is even, with $n=2 m$, then $S O_{n}(K)$ is maximal in $S L_{n}(K)$ if and only if -1 has no m th roots in $M(Q)$ and 1 has no non-trivial mth roots in $M(Q)$.

An equivalent formulation of the second part of Theorem V would be that if n is even, then $S O_{n}(K)$ is maximal in $S L_{n}(K)$ if and only if 1 has no non-trivial nth roots in $M(Q)$.

A more interesting question is that of the maximality of $\mathrm{PSO}_{n}(K)$ in $P S L_{n}(K)$. Denoting $Z \cap S L_{n}(K)$ by Z_{1}, we consider the equivalent question of the maximality of $S O_{n}(K) \cdot Z_{1}$ in $S L_{n}(K)$, which then becomes a question of whether or not $S G O_{n}(K)=S O_{n}(K) \cdot Z_{1}$. If n is odd, then the equality is immediate. Suppose that n is even, say, $n=2 m$, and let M_{1} and M_{2} be the subgroups of $M(Q)$ consisting of the multiplicators of elements of $S G O_{n}(K)$ and $S O_{n}(K) \cdot Z_{1}$, respectively; then $M_{2} \leqslant\left(K^{*}\right)^{2}$. Given the structure of J, we may characterize M_{1} as the subgroup of $M(Q)$ the m th powers of whose elements are ± 1, and we may characterize M_{2} as the subgroup of $\left(K^{*}\right)^{2}$ the m th powers of whose elements are 1 . If $g \in S G O_{n}(K)$ with multiplicator λ, then $g \in S O_{n}(K) \cdot Z_{1}$ if and only if $\lambda \in M_{2}$. Thus if $n=2 m$, then $S G O_{n}(K)=S O_{n}(K) \cdot Z_{1}$ if and only if -1 has no m th roots in $M(Q)$ and every m th root of 1 in $M(Q)$ is a square in K^{*}. As a direct consequence we have the following result, noting that $-1 \in M(Q)$ when n is even and $K=G F(q)$.

Theorem VI. If n is odd, then $\mathrm{PSO}_{n}(K)$ is maximal in $\mathrm{PSL}_{n}(K)$.
If n is even, with $n=2 m$, then $\mathrm{PSO}_{n}(K)$ is maximal in $P S L_{n}(K)$ if and only if -1 has no mth roots in $M(Q)$ and every mth root of 1 in $M(Q)$ is a square in K^{*}.

We noted in Section 1 that if $K=\mathbb{C}$, then $M(Q)=K^{*}$; more generally, the same is true of any algebraically closed field. From Theorems III, V and VI we obtain

Theorem VII. Let K be algebraically closed. Then
(i) $G O_{n}(K)$ is maximal in $G L_{n}(K)$;
(ii) $S O_{n}(K)$ is maximal in $S L_{n}(K)$ if and only if n is a power of an odd prime p and K has characteristic p;
(iii) $P S O_{n}(K)$ is maximal in $P S L_{n}(K)$ if and only if n is odd.

If $K=\mathbb{R}$, then $M(Q)=K^{*}$ if $v=n / 2$ and $\left(K^{*}\right)^{2}$ otherwise. We deduce

Theorem VIII. Let $K=\mathbb{R}$. Then
(i) $G O_{n}(K)$ is maximal in $G L_{n}(K)$;
(ii) $S O_{n}(K)$ is maximal in $S L_{n}(K)$ if and only if $v<n / 2$;
(iii) $P S O_{n}(K)$ is maximal in $P S L_{n}(K)$ if and only if $v<n / 2$.

Now suppose that $K=G F(q)$; then K^{*} is cyclic of order $q-1$. Let α be a generator of K^{*}. For any positive integer k, there are no non-trivial k th roots of 1 in K^{*} if and only if $(k, q-1)=1$; equivalently $\left\{\lambda^{k}: \lambda \in K^{*}\right\}=K^{*}$ if and only if $(k, q-1)=1$. Both these statements may be deduced from consideration of when the map $K^{*} \rightarrow K^{*}, \lambda \mapsto \lambda^{k}$ is a bijection. Suppose that n is even, say, $n=2 m$; then $M(Q)=K^{*}$. Let $d=(m, q-1)$, $d_{2}=(m,(q-1) / 2)$. In determining when $\left\{\lambda^{m},-\lambda^{m}: \lambda \in K^{*}\right\}=K^{*}$, there are several possibilities to consider; note that $\left|\left\{\lambda^{m}: \lambda \in K^{*}\right\}\right|=(q-1) / d$. If $d>2$, then $d_{2}>1$ and $\left\{\lambda^{m},-\lambda^{m}: \lambda \in K^{*}\right\} \neq K^{*}$ because $2(q-1) / d<q-1$. If $d=2=d_{2}$, then $m / 2$ is odd, so $\left(\alpha^{(q-1) / 4}\right)^{m}=(-1)^{m / 2}=-1$, whence $\lambda^{m}=-\mu^{m}$ for some $\lambda, \mu \in K^{*}$ and so $\left\{\lambda^{m}: \lambda \in K^{*}\right\} \cap\left\{-\lambda^{m}: \lambda \in K^{*}\right\} \neq \varnothing$; thus $\left\{\lambda^{m},-\lambda^{m}: \lambda \in K^{*}\right\} \neq K^{*}$. If $d=2$ and $d_{2}=1$, then $(q-1) / 2$ is odd but m is even, so -1 has no m th roots in K^{*}, whence $\left\{\lambda^{m}: \lambda \in K^{*}\right\} \cap$ $\left\{-\lambda^{m}: \lambda \in K^{*}\right\}=\varnothing$, i.e., $\quad\left\{\lambda^{m},-\lambda^{m}: \lambda \in K^{*}\right\}=K^{*}$. If $d=1$, then $\left\{\lambda^{m}: \lambda \in K^{*}\right\}=K^{*}$, so certainly $\left\{\lambda^{m},-\lambda^{m}: \lambda \in K^{*}\right\}=K^{*}$. Thus $\left\{\lambda^{m},-\lambda^{m}\right.$: $\left.\lambda \in K^{*}\right\}=K^{*}$ if and only if $d_{2}=1$. Next we note that, as $(2 m, q-1) \geqslant 2$, there will always be cither an m th root of -1 in $M(Q)$ or a non-trivial m th root of 1 in $M(Q)$. It remains to determine when, if ever, -1 has no m th roots in $M(Q)$ and every m th root of 1 in $M(Q)$ is a square in K^{*}. If m / d_{2} is odd, then for $r=(q-1) / 2 d_{2},\left(\alpha^{r}\right)^{m}=(-1)^{m / d_{2}}=-1$, so -1 has an m th root in $M(Q)$. If m / d_{2} is even, then $(q-1) / 2 d_{2}$ is odd and with $r=(q-1) / 2 d_{2}, \alpha^{r}$ is non-square, but $\left(\alpha^{r}\right)^{m}=\left(\alpha^{q-1}\right)^{m / 2 d_{2}}=1$, so 1 has an m th root that is a non-square. Hence it is never the case that -1 has no m th roots in $M(Q)$ and that every m th root of 1 in $M(Q)$ is a square in K^{*}. From Theorems III, V and VI, we deduce

Theorem IX. Let $K=G F(q)$ and let $n=2 m$ when n is even. Then
(i) If n is odd, then $G O_{n}(K)$ is maximal in $G L_{n}(K)$ if and only if $(n, q-1)=1$.
If n is even, then $G O_{n}(K)$ is maximal in $G L_{n}(K)$ if and only if ($m,(q-1) / 2)=1$, and $q \neq 3$ or 5 when $n=2$.
(ii) $S O_{n}(K)$ is maximal in $S L_{n}(K)$ if and only if n is odd and $(n, q-1)=1$.
(iii) $P S O_{n}(K)$ is maximal in $P S L_{n}(K)$ if and only if n is odd.

References

1. N. Bourbakı, "Algèbre," Actualités Sci. Indust. No. 1272, Chap. IX, Hermann, Paris, 1959.
2. L. E. Dickson, "Linear Groups with an Exposition of the Galois Field Theory," Teubner, Leipzig, 1901.
3. J. Dieudonné, "Sur les Groupes Classiques," 3rd ed., Hermann, Paris, 1967.
4. J. Dieudonné, "La Géométrie des Groupes Classiques," 3rd ed., Springer-Verlag, Berlin, 1971.
5. R. H. Dye, On the maximality of the orthogonal groups in the symplectic group in characteristic two, Math. Z. 172 (1980), 203-212.
6. R. H. Dye, Maximal subgroups of $G L_{2 n}(K), S L_{2 n}(K), P G L_{2 n}(K)$ and $P S L_{2 n}(K)$ associated with symplectic polarities, J. Algebra 66 (1980), 1-11.
7. O. H. King, Maximal subgroups of the classical groups associated with non-isotropic subspaces of a vector space, J. Algebra 73 (1981), 350-375.
8. J. McLaughlin, Some subgroups of $S L_{n}\left(F_{2}\right)$, Illinois J. Math. 13 (1969), 108-115.
9. H. H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 12 (1911), 207-242.
10. J. A. Todd, "Projective and Analytic Geometry," Pitman, London, 1947.
11. B. L. van der Waerden, "Gruppen von Linearen Transformationen," Chelsea, New York, 1948.
12. A. Wagner, Collineation groups generated by homologies of order greater than 2, Geom. Dedicata 7 (1978), 387-398.

[^0]: * This work was carried out while the author held the Earl Grey Memorial Fellowship at the University of Newcastle upon Tyne.

