Irreducible characters of groups associated with finite nilpotent algebras with involution

Carlos A.M. André a,b,*

a Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C6, Piso 2, 1749-016 Lisboa, Portugal
b Centro de Estruturas Lineares e Combinatórias, Complexo Interdisciplinar da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

A R T I C L E I N F O

Article history:
Received 14 October 2009
Communicated by Martin Liebeck

MSC:
primary 20C15
secondary 20G40, 16W10

Keywords:
Algebras with involution
Unit groups
Algebra groups
Sylow subgroups
Classical groups of Lie type
Irreducible characters

A B S T R A C T

An algebra group is a group of the form $P = 1 + J$ where J is a finite-dimensional nilpotent associative algebra. A theorem of Z. Halasi asserts that, in the case where J is defined over a finite field F, every irreducible character of P is induced from a linear character of an algebra subgroup of P. If (J, σ) is a nilpotent algebra with involution, then σ naturally defines a group automorphism of $P = 1 + J$, and we may consider the fixed point subgroup $C_P(\sigma)$. Assuming that F has odd characteristic p, we show that every irreducible character of $C_P(\sigma)$ is induced from a linear character of a subgroup of the form $C_Q(\sigma)$ where Q is a σ-invariant algebra subgroup of P. As a particular case, the result holds for the Sylow p-subgroups of the finite classical groups of Lie type.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction, main results and consequences

Let p be an odd prime, let F be a finite field of characteristic p, and let A be a finite-dimensional associative F-algebra (with identity). We recall that an involution on A is a map $\sigma : A \to A$ satisfying the following conditions:

This research was made within the activities of the Centro de Estruturas Lineares e Combinatórias (University of Lisbon, Portugal) and was partially supported by the Fundação para a Ciência e Tecnologia (Lisbon, Portugal).
E-mail address: caandre@fc.ul.pt.

0021-8693/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2010.06.030
(i) $\sigma(a + b) = \sigma(a) + \sigma(b)$ for all $a, b \in A$;
(ii) $\sigma(ab) = \sigma(b)\sigma(a)$ for all $a, b \in A$;
(iii) $\sigma^2(a) = a$ for all $a \in A$.

We note that an involution σ is not required to be F-linear. However, the field $F = F \cdot 1$ is preserved by σ, and therefore σ defines a field automorphism of F which is either the identity or of order 2. We say that σ is of the first kind if σ fixes F, and of the second kind if σ_F has order 2. In any case, we let $F^\sigma = \{ \alpha \in F \mid \sigma(\alpha) = \alpha \}$ denote the σ-fixed subfield of F, and consider A as a finite-dimensional associative F^σ-algebra. We observe that σ is of the second kind if and only if the field extension $F^{\sigma} \subseteq F$ has degree 2, and $\sigma : F \to F$ is the Frobenius map defined by the mapping $\alpha \mapsto \alpha^q$ where $q = |F^{\sigma}|$; hence, $F^\sigma = F^{q}$ and $F = F^{q^2}$. For simplicity, we will the bar notation $\bar{\alpha} = \alpha^q$ for $\alpha \in F$.

An important example occurs in the case where $A = M_n(F)$ is the F-algebra consisting of all $n \times n$ matrices with entries in F, endowed with the canonical transpose involution given by the mapping $a \mapsto a^t$ where a^t denotes the transpose of $a \in M_n(F)$. More generally, let $q = |F^\sigma|$, let $F_{q} : M_n(F) \to M_n(F)$ be the Frobenius morphism defined by $F_{q}(aij) = (aij)^q$ for all $(aij) \in M_n(F)$, and define $a^* = F_{q}(a)^t$ for all $a \in M_n(F)$. Then, the mapping $a \mapsto a^*$ defines an involution on $M_n(F)$; we note that, if $F^\sigma = F$, then $a^* = a^t$ for all $a \in M_n(F)$. As usual, we will denote by $GL_n(F)$ the general linear group consisting of all invertible matrices in $M_n(F)$. If $\sigma : M_n(F) \to M_n(F)$ is any involution of the first kind, then there exists $u \in GL_n(F)$ with $u^t = \pm u$ and such that $\sigma(a) = u^{-1}a^t u$ for all $a \in M_n(F)$; moreover, the matrix u is uniquely determined up to a factor in F^\times. On the other hand, if $\sigma : M_n(F) \to M_n(F)$ is any involution of the second kind, then there exists $u \in GL_n(F)$ with $u^* = u$ and such that $\sigma(a) = u^{-1}a^* u$ for all $a \in M_n(F)$; moreover, the matrix u is uniquely determined up to a factor in $(F^\sigma)^\times$.

The proofs can be found in the book [16] by M.-A. Knus et al. (see, in particular, Propositions 2.19 and 2.20) where the complete classification of involutions is also given for arbitrary central F-algebras (see Propositions 2.7 and 2.20).] For simplicity of writing, we will the bar notation $\bar{\alpha} = \alpha^q$ for $\alpha \in F$.

In the general situation, let A^\times denote the unit group of the F-algebra A. Then, for any involution $\sigma : A \to A$, the cyclic group $\langle \sigma \rangle$ acts on A^\times as a group of automorphisms by means of $x^\sigma = \sigma(x^{-1})$ for all $x \in A^\times$. For any σ-invariant subgroup $H \subseteq A^\times$, we denote by $C_H(\sigma)$ the subgroup of H consisting of all σ-fixed elements; that is,

$$C_H(\sigma) = \{ x \in H \mid x^\sigma = x \} = \{ x \in H \mid \sigma(x^{-1}) = x \}.$$

In the case where $A = M_n(F)$, an arbitrary involution $\sigma : M_n(F) \to M_n(F)$ defines a group $C_{GL_n(F)}(\sigma)$ which is isomorphic to one of the well-known finite classical groups of Lie type (defined over F): the symplectic group $\text{Sp}_{2m}(q)$ if σ is symplectic (and $F = F_q$), the orthogonal groups $O_{2m}^+(q)$, $O_{2m+1}(q)$, or $O_{2m+2}^-(q)$ if σ is orthogonal (and $F = F_{q'}$), and the unitary group $U_n(q^2)$ if σ is unitary (and $F = F_{q^2}$). [For the details on the definition of the classical groups, we refer to Chapter I the book [5] by R. Carter.] In fact, up to isomorphism, these groups may be defined by the involution $\sigma = \sigma_u$ where $u \in GL_n(F)$ is the matrix defined as follows; here, J_m denotes the $m \times m$ matrix with 1’s along the anti-diagonal and 0’s elsewhere.

(i) For $\text{Sp}_{2m}(q)$, we choose $F = F_q$ and $u = \begin{pmatrix} 0 & J_m \\ -J_m & 0 \end{pmatrix}$.
(ii) For $O_{2m}^+(q)$ or $O_{2m+1}(q)$, we choose $F = F_{q'}$ and $u = J_n$ where either $n = 2m$ or $n = 2m + 1$.
(iii) For $O_{2m+2}^-(q)$, we choose $F = F_q$ and $u = \begin{pmatrix} 0 & J_m \\ -J_m & 0 \end{pmatrix}$ where $c = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ for $\varepsilon \in \mathbb{F}^\times - (\mathbb{F}^\times)^2$.
(iv) For $U_n(q^2)$, we choose $F = F_{q^2}$ and $u = J_n$. (In this case, we have $F^\sigma = F_q$.)

In this paper, we study the (complex) irreducible characters of the group $C_p(\sigma)$ in the case where P is a σ-invariant algebra subgroup of A^\times. Following the terminology of [12], given any nilpotent
subalgebra J of A, the algebra group associated to J is the multiplicative group $1 + J$ of A^\times; notice that a subalgebra of A is not required to contain the identity (it is simply a multiplicatively closed vector subspace of A). We note that $B = F \cdot 1 + J$ is a (local) subalgebra of A, and that $P = 1 + J$ is a (normal) Sylow p-subgroup of the unit group B^\times; in fact, B^\times is isomorphic to the direct product $F^\times \times P$.

As a standard example, let $A = M_n(F)$, let $u \in GL_n(F)$ be any of the matrices listed above, and let $\sigma : M_n(F) \to M_n(F)$ be the involution given by $\sigma(a) = u^{-1}a^*u$ for all $a \in M_n(F)$. Let $P = U_n(F)$ be the (upper) unitriangular subgroup of $GL_n(F)$ consisting of all upper-triangular matrices with 1's on the main diagonal, and note that $P = 1 + J$ is the algebra subgroup of $GL_n(K)$ associated with the nilpotent subalgebra $J = u_n(F) \subseteq M_n(F)$ which consists of all upper-triangular matrices with 0's on the main diagonal; we note that $u_n(F)$ is the Jacobson radical of the Borel subalgebra $B = B_n(F)$ of $M_n(F)$ consisting of all upper-triangular matrices (hence, B^\times is the standard Borel subgroup $B_n(F)$ of $GL_n(F)$). The nilpotent subalgebra $u_n(F)$ is clearly σ-invariant, and thus the unitriangular subgroup $P = U_n(F)$ is also σ-invariant. Therefore, we may consider the σ-fixed subgroup $C_P(\sigma)$; we note that, P is a Sylow p-subgroup of $GL_n(F)$, whereas $C_P(\sigma)$ is a Sylow p-subgroup of the corresponding finite classical group.

The main result of this paper is as follows. (We note that our proof is valid only under the assumption of p being odd; in fact, in the paper [17], G. Lusztig showed that a Sylow p-subgroup of $S_P(2^r)$ for $r > 1$ always has irreducible characters of degree 2^{r-1}, and hence Theorem 1.4 below is false in this case.) Following [12], a subgroup Q of an arbitrarily given algebra group $P = 1 + J$ is said to be algebra subgroup of P if there exists a subalgebra U of J such that $Q = 1 + U$.

Theorem 1.1. Let F be a finite field of odd characteristic, and let (A, σ) be a finite-dimensional F-algebra with involution. Let J be a σ-invariant nilpotent subalgebra of A, and let ξ be an arbitrary irreducible character of $C_P(\sigma)$ where $P = 1 + J$. Then, there exists a σ-invariant algebra subgroup $Q \subseteq P$ and a linear character η of $Q(\sigma)$ such that $\eta = \eta^C_P(\sigma)$.

As a consequence, we deduce that the degree of every irreducible character of $C_P(\sigma)$ is a power of $|F^\sigma|$ (see Theorem 1.3 below); to see this, it is enough to show that $|C_P(\sigma)|$ is a power of $|F^\sigma|$. A crucial tool is the well-known Cayley transform $\phi : J \to P$ defined on an arbitrary nilpotent subalgebra of A by the rule $\phi(a) = (1 - a)(1 + a)^{-1}$ for all $a \in J$. Since p is odd, the map ϕ is bijective. On the other hand, since $((1 + a)^{-1})^{-1} = 1 - a + a^2 - a^3 + \cdots$, it is clear that $\phi(a) = 1 - 2a + 2a^2 - 2a^3 + \cdots$ for all $a \in J$. Therefore, we easily deduce that $\phi(\sigma(a)) = \sigma(\phi(a))$ for all $a \in J$. In particular, we obtain the following elementary result.

Lemma 1.2. Let J be a σ-invariant nilpotent subalgebra of A, and let

$$C_J(\sigma) = \{ a \in J \mid \sigma(a) = -a \}.$$

Then, the Cayley correspondence defines a bijection $\phi : C_J(\sigma) \to C_P(\sigma)$ where $P = 1 + J$. In particular, $|C_P(\sigma)|$ is a power of $|F^\sigma|$.

Proof. On the one hand, since $\phi(-a) = \phi(a)^{-1}$, we deduce that $\sigma(\phi(a)) = \phi(\sigma(a)) = \phi(-a) = \phi(a)^{-1}$ for all $a \in C_J(\sigma)$, and thus $\phi(C_J(\sigma)) \subseteq C_P(\sigma)$. On the other hand, let $x \in C_P(\sigma)$ be arbitrary, and let $a \in J$ be such that $\phi(a) = x$. Then, $\phi(\sigma(a)) = \sigma(x) = x^{-1} = \phi(a)^{-1} = \phi(-a)$, and so $\sigma(a) = -a$. The proof is complete; for the last assertion it is enough to observe that $C_J(\sigma)$ is a vector space over F^σ. □

A similar argument shows that $|C_P(\sigma) \cap Q|$ is a power of $|F^\sigma|$ for any algebra subgroup $Q \subseteq P$; in the terminology of [12], this means that $C_P(\sigma)$ is a strong subgroup of P (considered as an algebra group over F^σ). More generally, if P is any algebra group over (any field) F and $H \subseteq P$ is a subgroup, we say that H is a strong subgroup of P if $|H \cap Q|$ is a power of $|F|$ for all algebra subgroups $Q \subseteq P$. In our situation, we observe that P can be considered, in the obvious way, as an algebra group over F^σ.

In fact, we may use results of [12] and [20] to deduce the following result; notice that the assertion on character degrees is also an obvious consequence of Theorem 1.1 (together with Lemma 1.2).

Theorem 1.3. Let \((A, \sigma)\) be a finite-dimensional \(F\)-algebra with involution, let \(J\) be a \(\sigma\)-invariant nilpotent subalgebra of \(A\), and let \(P = 1 + J\). Then, \(C_P(\sigma)\) is a strong subgroup of \(P\) (considered as an algebra group over \(F^\sigma\)). In particular, all irreducible characters of \(C_P(\sigma)\) have \(|F^\sigma|\)-power degree, and all conjugacy classes of \(C_P(\sigma)\) have \(|F^\sigma|\)-power cardinality.

Proof. We prove that \(|C_P(\sigma) \cap Q|\) is a power of \(|F^\sigma|\) for all \(F^\sigma\)-algebra subgroups \(Q \leq P\). The result then follows by [12, Theorem D] (for the irreducible characters) and by [20, Lemma 5] (for the conjugacy classes). Let \(U \subseteq J\) be an arbitrary \(F^\sigma\)-subalgebra. By the previous lemma, the Cayley transform clearly defines a bijective map \(\phi : C_J(\sigma) \cap U \rightarrow C_P(\sigma) \cap (1 + U)\), and the result follows because \(C_J(\sigma) \cap U\) is an \(F^\sigma\)-vector subspace of \(J\).

As a consequence, we deduce the following result; we refer that the same result was also obtained by M. Boyarchenko (see the preprint [3]; see also the PhD thesis [4]) for a large class of finite groups of Lie type using a rather different method. (Given any finite group \(G\) and any prime divisor \(p\) of \(|G|\), we denote by \(\text{Syl}_p(G)\) the set consisting of all Sylow \(p\)-subgroups of \(G\).

Theorem 1.4. Let \(F\) be a finite field of odd characteristic \(p\), let \(G\) be a finite classical group of Lie type defined over \(F\), and let \(P \in \text{Syl}_p(G)\). Then, all irreducible characters of \(P\) have \(q\)-power degree where \(q = |F|\).

Before we proceed with the proof of Theorem 1.1, we should mention that the corresponding result for algebra groups was proved by Z. Halasi in the paper [9] (although the theorem was first stated by E.A. Gutkin in [8]). We refer to this theorem as the Gutkin–Halasi’s Theorem; it asserts that every irreducible character of a finite algebra group is induced by a linear character of some algebra group over \(F\). Since every algebra group is the Sylow \(p\)-subgroup of a finite algebra group considered as being precisely the algebra groups over \(F\).

Theorem 1.5. Let \(A\) be a finite-dimensional algebra over a finite field \(F\) of characteristic \(p\), and let \(P \in \text{Syl}_p(A^\times)\). Then, \(P\) is an algebra subgroup of \(A^\times\); in other words, there exists a nilpotent subalgebra \(J \leq A\) such that \(P = 1 + J\). In particular, \(|P|\) is a power of \(|F|\).

Proof. Let \(B = \langle x | x \in P \rangle\) be the vector space (over \(F\)) spanned by \(P \subseteq A\). Then, \(B\) is a subalgebra of \(A\), and \(P\) is a Sylow \(p\)-subgroup of \(B^\times\). We claim that \(P = 1 + J(B)\) where \(J(B)\) denotes the Jacobson radical of \(B\). On the one hand, since \(1 + J(B)\) is a \(p\)-subgroup of \(B^\times\), there exists \(z \in B^\times\) such that \((1 + J(B))^z \leq P\), and thus \(1 + J(B) \leq P\) (because \(J(B)\) is an ideal of \(B\), hence \(J(B)^2 = J(B)\)). On the other hand, let \(F[P]\) be the group algebra of \(P\) over \(F\), and let \(\psi : F[P] \rightarrow B\) be the natural extension of the inclusion \(i : P \rightarrow B\) to a homomorphism of \(F\)-algebras. Since \(P\) is a finite \(p\)-group, the Jacobson radical of \(F[P]\) coincides with the augmentation ideal \(I(P)\) of \(F[P]\) (see [14, Proposition 52.4]); we recall that \(I(P)\) is the vector subspace of \(F[P]\) spanned by all the elements \(x - 1\) for \(x \in P\). It follows that \(\psi(I(P)) \subseteq J(B)\), and thus \(x - 1 \in J(B)\) for all \(x \in P\). The claim follows, and the proof is complete.

Since every algebra group is the Sylow \(p\)-subgroup of a well-determined local algebra (see the remarks above), we immediately deduce the following consequence.
Corollary 1.6. A finite group P is an algebra group over F if and only if $P \in \text{Syl}_p(A^\times)$ for some finite-dimensional F-algebra A.

By virtue of Theorem 1.5, the Gutkin–Halasi’s Theorem can be restated as follows; here, by a unitary subalgebra of A we mean any subalgebra of A containing the identity.

Theorem (Gutkin–Halasi). Let A be a finite-dimensional algebra over a finite field F of characteristic p, let $P \in \text{Syl}_p(A^\times)$, and let ξ be an irreducible character of P. Then, there exists a unitary subalgebra $B \leq A$ and a Sylow p-subgroup $Q \in \text{Syl}_p(B^\times)$ with $Q \leq P$ such that $\xi = \eta^p$ for some linear character η of Q. In particular, the degree $\xi(1)$ is a power of $|F|$.

In the case where (A, σ) is a finite-dimensional algebra with involution (over a field of odd characteristic), we obtain a similar result as a consequence of Theorem 1.1; here, we naturally extend the notation $C_H(\sigma)$ to any subgroup $H \leq A^\times$ by setting $C_H(\sigma) = H \cap C_{A^\times}(\sigma)$.

Theorem 1.7. Let F be a finite field of odd characteristic p, and let (A, σ) be any finite-dimensional F-algebra with involution. Let $P \in \text{Syl}_p(A^\times)$, and let ξ be an irreducible character of $C_P(\sigma)$. Then, there exists a σ-invariant unitary subalgebra $B \leq A$ and a Sylow p-subgroup $Q \in \text{Syl}_p(B^\times)$ with $Q \leq P$ such that $\xi = \eta^p$ for some linear character η of Q. In particular, the degree $\xi(1)$ is a power of $|F|$.

Proof. Since P is an algebra subgroup of A^\times (by Theorem 1.5), it is enough to apply Theorem 1.1 to the σ-invariant algebra subgroup $P \cap P^\sigma$. The last assertion is an immediate consequence of Theorem 1.3. □

In particular, Theorem 1.1 (and the previous theorem) applies to any of the finite classical groups. In fact, as we remarked above, the Sylow (p)-subgroups of any finite classical group can be realised as the subgroup $C_P(\sigma)$ where $P = U_n(F)$ is the (upper) unitriangular subgroup of $GL_n(F)$ and $\sigma = \sigma_u$ is an involution of $A = M_n(F)$ defined by the appropriate matrix $u \in GL_n(F)$. Thus, in this particular situation, Theorem 1.1 (or Theorem 1.7) can be restated as follows.

Theorem 1.8. Let F be a finite field of odd characteristic p, let G be a classical algebraic group defined over the algebraic closure of F, and let $G = \bar{G}(F)$ be the corresponding finite classical group of Lie type defined over F. Let $P \in \text{Syl}_p(G)$, and let $\xi \in \text{Irr}(P)$. Then, there exists a closed connected subgroup H of G such that $\xi = \eta^p$ is induced from some linear character $\eta \in \text{Irr}(Q)$ of the subgroup $Q = P \cap H$ of P.

2. Proof of Theorem 1.1

In this section, we proceed with the proof of Theorem 1.1. In fact, we shall prove a slightly more general result. Firstly, we recall the Glauberman correspondence between σ-invariant irreducible characters of P and irreducible characters of its subgroup $C_P(\sigma)$; our main reference is [11, Chapter 13]. As usual, we denote by $\text{Irr}(P)$ the set consisting of all irreducible characters of P (and extend this notation to any finite group). For any character ξ of P, we denote by ξ^σ the character of P given by $\xi^\sigma(x) = \xi(x^\sigma)$ for all $x \in P$, and set

$$\text{Irr}_\sigma(P) = \{\xi \in \text{Irr}(P) \mid \xi^\sigma = \xi\}.$$

Then, since p is odd, the Glauberman correspondence asserts that there exists a uniquely defined bijective map

$$\pi_P : \text{Irr}_\sigma(P) \to \text{Irr}(C_P(\sigma))$$

such that, for any $\xi \in \text{Irr}_\sigma(P)$, the image $\eta = \pi_P(\xi)$ is the unique irreducible constituent of $\xi C_P(\sigma)$ with odd multiplicity (see [11, Theorem 13.1]). Given any σ-invariant subgroup $Q \leq P$, we shall write π_Q
to denote the Glauberman map \(\pi_Q : \text{Irr}_\sigma(Q) \to \text{Irr}(C_Q(\sigma)) \). We shall prove the following extension of Theorem 1.1.

Theorem 2.1. Let \(F \) be a finite field of odd characteristic, and let \((A, \sigma)\) be a finite-dimensional \(F \)-algebra with involution. Let \(J \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \), and let \(P = 1 + J \). Let \(\xi \) be an irreducible character of \(C_P(\sigma) \), and let \(\hat{\xi} \in \text{Irr}_\sigma(P) \) be such that \(\pi_P(\hat{\xi}) = \xi \). Then, there exists a \(\sigma \)-invariant algebra subgroup \(Q \leq P \) and a \(\sigma \)-invariant linear character \(\eta \) of \(Q \) such that \(\hat{\xi} = \eta^P \) and \(\xi = \eta^{C_P(\sigma)} \) where \(\eta \) is the linear character \(\eta = \pi_Q(\hat{\xi}) \) of \(C_Q(\sigma) \).

For the proof of this theorem, we will argue by induction on the dimension of \(J \). Given any \(\sigma \)-invariant nilpotent subalgebra \(J \) of \(A \), we consider the algebra subgroup \(N = 1 + J^2 \) of \(P = 1 + J \); in the terminology of [12], \(N \) is an ideal subgroup of \(P \) and, in particular, it is a normal subgroup of \(P \). Following [2], we say that an irreducible character \(\xi \in \text{Irr}(P) \) is strongly Heisenberg if \(\xi_N = e \vartheta \) for some (positive) integer \(e \) and some \(P \)-invariant character \(\vartheta \in \text{Irr}(N) \); hence, by [9, Theorem 1.3], \(\vartheta \) is linear, and so \(e = \xi(1) \). We note that, if \(\xi \) is \(\sigma \)-invariant, then \(\vartheta \) is also \(\sigma \)-invariant (by [11, Theorem 13.27]); it is clear that the subgroup \(N \) is \(\sigma \)-invariant. More generally, given any finite group \(G \), we say that \(\xi \in \text{Irr}(G) \) is a Heisenberg character if there exists a normal subgroup \(N \) such that \(G/N \) is abelian and \(\xi_N = e \vartheta \) for some (positive) integer \(e \) and some \(G \)-invariant linear character \(\vartheta \in \text{Irr}(N) \). The following conditions are equivalent for any \(\xi \in \text{Irr}(G) \):

(i) \(\xi \) is a Heisenberg character;

(ii) \(Z(\xi) = \{ x \in G \mid \xi(x) = \xi(1) \} \) is the centre of \(\xi \), then \(G/Z(\xi) \) is an abelian group.

It was proved in [2, Theorem 3.1] that every irreducible character \(\xi \in \text{Irr}(P) \) is induced from a strongly Heisenberg irreducible character of some algebra subgroup of \(P \). We next show that the same is true for \(\sigma \)-invariant irreducible characters; that is, every \(\xi \in \text{Irr}_\sigma(P) \) is induced from a strongly Heisenberg \(\eta \in \text{Irr}_\sigma(Q) \) of some \(\sigma \)-invariant algebra subgroup \(Q \leq P \). For the proof we need the following auxiliary result (see [10, Lemma 3.2]); henceforth, we fix the finite-dimensional \(F \)-algebra \(A \) and the involution \(\sigma : A \to A \).

Lemma 2.2. Let \(J \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \), and let \(P = 1 + J \). Let \(N \leq Q \) be \(\sigma \)-invariant normal subgroups of \(P \), let \(\xi \in \text{Irr}_\sigma(Q) \), and let \(\eta \in \text{Irr}_\sigma(N) \) be a constituent of \(\xi_N \). Then, there exists \(\zeta \in \text{Irr}_\sigma(Q) \) such that \(\langle \xi, \xi_Q \rangle \neq 0 \) and \(\langle \xi_N, \eta \rangle \neq 0 \).

The following result will also be very useful.

Lemma 2.3. Let \(J \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \), and let \(P = 1 + J \). Let \(U \subseteq J \) be any \(\sigma \)-invariant vector subspace such that \(J^2 \subseteq U \), and consider the \(\sigma \)-invariant ideal subgroup \(Q = 1 + U \) of \(P \). Let \(\eta \in \text{Irr}_\sigma(Q) \) be arbitrary. Then, the inertia group \(I_P(\eta) = \{ x \in P \mid \eta^x = \eta \} \) is a \(\sigma \)-invariant algebra subgroup of \(P \).

Proof. By [2, Lemma 3.2], we know that \(I_P(\eta) \) is an algebra subgroup of \(P \). The result follows because \(I_P(\eta) \) is clearly \(\sigma \)-invariant. \(\square \)

We are now able to prove the following reduction theorem (see [2, Theorem 3.1]).

Proposition 2.4. Let \(J \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \), let \(P = 1 + J \), and let \(\xi \in \text{Irr}_\sigma(P) \). Then, there exists a \(\sigma \)-invariant algebra subgroup \(Q \leq P \) and a strongly Heisenberg irreducible character \(\eta \in \text{Irr}_\sigma(Q) \) such that \(\xi = \eta^P \).

Proof. We proceed by induction on \(\dim J \). Suppose that \(\xi \) is not strongly Heisenberg, and let \(N = 1 + J^2 \). By [11, Theorem 13.27], there exists \(\vartheta \in \text{Irr}_\sigma(N) \) such that \(\langle \xi_N, \vartheta \rangle \neq 0 \). By [9, Theorem 1.3], \(\vartheta \) is not \(P \)-invariant, and thus \(I_P(\vartheta) \) is a proper \(\sigma \)-invariant algebra subgroup of \(P \) (by the
previous lemma). By Lemma 2.2, there exists \(\eta \in \text{Irr}_\sigma(I_P(\vartheta)) \) with \(\langle \eta, \xi_N \rangle \neq 0 \) and \(\langle \eta_N, \vartheta \rangle \neq 0 \). By Clifford’s correspondence (see [11, Theorem 6.11]), we must have \(\xi = \eta^P \), and the result follows by induction. \(\square \)

As a consequence, we may use Glauberman’s correspondence to prove the following result.

Proposition 2.5. Let \(J \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \), and let \(P = 1 + J \). Let \(\xi \in \text{Irr}(C_P(\sigma)) \) be arbitrary, and let \(\hat{\xi} \in \text{Irr}(P) \) be such that \(\pi_P(\hat{\xi}) = \xi \). Then, there exists a \(\sigma \)-invariant algebra subgroup \(Q \subseteq P \) and a strongly Heisenberg irreducible character \(\hat{\eta} \in \text{Irr}_\sigma(Q) \) such that \(\hat{\xi} = \hat{\eta}^P \) and \(\xi = \eta^{C_P(\sigma)} \) where \(\eta = \pi_Q(\hat{\eta}) \in \text{Irr}(C_Q(\sigma)) \). Moreover, \(\eta \) is a Heisenberg character of \(C_Q(\sigma) \).

For the proof, we will need the following consequence of [11, Theorems 13.27 and 13.28].

Lemma 2.6. Let \(J \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \), let \(P = 1 + J \), and let \(Q \) be a \(\sigma \)-invariant algebra subgroup of \(P \). Then:

(i) For any \(\xi \in \text{Irr}_\sigma(P) \), the restriction \(\xi_Q \) has a \(\sigma \)-invariant irreducible constituent.

(ii) For any \(\eta \in \text{Irr}_\sigma(Q) \), the induced character \(\eta^P \) has a \(\sigma \)-invariant irreducible constituent.

Proof. We proceed by induction on \(\text{dim} \, J \). Let \(N = 1 + J^2 \), and consider the subgroup \(QN \leq P \). It is clear that \(QN \) is a \(\sigma \)-invariant algebra subgroup of \(P \); moreover, since \(N \subseteq QN \), it is obvious that \(QN \) is a normal subgroup of \(P \) (in fact, it is an ideal subgroup). If \(QN = P \), then \(Q = N \) (by [12, Lemma 3.1]) and there is nothing to prove. Thus, we assume that \(QN \neq P \). By [11, Theorem 13.27], there exists \(\eta \in \text{Irr}_\sigma(QN) \) such that \(\langle \eta, \xi_Q \rangle \neq 0 \). By induction, we conclude that \(\eta_Q \) has a \(\sigma \)-invariant irreducible constituent, and thus (i) is proved. On the other hand, let \(\eta \in \text{Irr}_\sigma(Q) \) be arbitrary. Then, by induction, there exists \(\zeta \in \text{Irr}_\sigma(QN) \) such that \(\langle \zeta, \eta_Q \rangle \neq 0 \). Since \(QN \subseteq P \), [11, Theorem 13.28] asserts that \(\zeta^P \) has a \(\sigma \)-invariant irreducible constituent, and thus \(\zeta^P = (\eta^P)^{QN} \) also has a \(\sigma \)-invariant irreducible constituent. The lemma follows. \(\square \)

The following observation will also be very useful.

Lemma 2.7. Let \(J \) be a nilpotent subalgebra of \(A \), and let \(Q \) be a strong subgroup of \(P = 1 + J \) which contains \(N = 1 + J^2 \). Then, \(Q \) is an algebra subgroup of \(P \). In particular, if \(J \) is \(\sigma \)-invariant, then \(C_P(\sigma)N \) is an \(F^\sigma \)-algebra subgroup of \(P \).

Proof. Let \(u \in J \) be arbitrary, and let \(U = J^2 + Fu \). Then, \(1 + U \) is an algebra subgroup of \(P \), and thus \(|Q \cap (1 + U)| \) is a power of \(|F| \). Since \(N \leq Q \cap (1 + U) \) and \(|1 + U : N| \leq |F| \), either \(1 + U \leq Q \), or \(Q \cap (1 + U) = N \). The result follows; for the last assertion, one can apply the first part to the \(\sigma \)-algebra group \(P/N \cong 1 + J/J^2 \) and to its strong subgroup \(C_{P/N}(\sigma) \) (see Lemma 2.2), and use the fact that \(C_{P/N}(\sigma) = C_P(\sigma)N/N \) (see [7, Theorem 5.3.15]). \(\square \)

The proof of Proposition 2.5 will be complete once we prove the following result.

Proposition 2.8. Let \(J \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \), and let \(P = 1 + J \). Let \(\xi \in \text{Irr}(C_P(\sigma)) \) be arbitrary, and let \(\hat{\xi} \in \text{Irr}_\sigma(P) \) be such that \(\pi_P(\hat{\xi}) = \xi \). Moreover, let \(Q \subseteq P \) be a \(\sigma \)-invariant algebra subgroup such that \(\hat{\xi} = \hat{\eta}^P \) for some \(\hat{\eta} \in \text{Irr}_\sigma(Q) \). Then, \(\xi = \eta^{C_P(\sigma)} \) where \(\eta = \pi_Q(\hat{\eta}) \in \text{Irr}(C_Q(\sigma)) \).

Proof. We proceed by induction on \(\text{dim} \, J \). Let \(N = 1 + J^2 \), and consider the subgroup \(QN \subseteq P \) and the induced character \(\hat{\xi} = \hat{\eta}^{QN} \in \text{Irr}(QN) \). By Lemma 2.6, the irreducible character \(\hat{\xi} \) must be \(\sigma \)-invariant; moreover, we clearly have \(\hat{\xi} = \hat{\eta}^P \). If \(QN = P \), then \(Q = P \) (by [12, Lemma 3.1]), and there is nothing to prove. Thus, suppose that \(QN \) is a proper subgroup of \(P \), and let \(\xi = \pi_{QN}(\zeta) \in \text{Irr}(C_{QN}(\sigma)) \). By induction, we have \(\zeta = \eta^{C_Q(\sigma)} \), and thus it is enough to prove that \(\xi = \zeta^{C_P(\sigma)} \). To see this, we consider
the subgroup \(L = C_P(\sigma)QN \); by the previous lemma, \(C_P(\sigma)N \) is an \(F^\sigma \)-algebra subgroup of \(P \), and so \(L \) is also an \(F^\sigma \)-algebra subgroup of \(P \). Since \(\xi^L \) is irreducible, the inertia group \(I_1(\xi) \) equals \(QN \) (by Mackey's criterion; see [11, Exercise 6.1]). On the other hand, by Lemma 2.6 (and by the previous lemma), we have \(\hat{\xi}L \in \text{Irr}_\sigma(L) \), and \(\pi_L(\hat{\xi}^L) = (\pi_QN(\xi))^{C_L(\sigma)} = \xi^{C_L(\sigma)} \) (see [11, Exercise 13.14]).

Since \(C_P(\sigma) \leq L \), we have \(C_L(\sigma) = C_P(\sigma) \), and so \(\pi_L(\hat{\xi}^L) = \xi^{C_P(\sigma)} \). Finally, using [7, Theorem 5.3.15], we deduce that \(C_P/L(\sigma) = C_P(\sigma) \leq L = 1 \), and thus [11, Exercises 13.4 and 13.5] imply that \(\hat{\xi} = \pi_P(\xi) = \pi_L(\hat{\xi}^L) = \eta^{C_P(\sigma)} \), as required. \(\Box \)

We now finish the proof of Proposition 2.5.

Proof of Proposition 2.5. The first assertion follows by Proposition 2.4 and the previous proposition. For the last assertion, let \(U \leq J \) be the vector subspace such that \(Q = 1 + U \), and let \(N = 1 + U^2 \). Let \(\hat{\vartheta} \in \text{Irr}_\sigma(N) \) be such that \(\hat{\vartheta}N = e\hat{\vartheta} \) for \(e = \hat{\xi}(1) \), and let \(\hat{\vartheta} = \pi_N(\hat{\vartheta}) \in \text{Irr}(C_N(\sigma)) \). Since \(\hat{\vartheta} \) is linear, we must have \(\hat{\vartheta}C_N(\sigma) = \hat{\vartheta} \) (hence, \(\hat{\vartheta} \) is linear). Moreover, since \(\hat{\vartheta} \) is \(Q \)-invariant, we easily deduce that \(I_{C_Q(\sigma)}(\hat{\vartheta}) = \hat{\vartheta}C_Q(\sigma) \). The result follows because \(C_Q(\sigma)/C_N(\sigma) \cong C_Q(\sigma)N/N \) is abelian. \(\Box \)

Next, we consider strongly Heisenberg \(\sigma \)-invariant irreducible characters of the algebra group \(P = 1 + J \) where \(J \) is a \(\sigma \)-invariant nilpotent subalgebra of \(A \). We recall some of the techniques used in the paper [2]. Given any \(P \)-invariant (linear) character \(\vartheta \in \text{Irr}_\sigma(N) \) of \(N = 1 + J^2 \), we define the commutator pairing \(c_\vartheta : P/N \times P/N \to \mathbb{C}^\times \) by

\[
c_\vartheta(xN, yN) = \vartheta([x, y])
\]

for all \(x, y \in P \); as usual, we set \([x, y] = x^{-1}y^{-1}xy \) for \(x, y \in P \). It is well known that \(c_\vartheta \) defines an alternating bilinear form on \(P/N \). Moreover, there exists an algebra subgroup \(L \leq P \) containing \(N \) and such that \(L/N \) is a maximal isotropic subgroup of \(P/N \) with respect to \(c_\vartheta \) (see [2, Proposition 1.3]). In our situation, we have the following result.

Lemma 2.9. Let \(J \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \), let \(P = 1 + J \), and let \(N = 1 + J^2 \). Let \(\vartheta \in \text{Irr}_\sigma(N) \) be a \(P \)-invariant (linear) character, and let \(c_\vartheta : P/N \times P/N \to \mathbb{C}^\times \) be the commutator pairing associated with \(\vartheta \). Then, there exists a \(\sigma \)-invariant algebra subgroup \(L \leq P \) containing \(N \) such that \(L/N \) is a maximal isotropic subgroup of \(P/N \) with respect to \(c_\vartheta \).

Proof. Let \(S = \langle \sigma \rangle \), let \(F^\sigma[S] \) denote the group algebra of \(S \) over \(F^\sigma \), and consider the left \(F^\sigma[S] \)-module \(U = J/J^2 \); we recall that \(\sigma : J \to J \) is an \(F^\sigma \)-linear isomorphism. Since \(p \) is odd, Maschke’s Theorem guarantees that \(J/J^2 = U_1 \oplus \cdots \oplus U_n \) for some irreducible \(F^\sigma[S] \)-submodules \(U_1, \ldots, U_n \leq U \). On the other hand, since \(F \) contains a primitive square root of unity (because \(p \) is odd), every irreducible \(F^\sigma[S] \)-module is one-dimensional (see [7, Theorem 3.24]), and thus there exist vectors \(u_1, \ldots, u_n \in J/J^2 \) such that \(U_i = F^\sigma u_i \) for all \(1 \leq i \leq m \); in fact, since \(\sigma \) has order 2, we have \(\sigma(u_i) = \pm u_i \) for all \(1 \leq i \leq n \). Then, \(\{u_1, \ldots, u_n\} \) is a spanning set for \(J/J^2 \) considered as a vector space over \(F \), and so we can choose an \(F \)-basis \(\{v_1, \ldots, v_m\} \) for \(J/J^2 \) with \(v_1, \ldots, v_m \in \{u_1, \ldots, u_n\} \). For each \(1 \leq i \leq m \), let \(V_i \leq J \) be the vector subspace such that \(V_i/J^2 = Fv_1 \oplus \cdots \oplus Fv_i \), and let \(N_i = 1 + V_i \leq P \). Then, we obtain a chain \(J/J^2 = V_0 \subset V_1 \subset \cdots \subset V_m = J \) of \(\sigma \)-invariant vector subspaces satisfying \(\dim V_i/V_{i-1} = 1 \) for all \(1 \leq i \leq m \), and hence also a chain \(N = N_0 \supset N_1 \supset \cdots \supset N_m = P \) of \(\sigma \)-invariant ideal subgroups of \(P \) satisfying \(|N_i : N_{i-1}| = |F| \) for all \(1 \leq i \leq m \). Now, for each \(1 \leq i \leq m \), let \(L_i = \{x \in N_i \mid [x, N_i] \leq \ker(\vartheta) \} \) where \(\ker(\vartheta) = \{z \in N \mid \vartheta(z) = \vartheta(1) \} \) is the kernel of \(\vartheta \). By [2, Lemma 1.4], for each \(1 \leq i \leq m \), \(L_i \) is an ideal subgroup of \(P \), and so the product \(L = L_1 \cdots L_m \) is also an ideal subgroup of \(P \). Moreover, since \(\vartheta \) is \(\sigma \)-invariant, each \(L_i \) is clearly \(\sigma \)-invariant, hence \(L \) is also \(\sigma \)-invariant. Finally, it is easy to show that \(L/N \) is a maximal isotropic subgroup of \(P/N \) with respect to \(c_\vartheta \) (for a proof see [6, Lemma 1.12.3]). \(\Box \)

We are now able to prove the following result.
Proposition 2.10. Let J be a σ-invariant nilpotent subalgebra of A, let $P = 1 + J$, and let $N = 1 + J^2$. Let $\xi \in \text{Irr}_\sigma(P)$ be strongly Heisenberg, and let $\vartheta \in \text{Irr}_\sigma(N)$ be the linear character such that $\xi_N = e^\vartheta$ for $e = \xi(1)$. Then, there exists a σ-invariant algebra subgroup $L \leq P$ with $N \leq L$ and a linear character $\eta \in \text{Irr}_\sigma(L)$ such that $\xi = \eta^P$.

Proof. Let $L \leq P$ be a σ-invariant algebra subgroup containing N and such that L/N is a maximal isotropic subgroup of P/N with respect to the commutator pairing c_ϑ. It is well known that $\xi = \xi^P$ for some linear character $\xi \in \text{Irr}(L)$; moreover, we must have $\xi_N = \vartheta$. On the other hand, by Lemma 2.2, there exists $\eta \in \text{Irr}_\sigma(L)$ such that $(\eta, \xi_L) \neq 0$ and $(\eta_N, \vartheta) \neq 0$. By Gallagher’s Theorem (see [19, Corollary 6.14]), we must have $\eta = \omega \xi$ for some $\omega \in \text{Irr}(L)$ with $N \leq \text{ker}(\omega)$. Since L/N is abelian, ω is linear, and thus η is also linear. By degree considerations, we conclude that $\xi = \eta^P$, as required. □

The Glauberman correspondence can now be used to establish the following result. (The proof is an obvious application of the previous theorem and Proposition 2.8.)

Proposition 2.11. Let J be a σ-invariant nilpotent subalgebra of A, let $P = 1 + J$, and let $N = 1 + J^2$. Let $\xi \in \text{Irr}_\sigma(C_P(\sigma))$, and let $\hat{\xi} \in \text{Irr}_\sigma(P)$ be such that $\xi = \pi_P(\hat{\xi})$. Suppose that $\hat{\xi}$ is strongly Heisenberg, and let $\vartheta \in \text{Irr}_\sigma(N)$ be the linear character such that $\hat{\xi}_N = e^\vartheta$ for $e = \hat{\xi}(1)$. Then, there exists a σ-invariant algebra subgroup $L \leq P$ with $N \leq L$ and a linear character $\hat{\eta} \in \text{Irr}_\sigma(L)$ such that $\hat{\xi} = \hat{\eta}^P$ and $\xi = \hat{\eta}^{\pi(\sigma)}$.

Remark. In the notation of the theorem, let $c_\sigma : P/N \times P/N \to \mathbb{C}^\times$ be the commutator pairing associated with $\hat{\sigma}$, so that L/N is a maximal isotropic subgroup of P/N with respect to c_σ. Then, the quotient group $C_{\sigma}(\sigma)/C_N(\sigma)$ is a maximal isotropic subgroup of $C_P(\sigma)/C_N(\sigma)$ with respect to commutator pairing c_σ associated with the linear character $\vartheta = \pi_N(\hat{\sigma}) \in \text{Irr}(C_P(\sigma))$. In fact, it is clear that $C_{\sigma}(\sigma)/C_N(\sigma)$ is an isotropic subgroup of $C_P(\sigma)/C_N(\sigma)$ with respect to c_σ. On the other hand, let $\hat{\eta} \in \text{Irr}_\sigma(L)$ be a σ-invariant extension of $\hat{\sigma}$. Then, $\eta = \pi_L(\hat{\eta}) \in \text{Irr}(C_L(\sigma))$ is an extension of ϑ. Moreover, since $I_P(\hat{\eta}) = L$ (because L/N is maximal isotropic with respect to c_σ), we also have $I_{C_P(\sigma)}(\vartheta) = C_L(\sigma)$; we observe that, for any $x \in I_{C_P(\sigma)}(\vartheta)$, we have $\pi_N(x) = \vartheta^x \in \vartheta$, and thus $\vartheta^x = \vartheta$ (because the Glauberman map is bijective). It follows that $\eta^{C_P(\sigma)}$ is irreducible, hence $C_L(\sigma)/C_N(\sigma)$ is a maximal isotropic with respect to c_σ.

Using Proposition 2.10 together with Proposition 2.4, we clearly deduce the following result.

Proposition 2.12. Let J be a σ-invariant nilpotent subalgebra of A, let $P = 1 + J$, and let $\xi \in \text{Irr}_\sigma(P)$ be arbitrary. Then, there exists a σ-invariant algebra subgroup $Q \leq P$ and a σ-invariant linear character $\hat{\eta} \in \text{Irr}_\sigma(Q)$ such that $\xi = \hat{\eta}^Q$.

This also completes the proof of our main Theorem 2.1; the desired conclusion follows immediately by Proposition 2.8. We observe that the proof of Theorem 1.1 is also complete.

3. Irreducible characters for large primes

As before, let (A, σ) be a finite-dimensional (associative) F-algebra, and let J be a σ-invariant nilpotent subalgebra of A. In the case where J satisfies $J^P = 0$, the irreducible characters of the algebra group $P = 1 + J$ may be described by Kirillov’s method of coadjoint orbits (see [15, Proposition 2]; see also [19, Theorem 7.7]). In fact, in this situation, we may define the usual exponential map $\exp : J \to P$ by $\exp a = 1 + a + a^2/2 + \cdots + a^{p-1}/(p-1)!$ for all $a \in J$. As is well known, this map is bijective, and its inverse is the logarithm map $\ln : P \to J$ defined by $\ln(1 + a) = \ln((1 + a)^p)$. Then, the logome
\[a - a^2/2 + \cdots + (-1)^p a^{p-1}/(p-1) \] for all \(a \in J \); moreover, the condition \(J^p = 0 \) assures that the Campbell–Hausdorff formula holds (see [13, p. 175]). We consider the adjoint action of \(P \) on \(J \) given by \(a^\gamma = x^{-1}ax \) for all \(a \in J \) and all \(x \in P \), and observe that the exponential map defines a permutation isomorphism between this action and the action of \(P \) on itself by conjugation: we clearly have \(\exp(a^\gamma) = \exp(a)^x \) for all \(a \in J \) and all \(x \in P \). On the other hand, let \(J^\circ \) be the set consisting of all linear characters of the additive group \(J^+ \) of \(J \); hence, \(J^\circ = \text{Irr}(J^+) \). By duality, the group \(P \) acts on \(J^\circ \) via the coadjoint action: if \(\lambda \in J^\circ \) and \(x \in P \), then \(\lambda^x = \lambda(a^{-1}) \) for all \(a \in J \). We refer to the orbits of this action as the coadjoint \(P \)-orbits on \(J^\circ \). The orbit of \(\lambda \in J^\circ \) will be denoted by \(O_{\lambda} \), and its stabiliser by \(C_\lambda \). For each \(P \)-orbit \(O \subseteq J^\circ \), we define the map \(\hat{\xi}_O : P \to \mathbb{C} \) by

\[
\hat{\xi}_O(\exp a) = |O|^{-1/2} \sum_{\hat{\lambda} \in O} \hat{\lambda}(a)
\]

for all \(a \in J \); in the case where \(O = O_{\lambda} \) is the \(P \)-orbit of \(\lambda \in J^\circ \), we simplify the notation and write \(\hat{\xi}_\lambda \) instead of \(\hat{\xi}_{O_{\lambda}} \). It is easy to see that these functions form an orthonormal basis in the unitary space \(\mathfrak{f}(P) \) consisting of all class functions of \(P \). In fact, Kazhdan's Theorem asserts that each function \(\hat{\xi}_O \) is an irreducible character of \(P \), and that every irreducible character is of the form \(\hat{\xi}_O \) for some \(P \)-orbit \(O \subseteq J^\circ \) (see [15, Proposition 2]).

Now, let \(U \) be a subalgebra of \(J \), and let \(Q = 1 + U \) be the corresponding algebra subgroup of \(P \); we note that \(Q = \exp(U) \). For a given linear character \(\lambda \in J^\circ \), let \(\mu = \lambda_U \) be the restriction of \(\lambda \) to \(U \). Then, we can consider the irreducible character \(\hat{\xi}_{\mu} \in \text{Irr}(Q) \) associated with the coadjoint \(Q \)-orbit \(O_{\mu} \subseteq U^\circ \), and the induced character \(\hat{\xi}_{\mu}^P \). By [18, Theorem 1], we have

\[
(\hat{\xi}_{\mu})^P = \hat{\xi}_{\lambda} \quad \iff \quad |P : Q| = \frac{|C_Q(\mu)|}{|C_P(\lambda)|};
\]

in other words, \((\hat{\xi}_{\mu})^P = \hat{\xi}_{\lambda} \) if and only if \((\hat{\xi}_{\mu})^P \) and \(\hat{\xi}_{\lambda} \) have the same value at the identity.

A particular situation occurs when the subalgebra \(U \subseteq J \) is a \(\lambda \)-polarisation, that is, a subalgebra of \(J \) which, as a vector subspace, is maximal with respect to the condition \(\lambda([U, U]) = 1 \); a vector subspace \(V \) of \(J \) satisfying \(\lambda([V, V]) = 1 \) is said to be \(\lambda \)-isotropic. By Witt's Theorem (see [1, Theorems 3.10 and 3.11]), every maximal \(\lambda \)-isotropic subspace of \(J \) has dimension equal to \((1/2)(\dim J + \dim C_J(\lambda)) \) where \(C_J(\lambda) = \{ a \in J \mid [a, J] \subseteq \ker(\lambda) \} \). Since \(1 + C_J(\lambda) = C_P(\lambda) \) is the centraliser of \(\lambda \), we conclude that \(|O_P(\lambda)| = |P : Q|^2 \) where \(Q = 1 + U \) is the algebra subgroup of \(P \) associated with any \(\lambda \)-polarisation \(U \subseteq J \); in particular, \(|O_P(\lambda)| \) is a square power of \(|F| \). On the other hand, if \(U \subseteq J \) is an arbitrary \(\lambda \)-polarisation and \(\mu = \lambda_U \) is the restriction of \(\lambda \) to \(U \), it is easy to see that \(O_Q(\mu) = (\mu) \) where \(Q = 1 + U \). Therefore, the irreducible character \(\hat{\xi}_{\mu} \in \text{Irr}(Q) \) is given by \(\hat{\xi}_{\mu}(\exp a) = \mu(a) = \lambda(a) \) for all \(a \in U \). As remarked above, [18, Theorem 1] completes the proof of the following result. (We observe that \(\lambda \)-polarisations exist for all \(\lambda \in J^\circ \); a construction can be found in [6, Section 1.12] (see also the proof of Lemma 3.2 below).)

Proposition 3.1. Let \(J \) be a nilpotent subalgebra of \(A \) satisfying \(J^p = 0 \), and let \(P = 1 + J \). Let \(\lambda \in J^\circ \), let \(U \subseteq J \) be a \(\lambda \)-polarisation, and let \(Q = 1 + U \). Then, \(\hat{\xi}_{\lambda} = (\hat{\xi}_{\mu})^P \) where \(\hat{\xi}_{\lambda} : Q \to \mathbb{C} \) is the linear character defined by \(\hat{\xi}_{\lambda}(\exp a) = \lambda(a) \) for all \(a \in U \).

Next, we consider the \(\sigma \)-invariant irreducible characters of \(P \), and use Glauberman's correspondence to identify the irreducible characters of the group \(C_P(\sigma) \). We note that Kirillov's method also describes the irreducible characters of \(C_P(\sigma) \) in terms of the coadjoint \(C_P(\sigma) \)-orbits on \(C_J(\sigma)^O \); the construction follows exactly the same steps as above, and depends on the Lie algebra structure of \(C_J(\sigma) \) considered as a vector space over the \(\sigma \)-fixed point field \(F^\sigma \). The purpose of this section is to illustrate how the Glauberman correspondence \(\pi_P : \text{Irr}(P) \to \text{Irr}(C_P(\sigma)) \) can be used to describe the irreducible characters of \(C_P(\sigma) \) in terms of the \(\sigma \)-invariant coadjoint \(P \)-orbits on \(J^\circ \). We start by
observing that every linear character \(\lambda \in C_J(\sigma)^0 \) is extendible to \(J \); in fact, every element \(a \in J \) decomposes uniquely as the sum \(a = \frac{1}{2}(a + \sigma(a)) + \frac{1}{2}(a - \sigma(a)) \), and hence \(\lambda \) is the restriction to \(C_J(\sigma) \) of the linear character \(\hat{\lambda} \in J^\circ \) defined by \(\hat{\lambda}(a) = \lambda(\frac{1}{2}(a - \sigma(a))) \) for all \(a \in J \). We have the following result.

Lemma 3.2. Let \(J \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \), let \(\lambda \in C_J(\sigma)^0 \), and let \(\hat{\lambda} \in J^\circ \) be defined by \(\hat{\lambda}(a) = \lambda(\frac{1}{2}(a - \sigma(a))) \) for all \(a \in J \). Then, there exists a \(\sigma \)-invariant \(\hat{\lambda} \)-polarisation \(U \leq J \). Moreover, for any \(\sigma \)-invariant \(\hat{\lambda} \)-polarisation \(U \leq J \), the vector subspace \((\text{over } F^\sigma)C_U(\sigma) \leq C_J(\sigma) \) is maximal \(\hat{\lambda} \)-isotropic.

Proof. For the first assertion, it is enough to choose a chain \(0 = J_0 \subset J_1 \subset \cdots \subset J_m = J \) of \(\sigma \)-invariant ideals of \(J \) satisfying \(\dim J_k/J_{k-1} = 1 \) for all \(1 \leq k < m \) (for the existence of this chain we refer to the proof of Lemma 2.9). Then, for each \(1 \leq k \leq m \), \(C_{J_k}(\hat{\lambda}) = \{a \in J_k \mid [a, J_k] \leq \ker(\hat{\lambda})\} \) is a \(\sigma \)-invariant vector subspace of \(J \); in fact, it is straightforward to check that \(\hat{\lambda}((\sigma(a), b)) = \hat{\lambda}((a, \sigma(b))) \) for all \(a, b \in J \). By [6, Lemma 11.23], \(U = C_{J_1}(\hat{\lambda}) + \cdots + C_{J_m}(\hat{\lambda}) \) is a \(\lambda \)-polarisation of \(J \) which is clearly \(\sigma \)-invariant.

For the last assertion, let \(U \leq J \) be an arbitrary \(\sigma \)-invariant \(\hat{\lambda} \)-polarisation. Then, \(C_U(\sigma) \) is an \(F^\sigma \)-vector subspace satisfying \(\lambda((a, b)) = 1 \) for all \(a, b \in C_U(\sigma) \); we recall that \(C_U(\sigma) \) is a Lie subalgebra of \(U \). On the other hand, let \(a \in C_J(\sigma) \) be such that \(\lambda((a, c)) = 1 \) for all \(a \in C_U(\sigma) \), and let \(u \in U \) be arbitrary. Then, \(\hat{\lambda}((u, c)) = \hat{\lambda}(\frac{1}{2}((u, c) - \sigma((u, c)))) = \hat{\lambda}(\frac{1}{2}(u - \sigma(u)), c)) = 1 \), and so the vector subspace \(U + Fc \leq J \) is \(\hat{\lambda} \)-isotropic. By the maximality of \(U \), we conclude that \(c \in U \), and this completes the proof. \(\square \)

We are now able to identify the \(\sigma \)-invariant irreducible characters of \(P \), and hence the irreducible characters of \(C_P(\sigma) \).

Proposition 3.3. Let \(J \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \) satisfying \(J^0 = 0 \), and let \(P = J + 1 \). For each \(\lambda \in C_J(\sigma)^0 \), let \(\hat{\lambda} \in J^\circ \) be defined by \(\hat{\lambda}(a) = \lambda(\frac{1}{2}(a - \sigma(a))) \) for all \(a \in J \). Then,

\[
\begin{align*}
\text{(i)} & \quad \text{Irr}_\sigma(P) = \{\xi_\lambda \mid \lambda \in C_J(\sigma)^0\}; \\
\text{(ii)} & \quad \text{Irr}(C_P(\sigma)) = \{\xi_\lambda \mid \lambda \in C_J(\sigma)^0\} \text{ where } \xi_\lambda = \pi_P(\xi_\hat{\lambda}) \text{ for } \lambda \in C_J(\sigma)^0.
\end{align*}
\]

Proof. It is enough to prove (i) because \(\text{Irr}(C_P(\sigma)) = \pi_P(\text{Irr}_\sigma(P)) \) (by Glauberman’s Theorem). Let \(\lambda \in C_J(\sigma)^0 \) be arbitrary, let \(U \leq J \) be a \(\sigma \)-invariant \(\hat{\lambda} \)-polarisation, and consider the \(\sigma \)-invariant algebra group \(Q = 1 + U \) of \(P \). Then, the linear character \(\hat{\varphi}_\lambda \) of \(Q \) is \(\sigma \)-invariant; in fact, since \((\exp a)^{-1} = \exp(-a) \), we have \(\exp(a)^\sigma = \exp(-\sigma(a)) \) for all \(a \in J \), and thus

\[
\hat{\varphi}_\lambda((\exp a)^\sigma) = \hat{\lambda}(\sigma(a)) = \lambda(\frac{1}{2}(\sigma(a) + a)) = \hat{\lambda}(a) = \hat{\varphi}_\lambda(\exp a)
\]

for all \(a \in J \). It follows that the induced character \(\xi_\lambda = (\hat{\varphi}_\lambda)^P \) is also \(\sigma \)-invariant. Conversely, let \(\hat{\mu} \in J^\circ \) be such that \(\xi_{\hat{\mu}} \in \text{Irr}_\sigma(P) \), and let \(O_P(\hat{\mu}) \) be the coadjoint \(P \)-orbit which contains \(\hat{\mu} \). Let \(\hat{\mu}^\sigma \in J^\circ \) be defined by \(\hat{\mu}^\sigma(a) = \hat{\mu}(-\sigma(a)) \) for all \(a \in J \). It is straightforward to show that \((\mu^\sigma)^P = P \) is a \(P \)-orbit on \(J^\circ \), and thus \(\xi_{\hat{\mu}}((\exp(\sigma(a))) = \hat{\varphi}_{\mu^\sigma}(\exp a) \) for all \(a \in J \). It follows that \(\hat{\mu}^\sigma \in O_P(\hat{\mu}) \), and thus the mapping \(\hat{\varphi} \mapsto \hat{\varphi}^\sigma \) defines an action of the cyclic group \(\langle \sigma \rangle \) on the \(P \)-orbit \(O_P(\hat{\mu}) \). By Glauberman’s Lemma (see [11, Lemma 13.8]), we conclude that there exists \(\hat{\lambda} \in O_P(\hat{\mu}) \) such that \(\hat{\lambda}^\sigma = \hat{\lambda} \); that is, such that \(\hat{\lambda}(\sigma(a)) = \hat{\lambda}(a) \) for all \(a \in J \). Therefore, we have \(\hat{\lambda}(\frac{1}{2}(a + \sigma(a))) = 1 \), and so \(\hat{\lambda}(a) = \hat{\lambda}(\frac{1}{2}(a - \sigma(a))) \) for all \(a \in J \). It is thus enough to define \(\lambda \in C_J(\sigma)^0 \) by \(\lambda = \hat{\lambda}_{C_J(\sigma)} \). \(\square \)

As a consequence of Proposition 2.8, we easily deduce the following result.
Let \(U \) be a \(\sigma \)-invariant nilpotent subalgebra of \(A \) satisfying \(J^0 = 0 \), and let \(P = 1 + J \). Let \(\lambda, \mu \in C_j(\sigma)^\circ \), and let \(\xi_\lambda, \xi_\mu \in \text{Irr}(\text{C}_P(\sigma)) \) be as above. Then, \(\xi_\lambda = \xi_\mu \) if and only if \(\lambda \) and \(\mu \) lie in the same \(\text{C}_P(\sigma) \)-orbit on \(C_j(\sigma)^\circ \).

Proof. Let \(\lambda, \mu \in C_j(\sigma)^\circ \) be arbitrary, and let \(\hat{\lambda}, \hat{\mu} \in J^0 \) be defined as before; hence, by the definition, we have \(\hat{\xi}_\lambda = \pi_P(\hat{\xi}_\lambda) = \pi_P(\hat{\xi}_\mu) \). Since the Glauberman correspondence is bijective, we conclude that \(\hat{\xi}_\lambda = \hat{\xi}_\mu \) if and only if \(\xi_\lambda = \xi_\mu \). As above, we consider the action of \(\sigma \) on \(J^0 \) given by \(\hat{\nu}^\sigma(a) \) for all \(\hat{\nu} \in J^0 \) and all \(a \in J \). Since \(O_P(\hat{\lambda}) \) is clearly \(\sigma \)-invariant (because \(\hat{\lambda}^\sigma = \hat{\lambda} \)), \(\text{C}_Q(\sigma) \) is maximal \(\lambda \)-isotropic (by \text{Lemma 3.2.2}), we have \(O_{\text{C}_Q(\sigma)}(\lambda) = \{ \lambda \} \), and also \(|O|^\frac{1}{2} = |C_P(\sigma) : \text{C}_Q(\sigma)| \) (by Witt's Theorem). Let \(\hat{\sigma}_\lambda \) be the linear character of \(\text{C}_Q(\sigma) \) defined by \(\hat{\sigma}_\lambda(\exp a) = \hat{\lambda}(a) \) for all \(a \in C_U(\sigma) \). Then, by \text{[18, Theorem 1]}, we conclude that
\[
(\hat{\sigma}_\lambda)_{\text{C}_P(\sigma)}(\exp a) = \frac{1}{|O|^\frac{1}{2}} \sum_{\mu \in 0} \mu(a)
\]
for all \(a \in C_j(\sigma) \), and the result follows because \(\xi_\lambda = (\hat{\sigma}_\lambda)_{\text{C}_P(\sigma)} \) (by \text{Proposition 3.4}).
Acknowledgment

The author would like to thank the anonymous referee for the careful reading of the preliminary version of this paper and for his/her constructive and valuable comments and suggestions.

References