TCT-730

Numbers Needed to Treat Patients and Numbers Needed to Save Money. The Clinical and Economic Impact of TAVI and ICD face to face
Flavio L. Ribichini1, Gabriele Pesurini2, Corrado Vassanelli2
1Università di Verona, Verona, Italy, 2University of Verona, Verona, Italy

Background: Ageing, and the ever-increasing complexity of medical care requires an accurate assessment of the clinical advantages of treatments in relation to economic burden. A highly rated and conceptually simple indicator of this “weighted” inter- ven- tion is the number needed to treat (NNT). Treating inoperable aortic stenosis patients with transcatheter aortic valve implantation (TAVI), as defined in the PARTNER trial, yields an NNT to save 1 life at 1 year of 5 and 3.7 at 3 years. Such a formidable indicator of a “therapeutic-effort-to-clinical-yield” has never been so categorically proven in the most pivotal endpoint for interventional cardiology, and has led to a Class-I recommendation for TAVI in the recent European guidelines.

Methods: All European clinical and economic data used to calculate cost-benefit ratios was derived from publicly available data including peer-reviewed literature and national payment schedules (GHM for France, G-DRG for Germany, weighted National/Regional DRG tariffs and TAVI reimbursement.

Results: For the example of ICDs used in secondary prevention, it was estimated that the mean cost to the payer per death avoided at 1 year was €232,550, €197,098 and €244,335 for France, Germany and Italy respectively. For TAVI the corresponding cost per death avoided was €150,090, €150,872 and €122,007. In Italy this is also compounded by the recent introduction of medical device budget procurement caps.

Conclusions: The clinical data in support of TAVI is now strong and it is calculated that these impressive results are matched by the economic performance when compared against the other technological which are often considered routine in their use. This argument extends beyond the single comparison of TAVI and ICDs, and we comparing against other technologies which are often considered routine in their use.

TCT-731

TRANSCATHETER AORTIC VALVE IMPLANTATION (TAVI) REDUCES SYMPATHETIC ACTIVITY AND NORMALIZES ARTERIAL SPONTANEOUS BAROREFLEX IN PATIENTS WITH AORTIC STENOSIS
Nicolas Dumonteil1, Angelica Vaccaro2, Marc Labrunee1, Bertrand Marcheix1, Elisabeth Lambert1, Murray D. Esler5, Didier Carrié1, Jean Michel Senard1, Michel Galinier1, Atul Pathak6
1Cardiovascular and Metabolic Pole, Ranquell Hospital, Toulouse, France, 2Metabolic and Cardiovascular Institute, UMR-1048, Toulouse, France, 3Department of Clinical Pharmacology, Ranquell Hospital, Toulouse, France, 4Human Neurotransmitter Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia, 5Baker IDI Heart and Diabetes Institute, Melbourne, Australia, 6Cardiovascular and Metabolic Pole, Ranquell Hospital, Toulouse, France

Background: TAVI is an emerging therapeutic option in pts with severe AS at high risk for open heart surgery. Whether pts with AS have increased sympathetic activity remains to be established and effects of TAVI on sympathetic nervous system is also unknown. We directly measured Muscle Sympathetic Nerve Activity (MSNA) in patients with aortic stenosis (AS) before and after transcatheter aortic valve implantation (TAVI) and compared MSNA with control patients.

Methods: We prospectively enrolled 14 patients with severe symptomatic AS treated by TAVI. Fourteen control patients matched for age, body mass index and unscathed of AS were also included. All patients underwent MSNA and arterial baroreflex gain (ABG) assessment at baseline and one week.

Results: Pts with AS had lower BP levels, significant increase in MSNA (61.0±1.7 vs. 54.1±1.0 burst/min; p<0.05) and a decrease in ABG(2.13±0.14 vs 3.32±0.19 burst/mmHg; p<0.01) compared to controls. TAVI induced an increase of MSNA associated with a significant decrease of MSNA (from 61.0±1.7 to 54.1±1.0 burst/min; p<0.01) and was associated with a significant increase of ABG (from 2.13±0.14 to 3.49±0.33 burst/mmHg; p<0.01). One patient without sympathetic baroreflex improvement was the only one with moderate paravalvular aortic regur- gitation (PAR). This could be interpreted as a result of pressure-induced change in afferent baroreceptor nerve activity thus leading to an increase of MSNA through a baroreflex-mediated mechanism.

Conclusions: We report for the first time, that pts with AS have elevated sympathetic nervous system (SNS) activity associated to a decrease in sympathetic baroreflex gain and that TAVI normalizes these parameters. This study provide evidences for a new beneficial effect of TAVI namely normalization of SNS hyperactivity. Additionally, knowing the deleterious effect of SNA in other cardiovascular diseases such as hypertension or CHF, the lack of normalization of SNS in the pt with moderate PAR could help to understand the relationship noticed between these significant regurgi- tations following TAVI and the worse survival associated, without any evidence of causality to date. However, this pathophysiological concept would need to be further evaluated.

TCT-732

Predictors of Aortic Arch Type: Implications in Patients with Severe Aortic Stenosis Being Evaluated for Transcatheter Aortic Valve Replacement
Rajiv Tayal1, Benjamint LeSar2, Sahil Sehgal1, Alan Weinberg3, Amit Patil4, Rajiv Kothari5, 6
1Mount Sinai Heart Institute, New York, NY, 2Mount Sinai School of Medicine, New York, NY, 3Mount Sinai School of Medicine, New York, NY, 4Mount Sinai School of Medicine, New York, NY, 5Mount Sinai School of Medicine, New York, NY, 6Mount Sinai School of Medicine, New York, NY

Background: Type II and III Aortic arches (T2-3AAs) are associated with lower procedural success and higher embolic complications in catheter based interventions. No definitive studies identify the cause of these challenging anatomical variations. We hypothesize the development of T2-3AAs is related to gravitational pull on the AA and brachiocephalic vessels by the heart over time therefore patients of advanced age with severe aortic stenosis and increased left ventricular outflow tract gain and aortic stenosis (AS) should have a higher incidence of T2-3AAs.

Methods: We reviewed 216 CT scans of the chest with contrast on patients that had a 2D echocardiogram done within 1 year. Of these patients 107 were found to have severe AS and evaluated for transcatheter aortic valve replacement (TAVR).

Conclusions: TAVR is currently the most prominent and evolved technology for patients with severe AS. In this study we report a potential new predictive model for the identification of T2-3AAs which can help in the selection of patients for TAVR procedure.

TCT-733

Anthony C. Camuglia1, Jaffer Syed1, Pallav Garj1, Bob Kist1, Michael Chu2, Philip M. Jones3, Daniel Bainbridge4, Patrick Teefy1
1London Health Sciences Centre, University of Western Ontario, London, Ontario, 2Baker IDI Heart and Diabetes Institute, Melbourne, Australia, 3The University of Texas Southwestern Medical Center, Dallas, TX, 4Mount Sinai Medical Center, New York, NY

Background: Transcatheter aortic valve implantation (TAVI) is an evolving management strategy for patients with aortic valve disease as an alternative to open aortic valve replacement. Patients with aortic stenosis (AS) have impaired coronary flow hemodynamics and this may partially explain the mechanism that causes angina in this condition. We sought to assess the effect of TAVI on coronary flow reserve (CFR), an established marker of coronary artery hemodynamic function.

Methods: We enrolled patients undergoing TAVI to have CFR invasively assessed immediately pre- and post-TAVI (at the time of their TAVI procedure) and again at 6 to 12 months. CFR was recorded as a ratio of average blood flow in pre- and post- intervention and was obtained using the pressure wire technique. A coronary flow reserve (CFR) > 2.0 and an absolute CFR value > 1.5 were defined as normal.

Conclusions: CFR was significantly lower at baseline and improved post-TAVI. These findings may have important implications for patients and clinicians.

TCT Abstracts/POSTER/Aortic Valve Disease and Treatment