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Abstract Malignant mesothelioma (MM) cells enhanced prolif-
eration of endothelial cells (ECs) as well as their angiogenesis
in vitro by secretion of fibroblast growth factor-2 (FGF2). This
effect was suppressed by pre-treating MM cells with a-toco-
pheryl succinate (a-TOS), which inhibited FGF2 secretion by
inducing mitochondria-dependent generation of reactive oxygen
species. The role of FGF2 was confirmed by its down-regulation
by treating MM cells with siRNA, abolishing EC proliferation
and wound healing enhancement afforded by MM cells. We con-
clude that a-TOS disrupts angiogenesis mediated by MM cells
by inhibiting FGF2 paracrine signalling.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Tumour progression is dependent on formation of new

blood vessels supplying cancer cells with oxygen and nutrients.

Endothelial cells (ECs) are forced to re-enter the cell cycle dur-

ing tumour progression to form new blood vessels [1,2]. Cancer

cells secrete growth factors, including the vascular endothelial

(VEGF) and fibroblast growth factors (FGF), that interact

with corresponding receptors on ECs, promoting their prolif-

eration [3]. As angiogenesis is essential for tumour progression,

its suppression represents an intriguing anti-cancer strategy.

Gene therapy, immunotherapy or chemotherapy have been a

recent focus to inhibit angiogenesis [4–6].

We and others have shown that compounds like the mitocan

a-tocopheryl succinate (a-TOS), a redox-silent analogue of

vitamin E (VE) [7] and a potent inhibitor of cancer in pre-clin-

ical models [8,9], also disrupts mitogenic signalling pathways

[10,11]. These include the fibroblast growth factor-2 (FGF2)
Abbreviations: DCF, dihydrodichlorofluorescein diacetate; EC, endo-
thelial cell; FGF2, fibroblast growth factor-2; MM, malignant meso-
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autocrine loop, by means of which cancer cells control their

own proliferation [12]. We have shown that a-TOS suppressed

expression of FGF2 by inhibiting the transcriptional activity of

egr-1 [10] as well as down-regulating the cognate FGF2 recep-

tor FGFR1, probably by impairing the activity of E2F1 [11].

As FGF2 is an important mitogen driving EC proliferation

[12], we hypothesised that a-TOS could also suppress angio-

genesis by inhibiting FGF2 expression in malignant mesotheli-

oma (MM) cells, whereby disrupting the paracrine signalling

pathway, as documented in this communication.
2. Materials and methods

2.1. Cell culture
Human MM cell lines, MM-B1, Meso-2, and Ist-Mes2 [13], and a

non-malignant mesothelial cell line, Met-5A (ATCC), were cultured
in DMEM supplemented with 10% FCS (both JRH Biosciences),
2 mM LL-glutamine and antibiotics. Endothelial-like EAhy926 cells
[14] were maintained in DMEM supplemented with HAT (100 lM
hypoxanthine, 0.4 lM aminopterin, 16 lM thymidine). The cells retain
the properties of primary ECs, including expression of factor VIII and
P-selectin [14], tube-forming activity and the propensity to persist in
confluent cultures [4].
2.2. Cell proliferation
Cell proliferation was assessed using an ELISA kit (Roche) to deter-

mine cells in the S-phase, based on 5-bromo-2-deoxyuridine (BrdU)
DNA incorporation. EAhy926 cells were seeded at 104 cells/well into
a 96-well plate, treated, and incubated with 10 lM BrdU for 2 h at
37 �C. The cells were fixed and denatured with Fixdenat (Boehringer
Mannheim), incubated with anti-BrdU IgG, and further incubated
with tetramethylbenzidine. One mole of H2SO4 was then added to stop
the reaction, and the absorbance was read at 450 nm.
2.3. Detection of reactive oxygen species (ROS)
Following treatment, cells were reacted with dihydrodichlorofluores-

cein diacetate (DCF; Molecular Probes) and scored by flow cytometry
for cells with high fluorescence as described [10]. In some experiments,
cells were pre-treated for 1 h with 2 lM mitochondrially targeted coen-
zyme Q (MitoQ) [15].
2.4. Transwell experiments
Co-culture experiments were performed using the clear Transwell

supports (0.4 lm pore, 6.5 mm diameter) in a 24-well configuration
(Corning). EAhy926 cells were seeded (5 · 105/well) in the 12 central
wells, overlaid with 0.6 ml of media, and allowed to adhere. Inserts
were seeded with MM cells (105/insert), first in the outer wells of the
plate where they were pre-treated with 25 lM a-TOS for 12 h. The
inserts were then transferred to the central wells containing ECs and
overlaid with 0.1 ml media. Proliferation of the EAhy926 cells was as-
sessed 12 h later.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. a-TOS suppresses MM-mediated EC proliferation. EAhy926
cells were seeded in 24-well plates and left to reach 50% confluency.
The cells were then allowed to proliferate following addition of 1 ml
media conditioned with Ist-Mes2, Meso-2, MM-BI, MCF-7 or Met5A
cells pre-treated with a-TOS (25 lM, 24 h) for 12 h, at which stage
their proliferative rate was assessed as specified in Section 2.
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2.5. Analysis of FGF1 and FGF2 protein
FGF1 and FGF2 protein levels were assessed using an ELISA kit

(R&D Systems) according to the manufacturer’s instructions. Cells
were seeded in 24-well plates and allowed to reach 60–70% confluence.
Following treatment, 100 ll of cell-conditioned medium was trans-
ferred to the ELISA plate, mixed with 100 ll of the diluent and incu-
bated at room temperature. After washing, each well was supplemented
with the FGF conjugate, which was followed by incubation at room
temperature with the substrate solution. Absorbance at 450 nm was
read. The system was calibrated using hrFGF1 or hrFGF2.

2.6. RNA interference (RNAi)
Cells were seeded at 5 · 104/well in 12-well plates, allowed to reach
�50% confluence and exposed to FGF1 or FGF2 short interfering
RNA (siRNA) (Proligo) as follows: siRNA (0.5 lg/ml) was combined
with 100 ll serum-free DMEM supplemented with 20 ll of OligofectA-
mine (Invitrogen) and left for 15 min at room temperature. The trans-
fection mixture was added to cells, which were then left in the
incubator for 24 h, after which they were overlaid with complete
DMEM. The cells were used in experiments 48 h later. Typically,
90–95% of treated cells showed significant down-regulation of the tar-
get genes as estimated by flow cytometric analysis (data not shown).
Non-silencing RNA was used as a negative control and FITC-tagged
non-specific RNA as a control for transfection efficacy (both Qiagen).

2.7. Wound healing experiments
EAhy926 cells were seeded in 35-mm Petri dishes and allowed to

reach complete confluency. The monolayer was ‘wounded’ by removal
of cells, generating a denuded region �0.5 mm wide. Re-growth in the
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Fig. 2. a-TOS suppresses cancer cell-mediated angiogenesis in vitro. EAhy9
confluence. The EC monolayer was ‘injured’ by denudation of central region
allowed to re-grow in the absence (Ctrl) or presence of conditioned media
treated (M+T) or not (M) with 25 lM a-TOS for 24 h prior to media withdra
the denuded zone in a phase contrast microscope fitted with a grid in the objec
absence and presence of conditioned media from cancer cells obtained by per
F shows EAhy926 cells at times 0 and 18 h following injury in the absence (C
(M+T) or not (M) with a-TOS.
presence of a-TOS was assessed by following the time-dependent nar-
rowing of the denuded region using a microscope equipped with a grid
in the eyepiece, and the healing rate was expressed in lm/h.
B

0

D

C
tr

l

Ist-Met Meso MM Met

M
M+T E

H
ea

lin
g 

ra
te

 (
μm

/h
)

0

20

40

0 h0 h

MM M+TM+T

CtrlCtrl FF

* *
*

26 cells were seeded in 35-mm Petri dishes and left to reach complete
of the endothelium (�0.5 mm wide cell-free zone). The cells were then

from Ist-Mes2 (A), Meso-2 (B), MM-BI (C) or Met-5A cells (D) pre-
wal. Kinetics of injury healing was assessed by measuring the width of
tive. Panel E documents the ‘healing rate’ (in lm/h) for EAhy926 in the

forming linear regression on the re-growth curves in panels A–D. Panel
trl) and presence of conditioned media from Ist-Mes2 cells pre-treated
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2.8. Statistics
The data shown are mean values ± S.D. derived from at least three

independent experiments. Statistical differences were calculated using
the Student’s t-test, and differences were considered significantly differ-
ent at P < 0.05.
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Fig. 3. Co-culture of endothelial cells with cancer cells stimulates their
growth, and this is suppressed by a-TOS. EAhy926 cells were seeded at
�5 · 105/well in the bottom compartments of the 24-well Transwell
plate. Untreated cancer cells or cells pre-treated with a-TOS (12 h,
25 lM) were seeded in the upper compartment of the corresponding
wells of the Transwell plate (�105 per well), and the proliferative status
of ECs was assessed 12 h later using the BrdU assay.
3. Results and discussion

We have reported that a-TOS suppressed expression of cyto-

kines, such as FGF1, FGF2 and TGFb, but not VEGF, in

MM cells, whereby impairing their autocrine-dependent prolif-

erative signalling pathways [10]. Since cytokines like FGF2 are

potent mediators of paracrine angiogenic signalling [12] and

since angiogenesis is essential for progression of MM [16],

we studied whether a-TOS also suppresses angiogenesis by

impairing secretion of FGF1 and FGF2 by MM cells.

Since angiogenic cytokines are soluble proteins secreted by

cancer cells, we first investigated whether media from MM cul-

tures stimulate proliferation of ECs. Fig. 1 shows that the level

of proliferation of EAhy926 cells increased by 50–60% when

ECs were supplemented with conditioned media from MM

cell, but not from the non-malignant mesothelial Met-5A cells.

The stimulatory effect was abolished when the MM cells were

pre-treated with sub-apoptotic levels of a-TOS.

We next studied the effect of conditioned media on an

in vitro angiogenesis model, which is based on wound healing.

Following removal of a stripe of confluent EC cultures,

re-growth was followed on the basis of ‘closing the gap’, and

the rate of wound healing was expressed in lm/h. Fig. 2 shows

that conditioned media from MM cell cultures enhanced the

would-healing process by 60–90%, from �20 lm/h to 35–

40 lm/h. No effect of media from Met-5A cell cultures was ob-
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Fig. 4. a-TOS suppresses FGF2 secretion by cancer cells due to oxidative stre
plates and exposed to 25 lM a-TOS for 3 (A) or 24 h (B, C), following a 30-
then assessed for generation of ROS using the DCF assay (A) and for FGF
wound healing of EAhy926 cultures following, as shown, addition of conditio
following 30-min pre-treatment with 2 lM MitoQ.
served. Media from MM cells pre-treated with sub-apoptotic

doses of a-TOS failed to enhance angiogenesis in vitro.

The above data suggest presence of soluble compounds, se-

creted by MM cells, that enhance EC proliferation and wound

healing. We therefore subjected ECs to co-culture with MM

and Met-5A cells in Transwell plates. Fig. 3 documents that

presence of the MM cells enhanced proliferation of ECs in

the co-cultures by �50%. This was partially abolished when

MM cells were pre-treated with a-TOS. Met-5A cells did not
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Fig. 5. Down-regulation of FGF2 suppresses the angiogenesis stim-
ulatory effect of cancer cells. Ist-Mes2 or MM-BI cells were treated, as
shown, for 48 h with FGF2 or FGF1 siRNA as well as non-silencing
siRNA, and assessed for the level of FGF2 and FGF1 (with FGF
levels of control cells set at 100%) (A). EAhy926 cells were seeded so
that they acquired 50% confluency (B), or in 35-mm Petri dishes,
allowed to reach confluence and subjected to injury as detailed in
Section 2 (C). The effect of media conditioned with Ist-Mes2 and
Meso-2 pre-treated with the siRNA as shown on proliferation (B) and
wound healing (C) was assessed.
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stimulate proliferation of ECs in the co-culture experiments.

We next tested the effect of hrFGF1 and hrFGF2 on ECs

and found very little effect of FGF1, while FGF2 enhanced

EC proliferation by 50% and wound healing by more than

100% (data not shown).

Recent data document that a-TOS suppresses expression of

FGF1 and FGF2 by causing oxidative stress in MM cells,

resulting in generation of mitochondria-derived superoxide

[10]. This is confirmed in Fig. 4, showing that accumulation

of ROS in MM cells as a response to a-TOS was suppressed

by pre-treatment with MitoQ. Met-5A cells did not respond

to the VE analogue by ROS accumulation, which may explain

their lack of FGF1/2 down-regulation upon stimulation with

a-TOS. MitoQ also restored the levels of secreted FGF1 and

FGF2 by MM cells, suppressed by a-TOS, and inhibited angi-

ogenesis in vitro promoted by MM cell-conditioned media and

reversed the inhibitory effect of a-TOS on the wound healing-

promoting activity of MM cell-conditioned media.

To confirm the role of FGF2 paracrine signalling on EC

proliferation and angiogenesis in vitro, we treated MM cells

with FGF2 siRNA. Fig. 5A reveals that this resulted in much

lower secretion of FGF2 by the cells, similarly as observed for

FGF1 using FGF1 siRNA. Media from FGF2 siRNA (but

not FGF1 siRNA)-treated cells suppressed the enhancing

effect of MM cell-conditioned media on EC proliferation and

angiogenesis in vitro.

In this communication we report on a novel activity of an

anti-cancer agent, a-TOS, which is presented by its anti-angio-

genic effect due to disruption of paracrine signalling. This work

follows our previous paper showing suppression of FGF2

expression by a-TOS, whereby inhibiting the autocrine prolif-

erative signalling of MM cells [10]. The VE analogue exerted

its effect by promoting generation of ROS by the cells, which

resulted in inhibition of the activity of the transcription factor

egr-1 that controls expression of FGF2 [10,17].

As FGF2 is an important angiogenic factor [3,12], we

expected that down-regulation by a-TOS of the cytokine in

cancer cells may result in inhibition of EC proliferation. We

observed this and, moreover, it appears that the effect is due

to generation of ROS by the VE analogue in MM cells. This

is documented using MitoQ that is known to inhibit oxidative

stress by accumulating in the mitochondrial inner membrane,

its redox-active head-group reaching the coenzyme Q binding

site(s) in complex II [18]. We have recently documented that

ROS are generated by cancer cells in response to a-TOS due

to displacement of coenzyme Q from complex II by the VE

analogue [19]. This is likely the reason for the toxicity of the

agent, including modulation of the transcriptional activity

[10,11], and this can also explain the novel activity of a-TOS

reported here.

Malignant mesothelioma is an exceedingly difficult type of

cancer, resisting established treatments. Novel strategies are

being sought, including immunotherapy and gene therapy

[20]. Inhibition of angiogenesis appears to be a viable mode

of mesothelioma suppression, and small anti-angiogenic agents

are currently trialed [20]. Our work suggests that a-TOS is of

substantial promise to be used as anti-mesothelioma drug,

since it suppresses MM by at least several independent mech-

anisms. These include direct induction of apoptosis in MM

cells [21], inhibition of MM cell proliferation by disrupting

the paracrine signalling pathway [10,11], and suppression of

the angiogenic paracrine FGF2 signalling reported here.
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