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SUMMARY

A decline in mitochondrial respiration represents the
root cause of a large number of inborn errors ofmeta-
bolism. It is also associated with common age-
associated diseases and the aging process. To gain
insight into the systemic, biochemical consequences
of respiratory chain dysfunction, we performed a
case-control, prospective metabolic profiling study
in a genetically homogenous cohort of patients with
Leigh syndrome French Canadian variant, a mito-
chondrial respiratory chain disease due to loss-
of-function mutations in LRPPRC. We discovered
45 plasma and urinary analytes discriminating pa-
tients from controls, including classic markers of
mitochondrial metabolic dysfunction (lactate and
acylcarnitines), as well as unexpected markers of
cardiometabolic risk (insulin and adiponectin), amino
acid catabolism linked to NADH status (a-hydroxy-
butyrate), and NAD+ biosynthesis (kynurenine and
3-hydroxyanthranilic acid). Our study identifies sys-
temic, metabolic pathway derangements that can
lie downstream of primary mitochondrial lesions,
with implications for understanding how the organ-
elle contributes to rare and common diseases.
INTRODUCTION

Mitochondrial dysfunction is increasingly being recognized as a

hallmark of rare and common age-associated diseases. Among
Ce
inherited metabolic diseases, those affecting mitochondria are

the most prevalent worldwide (1:5,000), frequently manifest in

early childhood, and are associatedwith highmorbidity andmor-

tality (DiMauro, 2004; Torraco et al., 2009; Vafai and Mootha,

2013). These disorders may be caused by genetic lesions in

either nuclear or mtDNA, whichmay disrupt numerousmetabolic

pathways housed in the mitochondria but most prominently the

oxidative phosphorylation (OXPHOS) system (Debray et al.,

2008; Munnich and Rustin, 2001). These disorders can impact

virtually any organ system as a whole or in a tissue-specific

manner. A subtle decline in OXPHOS is associated with skeletal

muscle atrophy, type 2 diabetes, neurodegeneration, and the

aging process itself (Vafai andMootha, 2012), though the molec-

ular basis and biochemical consequences are currently not

known. There is growing interest in rare mitochondrial disorders,

and studying themmay shed insight into the role of the organelle

to more common, age-associated disease.

Recently, tremendous progress has been achieved in the

genetic characterization of rare mitochondrial disorders, yet

their management remains challenging because of the difficulty

to track their progression and the absence of proven therapies

(DiMauro and Mancuso, 2007; Orsucci et al., 2009; Pfeffer

et al., 2013; Schapira, 2012). This is due in part to our lack of un-

derstanding of the metabolic consequences of OXPHOS defects

beyond ATP and the commonly reported high blood lactate. In

this regard, the recent emergence of metabolomics technologies

offers a means to systematically measure thousands of low-

molecular-weight compounds in order to provide a global view

of alterations inmetabolic pathways inducedby a given perturba-

tion, whether resulting from a gene mutation or disease onset.

These methods have been applied to numerous diseases such

as diabetes and cardiovascular disease (for reviews, see Roberts

and Gerszten, 2013 and Shah et al., 2012). However, only few
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Table 1. Clinical Characteristics of LSFC Patients and Matched

Control Individuals

Patients Controls

Gender (male:female) 4:5 4:5

Age, years 22 (6–30) 24 (5–32)

BMI in adults, kg/m2 23.5 (22.3–26.7) 24.0 (21.6–29.2)

BMI for age in children,

percentile

72 (1–96) 70 (2–92)

Serum glucose, mmol/l 4.9 (4.2–5.5) 4.7 (4.4–5.2)

Serum triglycerides, mmol/l 1.32 (0.67–4.18);

3/9

1.12 (0.41–1.55);

1/9

Serum total cholesterol, mmol/l 4.74 (3.53–7.19);

3/9

4.39 (3.47–5.48);

1/9

Serum LDL cholesterol, mmol/l 2.76 (2.08–4.52);

3/8a
2.45 (1.59–3.45);

2/9

Serum HDL cholesterol, mmol/l 1.01 (0.76–1.49);

2/9b
1.46 (1.13–2.19)

Serum total cholesterol/

HDL ratio

4.23 (3.13–7.33)b 3.11 (2.05–3.96)

Serum AST, U/l 23 (14–30) 24 (12–91); 1/9

Serum ALT, U/l 21 (14–51); 1/9 18 (14–58); 2/9

Serum GGT, U/l 11 (8–86); 1/9 13 (6–37)

Plasma insulin, mU/l 10.3 (3.8–26.2)b 4.79 (3.2–11.9)

Plasma adiponectin, ng/ml 4,200 (1,304–

10,410)b
10,229 (3,580–

37,804)

Data presented as median (min-max) and, where applicable, proportion

of abnormal results when measured as part of the routine biochem-

ical assay. Subjects’ characteristics are described in more details in

Table S1.
aData for LDL cholesterol were missing for one patient given that triglyc-

eride level was too high.
bp < 0.03 patients versus controls following permutation test (Platform 1).
studies have extended this method to mitochondrial disorders

(Clarke et al., 2013; Leoni et al., 2012; Shahamet al., 2010), which

pose significant challenges, owing to their genotypic and pheno-

typic heterogeneity combined with small patient populations.

To overcome these challenges, we performed metabolic

profiling in a small but genetically defined cohort of patients

with Leigh syndrome French Canadian variant (LSFC; MIM no.

220111). First described in 1993 (Merante et al., 1993; Morin

et al., 1993), LSFC is a recessive disorder prevalent in the north-

eastern regionofQuebec (�1/2,000births; carrier rate 1/23) (Mer-

ante et al., 1993; Morin et al., 1993). LSFC patients exhibit many

hallmarks of mitochondrial disorders, including lactic acidosis

and Leigh syndrome, a necrotizing encephalopathy (Debray

et al., 2011; Finsterer, 2008;Morin et al., 1993). LSFCwas the first

human disorder whose underlying genetic locuswasmapped via

linkage disequilibrium (also known as genome-wide association

study; Lee et al., 2001) and the underlying gene discovered via

‘‘integrative genomics’’ (Mootha et al., 2003). All known cases

are due to missense (A354V) or deletion (C1277STOP) mutations

in the nuclear leucine-rich pentatricopeptide-repeat-motif-con-

taining (LRPPRC) gene, which encodes amitochondrial localized

RNA-binding protein. These mutations lead to a tissue-specific

impact on mitochondrial OXPHOS complexes (Gohil et al.,
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2010; Mourier et al., 2014; Ruzzenente et al., 2012; Sasarman

et al., 2010, 2015; Xuet al., 2004).More recently, LSFCfibroblasts

were found to display multiple alterations in mitochondrial func-

tion and increased susceptibility to nutrient-induced cytotoxicity,

particularly saturated fat (Burelle et al., 2015).

We recruited all known LSFC patients and, using a pro-

spective, case-control study design, we performed metabolic

profiling in plasma and urine using two different targeted mass

spectrometric (MS)-based methods. We report a metabolic

signature consisting of 45 compounds or ratios that distinguish

LSFC patients from controls. The metabolites provide insight

into the metabolic pathway derangements that ensue from a

root mitochondrial lesion and provide a valuable resource for

understanding the biochemical consequences and basis of

mitochondrial dysfunction.

RESULTS

We performed metabolic profiling of all known living patients

with LSFC. Eight of the nine patients are homozygotes for the

A354V foundermutation, and one patient is compound heterozy-

gous for this mutation and a premature stop (Mootha et al.,

2003). Our study design is described in Experimental Proce-

dures and depicted in Figure S1. Patients were prospectively

matched with controls for gender, age, BMI, physical activity

level, and nutritional status. Metabolic measurements encom-

passed standard clinical biochemical parameters and multiple

metabolite classes in plasma and urine. These analyses gener-

ated two independent data sets, hereafter referred to as ‘‘plat-

forms,’’ which were processed through a statistical workflow

for quality control filtering, missing data imputation, principal

component analysis (PCA), and permutation testing. Signifi-

cance threshold was set at a false discovery rate of 10%, cor-

responding to a p value < 0.03 for Platform 1 and <0.023 for

Platform 2. Characteristics of LSFC patients and controls are

summarized in Table 1 and described in more detail in Table

S1. As expected given the intendedmatching, there were no sta-

tistical differences between patients and controls for age, BMI,

or physical activity (paired t test; a = 0.05).

Clinical Biochemical Assays in LSFC Patients versus
Controls
Standard biochemical and hormonal assays, measured as

part of Platform 1, showed that LSFC patients had significantly

increased total cholesterol/HDL ratio and insulin levels, as well

as reduced levels of HDL cholesterol and adiponectin. A trend

for a significant increase in triglyceride levels was also observed

(p = 0.039; Tables 1 and S2), whereas serum glucose was similar

to controls (p = 0.320). Collectively, these changes would sug-

gest an increased cardiometabolic risk (Leiter et al., 2011) in

LSFC patients.

Global Metabolic Profiles in LSFC versus Controls
PCA was first applied to the post-quality control, imputed data

set from each platform, namely 137 analytes including standard

biochemistry and hormones for Platform 1 and 156 for Plat-

form 2, with an overlap of 37 metabolites between the two plat-

forms. As shown in Figure 1, the first PC from each platform
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Figure 1. Principal-Component Analysis

Discriminates LSFC Patients and Controls

For each panel, the post-quality control, imputed

data set was used to perform the analysis.

(A) Platform 1; PC1 and PC2 account for 18% and

13% of variation, respectively.

(B) Platform 2; PC1 and PC2 account for 17% and

14% of variation, respectively.

Loading scores are reported in Table S3; see also

Figure S1 for an overview of analytes submitted to

the PCA and Table S2 for raw data sets.
fully discriminated patients from controls, indicating a distinct

metabolic profile in LSFC patients. In each data set, the top

two PCs accounted for 31% of the total variation (see Table

S3 for loading scores). Metabolites contributing the most to

the separation included lactate, b-hydroxybutyrate, acylcarni-

tines of various chain lengths, and a-hydroxybutyrate; to the

best of our knowledge, the latter has not been previously re-

ported in plasma from patients with an inherited mitochondrial

disorder.

The two data sets were then independently subjected to

permutation analyses, and statistical significance was reached

between patients and controls for 24 analytes/ratios out of 137

in Platform 1 (p < 0.03) and for 31 analytes out of 156 in Platform

2 (p < 0.023), with an overlap of nine significant metabolites

between both platforms (Table S4). All analytes are depicted

as volcano plots in Figure S2 and listed in Table S2. Combining

the results of both platforms, 46 single variables (representing

45 unique compounds/ratios) out of the 256 single variables

submitted to the permutation test were statistically different

between LSFC patients and controls, as depicted in Figure 2.

Of note, the compound heterozygote was similar to the other

LSFC patients (A354V homozygotes).

Concurring with the multivariate PCA, the most striking differ-

ences were observed for (1) plasma b-hydroxybutyrate and

lactate, as well as the b-hydroxybutyrate/acetoacetate ratio;

(2) acylcarnitines, and more specifically myristoylcarnitine and

palmitoylcarnitine (C14 and C16, respectively); and (3) a-hy-

droxybutyrate (Figure 2). Altogether, the changes in metabolite

levels can be organized into a small handful of metabolic

pathways. First, these include elevated NADH/NAD+ ratio

(increased b-hydroxybutyrate, lactate, and b-hydroxybutyrate/

acetoacetate ratio) and closely related alterations in citric acid

cycle (CAC) reactions, including those catalyzing entry or

removal of carbons from this cycle (increased isocitrate, malate,

and propionate, albeit decreased succinate and methylmalo-

nate). Then, elevated C2, C6, C12, C14, C14:1, C16, C18:1,

and C18:2 acylcarnitine but decreased C9 and C10:2 species

reflect disrupted fatty acid oxidation, whereas impaired biosyn-

thesis is suggested by increased vaccenic acid (C18:1n-7),

dihomo-g-linolenic acid (C20:3n-6), and phosphoethaloamine.

Of particular interest, there were also unexpected changes in

plasma metabolites relevant to amino acid catabolism, further

substantiating the complexity of metabolic perturbations linked

to NAD+ metabolism. These include (1) an increase in a-hydrox-

ybutyrate, a metabolite arising from the reduction of a-keto-
Ce
butyrate formed from methionine and/or threonine, and (2)

various intermediates of the tryptophan degradation pathways

involved in NAD+ synthesis (kynurenine and 3-hydroxyanthra-

nilic acid) or product of gut bacterial metabolism (indoxyl sul-

fate; Zhu et al., 2011). Finally, LSFC patients displayed

increased plasma levels of creatine and decreased levels of

the bile acid glycocholate, observations that were also made

in patients affected by various OXPHOS defects (Pajares

et al., 2013; Shaham et al., 2010) and with mutations in mito-

chondrial pantothenate kinase 2 (PANK2) (the rate-limiting

enzyme in mitochondrial coenzyme A biosynthesis; Leoni

et al., 2012), respectively.

Quantitative Analyses of Metabolic Indices
of NADH/NAD+

Because both PCA and permutation tests revealed that a

perturbed redox status was a prominent feature of the distinctive

metabolic signature in LSFC patients, an isotope dilution GC-MS

method was developed in order to quantify with precision lactate

and b-hydroxybutyrate as well as their corresponding oxidized

counterparts, namely pyruvate and acetoacetate, respectively.

In addition, we included a-hydroxybutyrate, a finding issued

from the metabolic profiling on Platform 2 but that was not as-

sessed on Platform 1, because we suspected that its elevation

was also linked to the increased NADH/NAD+ ratio. Hence, it

was measured along with its oxidized counterpart, namely a-ke-

tobutyrate. The results of these analyses are consistent with the

initial metabolic profiling data. In fact, the plasma concentration

of lactate, pyruvate, b-hydroxybutyrate, and a-hydroxybutyrate,

as well as the lactate/pyruvate and b-hydroxybutyrate/ace-

toacetate ratios, were all significantly higher in LSFC patients

(Figure 3). Importantly, this analysis revealed that the a-hydrox-

ybutyrate/a-ketobutyrate ratio was also significantly increased.

Collectively, these quantitative measurements further support

the findings of an elevated plasma level of a-hydroxybutyrate

in LSFC patients, revealing an additional metabolic perturbation

linked to the altered redox status in these patients.

DISCUSSION

In this prospective study, we applied a comprehensive targeted

metabolomics approach to a genetically homogenous cohort of

patients with an inherited mitochondrial respiratory chain disor-

der. Despite a small sample size, the current case-control

study design enabled the identification of a distinct metabolic
ll Reports 13, 981–989, November 3, 2015 ª2015 The Authors 983
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Figure 2. Individual Analytes with Statistical

Significance in LSFC Patients versus Con-

trols

(A) Platform 1; (B) Platform 2. Each dot represents

a log2-transformed patient/matched control ratio.

Metabolites are ordered by mean log2-trans-

formed patient/control ratio. See also Figure S2 for

data presented as volcano plots, Figure S1 for a

summary of measured analytes, and Table S2

for log2-transformed ratios and p values of all

analytes.
signature, consisting of 45 compounds spanning indices of car-

diometabolic risk, disrupted NADH/NAD+, as well as lipid and

amino acid metabolism.

Markers of Increased Global Cardiometabolic Risk
Much to our surprise, a disturbed cholesterol profile along

with alterations in insulin and adiponectin levels were found,

suggesting an increased global cardiometabolic risk in LSFC

patients despite their relatively young age (Leiter et al., 2011).

Although diabetes has been strongly associated with mutations

in some mtDNA-encoded genes (Maassen et al., 2004), dyslipi-

demia has only been previously reported in few other cohorts

of patients with respiratory chain disorders (Clarke et al.,

2013; Finsterer et al., 2001; Kaufmann et al., 2009). In LSFC

patients, increased cardiometabolic risk is further supported

by the higher plasma levels of the fatty acids vaccenic and

dihomo-g-linolenic acids (C18:1n-7 and C20:3n-6, respec-

tively), which have both been recognized as markers of insulin

resistance (Lovejoy et al., 2001; Zulyniak et al., 2012). Interest-

ingly, phosphoethanolamine, of which plasma levels were

also increased, may also be associated with these alterations.

This metabolite is an intermediate in the biosynthesis of phos-

phatidylethanolamine through the CDP-ethanolamine pathway

(‘‘Kennedy pathway’’), and transgenic mice heterozygous for

Pcyt2—a gene involved in this pathway that leads to increased

hepatic phosphoethanolamine synthesis—display progressive

hypertriglyceridemia, insulin resistance, as well as liver steatosis

(Fullerton et al., 2009), which is also a characteristic found in

LSFC patients (Morin et al., 1993).

Disturbances in Pathways Related to Energy
Metabolism and the NADH/NAD+ Ratio
As expected, lactate, pyruvate, and alanine were elevated in

LSFC patients as compared with controls, as it has often been

reported in patients with mitochondrial diseases, although these
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metabolites might not be specific to mito-

chondrial dysfunction (Debray et al., 2008;

Haas et al., 2008; Smeitink et al., 2006).

Our quantitative analyses further substan-

tiated elevated plasma lactate/pyruvate

and b-hydroxybutyrate/acetoacetate ra-

tios, hence reflecting an accumulation of

reducing equivalents in the cytosol and

mitochondria, respectively. Elevations in

blood CAC intermediates and saturated
even chain acylcarnitines have previously been reported in pa-

tients with mitochondrial disorders (Haas et al., 2008; Smeitink

et al., 2006). The elevation in acylcarnitines of all chain lengths

in LSFC patients reflects a global disturbance of mitochondrial

fatty acid b-oxidation, suggesting an impaired lipid-handling

capacity (Adams et al., 2009; Houten and Wanders, 2010). This

concurs with our recent finding of an increased susceptibility to

palmitate-induced cytotoxicity in LSFC fibroblasts and is consis-

tent with a tissue-specific defect in complex IV alone (for e.g.,

fibroblasts; Burelle et al., 2015) or combinedwith complex I (mus-

cle and liver; Sasarmanet al., 2010, 2015). The situation is likely to

differ for complex I defects alone, which still enable entry of

reducing equivalents arising from fatty acid oxidation at complex

II and electron flux through complexes II–V and for which a pos-

itive effect of high-fat diets hasbeenobserved (Schiff et al., 2011).

Our systematic metabolomics approach also revealed an

unexpected decrease in decadienoylcarnitine (C10:2) and nona-

noylcarnitine (C9). The decrease in C10:2-carnitine, a partial

oxidation product of the essential fatty acid linoleate (C18:2n-6),

would suggest an increase in 2,4-dienoyl-CoA reductase activity

that may be driven by an elevated NADPH/NADP ratio resulting

from mitochondrial redox perturbation (Miinalainen et al., 2009).

As for C9-carnitine, the metabolic origin of this compound is un-

clear, although it was suggested to be formed from the combined

peroxisomal and mitochondrial catabolism of phytanic and pris-

tanic acids, two branched chain fatty acids (Verhoeven et al.,

1998). A decrease in C9-carnitine has also been reported in fibro-

blasts from patients with mitochondrial trifunctional protein defi-

ciency (Roe et al., 2006), a fatty acid oxidation disorder. The latter

findings emphasize the diversity of perturbations in fatty acid

oxidation, which can result from mitochondrial dysfunction.

Perturbations in Amino Acid Metabolic Pathways
Beyond markers of mitochondrial energy metabolic path-

ways, other unexpected changes reflecting perturbations in
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the metabolism of several amino acids were observed in LSFC

patients. These include higher plasma levels of a-hydroxybuty-

rate. However, its oxidized metabolite counterpart, namely

a-ketobutyrate, which arises from the catabolism of the essen-

tial amino acids threonine and/or methionine in the cytosol

(Landaas, 1975), did not differ; consequently, the a-hydroxy-

butyrate/a-ketobutyrate ratio was also significantly elevated.

Whereas these findings likely represent another consequence

of an elevated NADH/NAD+ ratio, the higher level of a-hydrox-

ybutyrate also highlights major critical perturbations in its meta-

bolism. The latter is depicted in Figure 4 along with changes in

closely related metabolites. Similarly to pyruvate, a-ketobuty-

rate is at a metabolic crossroad between the cytosol and the

mitochondria. It may be transported to the mitochondria and

subjected to oxidative decarboxylation to form propionyl-

CoA; these steps are likely catalyzed by the pyruvate trans-

porter and the branched-chain a-keto acid dehydrogenase

complex (Jakobs et al., 1977; Paxton et al., 1986; Smith and

Strang, 1958; Steele et al., 1984). Alternatively, a-ketobutyrate

may be reduced to a-hydroxybutyrate by lactate dehydroge-
Ce
nase or b-hydroxybutyrate dehydrogenase (Rosalki and Wilkin-

son, 1960).

A few studies have reported increased a-hydroxybutyrate

in patients with inherited metabolic diseases, such as lactic

acidosis (Pettersen et al., 1973) ormaple syrup urine disease (Ja-

kobs et al., 1977; Smith and Strang, 1958). More recently, this

metabolite has been reported to represent a strong and early

marker of insulin resistance and glucose intolerance (Adams,

2011; Ferrannini et al., 2013; Fiehn et al., 2010; Gall et al.,

2010; Xu et al., 2013) and was suggested as a potential

biomarker for the diagnosis of metabolic syndrome (Demine

et al., 2014; Lin et al., 2014). Factors proposed to play a role in

a-hydroxybutyrate accumulation in plasma include perturba-

tions in branched-chain amino acid catabolism, hepatic gluta-

thione synthesis, or redox status (Gall et al., 2010; Landaas,

1975). Whereas the exact mechanisms underlying its elevation

in LSFC patients remain to be elucidated, the present findings

do not support a central role for branched-chain amino acids

as proposed for insulin-resistant subjects (Adams, 2011; New-

gard, 2012), because their levels were similar between LSFC

patients and controls. Furthermore, whereas impaired gluta-

thione metabolism has been reported in children with classical

Leigh syndrome (Pastore et al., 2013), levels of reduced and

oxidized glutathione in our LSFC cohort were similar to controls,

suggesting that oxidative stress was not increased. This obser-

vation is consistent with our recent finding in LSFC fibroblasts

(Burelle et al., 2015) but contrasts with those reported for other

OXPHOSdefects, namely complex I and III (Diaz et al., 2012; Dis-

telmaier et al., 2009; Koene et al., 2011). It is noteworthy that the

plasma level of malondialdehyde was significantly increased in

LSFC patients, albeit this is not a specific oxidative stress

marker, because it is also generated by cyclo-oxygenases in

thromboxane metabolism (Kadiiska et al., 2005). An accelerated

methioninemetabolism through the S-adenosylmethionine cycle

in LSFC patients is, however, suggested by the increased

plasma levels of creatine, which may reflect a low intracellular

energy status (Shaham et al., 2010). This may also suggest a

perturbation in methylation reactions, which could impact on

signaling pathways regulating cellular survival or mitochondrial

biogenesis such as Sirt1 and/or PGC-1a (Guéant Rodriguez

et al., 2013).

Our results also demonstrate alterations in the metabolism of

tryptophan (reduced kynurenine and 3-hydroxyanthranilic acid)

and aspartate (increased N-acetylaspartate), which have been

linked to neurodegeneration (Sas et al., 2007; Tan et al., 2012),

an important clinical feature of LSFC. Among intermediates of

the tryptophan catabolic pathways that lead to NAD+ synthesis,

kynurenine and 3-hydroxyanthranilic acidwere significantlymodi-

fied (Figure 4), although tryptophan itself or other metabolites of

thispathwaywereunchanged.As forN-acetylaspartate, it is found

exclusively in neurons and arises from the condensation of aspar-

tateandacetyl-CoA in themitochondria. Its increased level inurine

has been reported in patients with aspartoacylase deficiency

(Canavan disease), a leukodystrophy characterized by neurode-

generation and early death (Al-Dirbashi et al., 2007). In the brain,

its elevation has been reported as a marker of compromised

neuronal integrity, but reduction suggests neurodegenerative dis-

orders (Knapman et al., 2012; Moreno et al., 2001).
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Figure 4. Pathway Relationship of Major

Metabolic Alterations in LSFC Patients

This scheme depicts pathways related to reported

perturbations in cytosolic and mitochondrial NADH

accumulation, disrupted citric acid cycle (CAC),

fatty acid b-oxidation, and amino acid metabolism,

with a specific emphasis on those linked to a-hy-

droxybutyrate formation. Metabolites whose levels

increased are indicated in red and with an upward

arrow; those whose levels decreased are indicated

in green and with a downward arrow. Metabolites

whose levels did not change significantly are indi-

cated in black with a sideways arrow. Those me-

tabolites that were not measured are indicated in

black (with no arrow). See also Figure S1 for an

overview of analytes measured in the study and

Table S2 for raw data and p values.
Conclusions
This study highlights the power of metabolomics when applied in

a prospective case-control design to a genetically homogenous

form of Leigh syndrome presenting with many of the hallmark

features of mitochondrial respiratory chain disease. Results

uncovered a LSFC metabolic signature including both classic

and unexpected metabolites, which collectively highlight the

complexity of perturbations that may result from mitochondrial

dysfunction but also have implications for understanding po-

tential contributions of mitochondrial dysfunction to common

disease. Altogether, this signature concurs with the reported

tissue-specific impact of mutated LRPPRC on mitochondrial

OXPHOS complexes (Mourier et al., 2014; Sasarman et al.,

2010, 2015) and function in LSFC fibroblasts (Burelle et al.,

2015), while representing also possible targets for intervention.

Future studies will be needed in order to further delineate the

underlying metabolic mechanisms and further characterize

whether the identified metabolites may be relevant as biological

markers for the assessment of severity, prediction of lactic

acidosis crises, monitoring of disease progression, or response

to interventions in patients with LSFC and, possibly, other in-

herited mitochondrial disorders.
EXPERIMENTAL PROCEDURES

Subjects, Sample Collection, and Genotyping

LSFC patients were included based on medical history and genetic testing

for the A354V and C1277STOP mutations in LRPPRC. Matching criteria for
986 Cell Reports 13, 981–989, November 3, 2015 ª2015 The Authors
controls included gender, age (±2 years for chil-

dren <18 years; ±5 years for adults), BMI (±10 per-

centiles of BMI for age for children; ±3 kg/m2 for

adults), and physical activity level (see the Sup-

plemental Experimental Procedures for details).

Carrying A354V or C1277STOP mutation was an

exclusion criterion for controls. The protocol was

approved by the Human Ethics and Research

Committee of the Centre de Santé et de Services

Sociaux de Chicoutimi. Written informed consent

was obtained for all study participants or their

legal guardians, and assent was obtained when

applicable. Metabolic profiling was performed on

venous blood and urine samples collected after
an overnight fast of minimum 12 hr, during which water was allowed. Genotyp-

ing was performed on saliva samples. Samples were processed as described

in the Supplemental Experimental Procedures.

Metabolite Profiling and Quantitative Analysis

The overall workflow for metabolic profiling is depicted in Figure S1 and

described in detail in the Supplemental Experimental Procedures. This was

performed using a combination of standard biochemical and hormonal assays

as well as established targeted GC-MS and LC-MS methods, altogether en-

compassing 407 analytes, which were treated as two distinct platforms. Plat-

form 1 included clinical laboratory assays, hormonal assays, and MS-based

profiling of amino acids, fatty acids, organic acids, and acylcarnitines. For Plat-

form 2, two LC-MS methods were used to profile polar metabolites. After ob-

taining data from Platforms 1 and 2, a quantitative isotope dilution GC-MS

method was developed to quantify plasma metabolites specifically reflecting

cellular redox state, based on a previously published method (Lauzier et al.,

2013).

Data Mining and Statistical Analysis

Results from Platform 1 and Platform 2 were treated as two distinct data sets

to which the statistical workflow was applied using R 3.0.2 (R Foundation for

Statistical Computing) for quality control filtering, log2-transformation, and

missing data imputation (see the Supplemental Experimental Procedures).

Raw data for all measured metabolites are provided in Table S2. The post-

quality control, imputed data sets were submitted to PCA (SIMCA-P+ 13.0;

Umetrics) and permutation test between the two groups. All possible distinct

permutations were conducted within patients/control pairs, for a total of 256

(28). The significance threshold was determined according to the estimation

of true and false positives and was established in order to correspond to an

estimated false discovery rate of 10%. This led to a p threshold of <0.03 for

Platform 1 and 0.023 for Platform 2. For the quantitative profiling of selected

metabolites, p values were generated by a permutation test, and a threshold



of 0.05, corresponding to a false discovery rate of 5.7%, was used to control

for type 1 error.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2015.09.054.
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