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1. INTRODUCTION

The problem of searching is central to almost all areas of computer science.
Variants of searching problems come up often in the study of data structures,
database applications, computational geometry, and artificial intelligence. Due to
the importance of searching problems, many variants of simple searching have been
studied, including searching in unknown environments [ 2, 7], and searching in the
presence of errors [ 1, 14].

In this paper, we examine the problem of searching in an unknown environment;
specifically, we study a problem known as the w-lane cow-path problem. The name
comes from the following scenario: Consider a cow, Bessie, standing at a crossroads
(referred to as the origin) with w paths leading off into unknown territory. On one
of the paths there is a grazing field (the goal) at distance n from the intersection,
and all of the other paths go on forever; unfortunately, Bessie’s eyesight is not very
good—she will not know that she has found the field until she is standing in it (i.e., she
cannot see down the road). Clearly Bessie must walk at least distancen to get to the field;
if she knows which path to take, she will walk exactly distance n. When Bessie has no
prior knowledge of which path the field is on, or of the value n, we would like to know
how she can find the field while traveling the least distance possible.

This problem plays an important role in many areas of computer science. The
most obvious application is in the area of robotics—when a robot is put in an
unknown environment, this exact problem comes up repeatedly. For instance, when
a robot is exploring an unknown two dimensional environment (e.g., a mobile
robot on the floor of a cluttered warehouse), each time it runs into an obstacle, it
should find the closest corner of the obstacle to go around (see, for example, [4]).
This robotics problem is just a case of the w-lane cow-path problem with w=2. In
addition, this algorithm can be used in the very general context of creating hybrid
algorithms. In this case, the different paths represent different base algorithms, and
execution alternates between different base algorithms according to search distances
given by the cow-path problem. A previous algorithm for this problem was applied
in this manner by Fiat et al. in presenting the first competitive algorithm for the
online k-server problem [ 8]. A recent paper by Kao et al. [ 10] further explores the
construction of hybrid algorithms from a set of known algorithms and is based in
large part on a preliminary version of this paper [ 11]. Furthermore, the cow-path
problem comes up in artificial intelligence applications where a goal is sought in a
largely unknown search space (for an overview of searching in artificial intelligence,
see [ 12]). These examples demonstrate the breadth of applications and fundamental
nature of the cow-path problem.

The cow-path problem has much in common with the study of online algorithms,
and we use the notion of competitive analysis of online algorithms in order to
measure the efficiency of algorithms for the cow-path problem. The competitive
ratio for an algorithm solving the cow-path problem is the worst-case ratio of the
expected distance traveled by the algorithm to the shortest-path distance from
origin to goal. In particular, if the worst-case expected distance traveled by a ran-
domized algorithm is at most cn + d, where n is the distance to the goal and d is
a fixed constant, then the competitive ratio of this algorithm is c.
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In previous work, Baeza-Yates et al. gave an optimal deterministic algorithm for
the cow-path problem [2]. As a function of w, the competitive ratio for their algo-
rithm is asymptotically equal to 1+ 2ew, and for w =2 the ratio is exactly 9. They
also prove that their algorithm gives optimal deterministic performance. In other
previous work, Chrobak and Larmore have studied a related problem called
“Metrical Service Systems,” in which requests (which are subsets of points in a
metric space) must be served by a single server moving in that metric space [5].
While this problem has some substantial differences from the cow-path problem,
there are several similarities, one of which is striking—Chrobak and Larmore’s
deterministic algorithm for MSS, (where requests are pairs of points) has com-
petitive ratio 9, just like the deterministic 2-path cow-path problem, and the
performance of their randomized algorithm for MSS, is exactly the same as the per-
formance of the randomized cow-path algorithm that we present in this paper
(approximately 4.5911). Chrobak and Larmore leave open the question of whether
their algorithms are optimal for MSS,. In one last example of previous work, the
cow-path problem has also been studied in the context of game theory by Gal [9].
Gal in fact gives many of the results of the Baeza-Yates et al. paper [2] and of our
paper. A main difference between our work and that of Gal is in the focus—our
results are self-contained and use results and notation familiar to the theoretical
computer science community. In addition, the lower bound proof of this paper
presents a new, general purpose lower bound technique that should be useful in
proving lower bounds for many other problems. In fact, it was this technique that
allowed Kao et al. [ 10] to extend our optimality proofs to a more powerful result,
enhancing both this paper and the work of Gal. Finally, we also analyze the growth
rate of the competitive ratio of our algorithm, filling in an important gap in both
Gal’s work and the original conference version of this paper [11].

In this paper, we give the first randomized algorithm for the cow-path problem,
and we give a lower bound proof to show that our algorithm is optimal for w=2.
The ratio achieved is a rather complicated value—it is exactly given in terms of the
fixed point of a certain equation—and is asymptotically equal to xw + o(w), where
K 1s a constant value approximately equal to 3.088. For the important case of w=2,
the competitive ratio of our algorithm is approximately 4.5911, which is almost
twice as good as the best that can be done deterministically. Subsequent to the pub-
lication of the conference version of this paper [ 11], in which we conjectured that
our algorithm is also optimal for w>3, Kao et al. [10] have given a rather
intricate proof showing that our algorithm is in fact optimal for all w > 2.

A similar problem, known as layered graph traversal, has been studied by
Papadimitriou and Yannakakis [ 13] and Fiat er al. [7]. Layered graph traversal
is similar to the cow-path problem, but allows shortcuts between paths without
going through the origin, and when one path is explored, information about the
other paths may be obtained at no cost. If only deterministic algorithms are con-
sidered, then the cow-path problem can be considered a special case of layered
graph traversal; however, when randomized algorithms are considered, the
problems are fundamentally different. Fiat et al. showed that in layered graph
traversal, an exponential (in the number of paths) improvement could be obtained
using randomization [7].
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2. DEFINITIONS

Let .o/ be a deterministic algorithm for the cow-path problem. For any goal
position g at distance dist(g) from the origin, algorithm .o travels a fixed distance,
which we denote cost(.«Z, g), to find the goal. We say that algorithm .o/ has
competitive ratio c if, for all goal positions g,

cost(.oZ, g) <c dist(g) +d,

where ¢ and d are constants that are independent of the goal position g.

If algorithm £ is a randomized algorithm, then the distance traveled to find a
particular goal position is no longer fixed. Instead, cost(Z%, g) is a random variable,
and we define the competitive ratio by the expected value of this random variable.
In other words, algorithm % has competitive ratio c if, for all goal positions g,

E[cost(Z, g)] <c dist(g) + d, (1)

where ¢ and d are constants as before.

In particular, if an algorithm for the cow-path problem has competitive ratio c,
then for any goal position that is distance n from the origin, the expected distance
that the algorithm has to travel in order to find the goal is at most ¢n plus some
small constant.

3. ALGORITHM

In this section we describe SmartCow, our randomized algorithm for the cow-
path problem. SmartCow is a randomized geometric sweep algorithm with
geometric ratio r > 1, a constant that is fixed for the duration of the algorithm. For
ease of reference, assume that the w paths are labeled with integers 0, 1, ..., w—1.
The general outline of SmartCow can be found in Fig. 1; the analysis of the com-
petitive ratio will be done in terms of the constant r, and in Section 5 we will see
how to find the best possible r.

o < A random permutation of {0,1,2,---,w —1};
€ < A random real uniformly chosen from [0, 1);
d« 75
p < 0;
repeat
Explore path o(p) up to distance d;
if goal not found then return to origin;
d+—d-r
P+ (p+ 1) mod w;
until goal found;

FIG. 1. Algorithm SmartCow, for parameter r> 1.
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It should be noted that the use of randomization is very limited; randomization
is used only at the very beginning of the search, in order to pick a random
permutation and a random “initial search distance.” The algorithm never needs
access to a random number generator once the search has begun. We define the
function

2 14r4r4 oo 4!
w Inr

R(r, w)=1+ , (2)

which we will next prove to be the competitive ratio of algorithm SmartCow.

THEOREM 3.1.  For any fixed r>1, Algorithm SmartCow has competitive ratio
R(r, w).

Proof. For a given goal position, let n denote the distance from the origin to
the goal, and let ¢ be the path on which the goal lies. If n <1 we can handle this
as a special case in the analysis—the distance traveled is clearly at most
(r—1)/(r—1), which is independent of n, and so can be entirely covered by the
constant term d in Eq. (1). Therefore, for the remainder of this proof we assume
that n> 1. Furthermore, let k be an integer, and let 6 be a real value satisfying
0<J <1, where k and ¢ are such that n=rF*2

Notice from Fig.1 that SmartCow proceeds in stages, where at stage
i€ {0, 1, 2, ..} the algorithm sweeps distance r'** on path a(i mod w). Let m be the
first stage where SmartCow sweeps distance at least r* on the same path as the
goal. More formally, m is the least integer such that m >k and o(m mod w)=gq.
The value m always satisfies k<m<k+w—1.

Case 1. m=k+1. In this case, the sweep distance is at least r**! at stage m,

so SmartCow always finds the goal on stage m. If D is the random variable
denoting the distance traveled by our algorithm, then it is easy to see that when
m=czk+1

c—1 ) 21,‘ c__
poe=n.
r—1

and the expected value is easily calculated as

E[D|m=c]=

2(re—1
%E[rﬂm:c]ﬁ—n.

—1

Calculating E[r* | m = ¢] is relatively straightforward. The density function for r* is
calculated from the fact that ¢ is uniformly distributed, giving

r—1

, . r 1
E[ré|m=c:|=E[r‘:|=j1 x'xlnrdx: mr
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Thus, the resulting expected distance traveled in this case is

2(rc—1
E[D|m=c]=%+n.

Case 2. m=k. In this case, SmartCow may or may not find the goal on sweep
m, depending on whether or not ¢ > 9. Let F denote the event that SmartCow finds
the goal at stage m. Then

d
k+w—1

+Prob(F)E{2 Y o ti4n
i=0

k—1
E[D|m=k]=Prob(F)E {2 Y rtitn

i=0

d
2k —1) (k)

= Prob(F) p— E[r?| F]+ Prob(F) E[r°|F]+n

:% [Prob(F)(r*—1) E[r* | F]
+ Prob(F)(r*** —1) E[r* | F]] +n.

In this case, E[r*| F] and E[r°| F] can be found as

E[r‘°|F]—frx ! P el A
~ )7 Prob(F)xInr ~ Prob(F)lnr’

E[ 1:|F]_Ir6 1 d _ ré—l
: s x'Prob(F)xlnr x_Prob(F)lnr'

Using these values,

2 A
E[Dm=k] :m [r—r)r* =D+ =D —1)] +n

The competitive ratio of SmartCow depends on the overall, or unconditional,
expected distance E[ D]. This is calculated by combining the above results, using
the formula

E[D] :“fl Prob(m=i) E[D | m=1i].

i=k

At the beginning of the search, the algorithm chooses a random permutation o, so
Prob(m =i)=1/w for every i such that k<i<k+w—1.
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Therefore, the above equation can be expanded to

E[D] :# [(rfrts)(rki 1) + (Véf 1)(}"k+w— l)]
w(r—1)nr
n k+w—1 2(},/11_ 1) n
SN Bt
2

“wir—Dnr {("’5)(”—1)+(r°‘—1)(rk+w—1)

k+w—1

+(r—=1) ) (r’”—l)} +n

i=k+1
2

=Dy D= DT

2 —1)
< 2=
wr—1Dnr ]”

The competitive ratio is simply the expected distance traveled (E[ D]) divided
by n:

2(r—1) _1+g L+r+r+ !
wir—1)Inr w Inr

=R(r, w),

which is exactly the value claimed in the theorem. ||

From the preceding theorem, it is difficult to see how the performance of algo-
rithm SmartCow compares to that of the optimal deterministic algorithm given
by Baeza-Yates ef al. [2]. For example, when w =2 their algorithm has a com-
petitive ratio of 9, while Theorem 3.1 states that SmartCow has competitive ratio
I+ (1+7r)/Inr. In Section5 we will see how to choose r so that the competitive
ratio of SmartCow is approximately 4.5911, or almost twice as good as the deter-
ministic algorithm. In the next section we will see that this is in fact the best ratio
that can be achieved by any randomized algorithm.

4. LOWER BOUND

To prove our lower bound for randomized algorithms, we appeal to Yao’s
corollary to the famous von Neumann minimax principle [ 16]. In particular, we
define a probability distribution for inputs to the cow-path problem and then lower
bound the performance of any deterministic algorithm on this input distribution.
Yao’s result states that this lower bound must also be a lower bound for the expected
performance of any randomized algorithm on its worst-case input.

We actually use a family of probability distribution functions, parameterized by
e>0. We will denote a particular distribution function by f, ,, and we will use
Opt(¢, w) to denote the optimal competitive ratio of any deterministic algorithm



70 KAO, REIF, AND TATE

with input distribution f, ,,. Our goal will be to show that lim,_, , Opt(e, w) exists,
and give a value for this limit. The following lemma shows that this limit is a lower
bound for the original problem.

LeMMA 4.1. Let OptR(w) denote the optimal competitive ratio for any randomized
cow-path algorithm on inputs with w paths. If £ =lim_ _, , Opt(e, w), then OptR(w) > /.

Proof. For the sake of contradiction, assume that there is a randomized cow-
path algorithm that achieves competitive ratio p </. Let 6 = (£ — p)/2. Now by the
formal definition of the limit, there exists an &, such that for all e<e,,
|Opt(e, w) — /| <. In other words, for any e <g,,

2—(L=p) [+p

>/—0=
Opt(e, w)=¢ —0 5 7

> p.

But, by Yao’s lemma, this implies that OptR(w) > p, which contradics to the original
assumption that there exists a randomized algorithm with competitive ratio p. ||

Now we define the density function f, .. To specify the position of the goal, we
need to specify both the path on which the goal lies and the distance down that
path to the goal. For all values of ¢, the path is chosen uniformly from all possible
paths. Thus, we will use f, , to denote only the distance down the chosen path to
the goal. The density function we use is

ex—(+e) if x>1;

fe,w (x) = {0

otherwise.

Any deterministic algorithm can be defined by a sequence (sq, po), (51, P1)s s (Si»
Pr)s -, Where s, is the distance of the kth sweep and p, is the path on which the kth
sweep is taken. In fact, since the goal is placed on a uniformly chosen ray, we can
assume that the sequence of path explorations goes in a fixed cyclic order. Without
loss of generality, we assume that p, = (k mod w), and then the algorithm is com-
pletely specified by the sequence s, s, ..., §;, ---. Since the distance from the origin
to the goal is at least one, we can safely assume that s,> 1. In fact, by adding an
extra search probe in the beginning, we can assume that s,=1; the cost of this extra
probe is just an additive constant, which does not affect the competitive ratio.
Using this notation, we can prove the following lemma.

LemmA 4.2. Let algorithm A be a deterministic algorithm defined by the sequence
805 S1s s Si» - . For input distribution f, ., the expected competitive ratio of A is

2 (et £ oY )
_ w—1—1i)s,; s; Sioi
w(l+e) \ /5, =0 0 7

j=

Proof. The position of the goal can be specified by defining two random
variables. The first, P, is uniformly distributed over {0, 1, ..., w—1} and determines
the path that the goal lies on. The second random variable, D, is distributed



SEARCHING IN AN UNKNOWN ENVIRONMENT 71

according to f, ,,, defined above, and represents the distance from the origin to the
goal.

We will also define some conditions C; for i=0, 1, 2, .., where C, is true exactly
when algorithm A finds the goal on sweep i. More formally,

1<D<s;and P=i when 0<i<w;

C, is true if and only if
18 e 1 and oyt { <D <s;and P=i(mod w) when i=w.

i—w

Notice that the conditions C, partition the space of all possible goal positions, so
if we let p,=Prob(C,), then it should be clear that > 2, p,=1. Furthermore, if R
is a random variable denoting the competitive ratio achieved by algorithm A, then

E[R1= Y pE[R|C] 3)

i=

In computing the expected values E[ R | C;] there are three cases: i=0, 1 <i<w,
and i >w. We present the analysis for i > w below; the remaining cases are similar.

Computing E[ R | C;], we know that C; holds, so the distance traveled by the
algorithm is

i1
Y (2s)+D.
j=0

Dividing by D, we see that the expected competitive ratio under this condition is
given by

i—1 i—1

E[R|C,]=E{ y ?+1|C,}=EB‘C,] Y (25)+1. (4)

i=0 j=0

To calculate E[(1/D) | C;], we simply refer back to the distribution for D, scale
this by p; since we want the conditional expectation, and integrate to find the
expected value. In other words,

E l C. szi l i x—(1+e) dx=; (S_f(1+s)_s_7(1+s))'
D i siiw X WD; wp,(1+e) =" ;

Combining this with Eq. (4) gives the conditional expected competitive ratio.
Summarizing all cases for the conditional expectation,

1 if i=0;
28<1s._“+”)) [il s;+1 if 1<i<w;
E[R|C1=X wp,(1+¢) ’ = h ’
2 i—1

& . .
Wiy ST skl iz

Jj=0
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Combining these results with Eq. (3) gives (after some algebraic manipulation)

E[R]—1+ <Wi (w—1—1i)s i 1+2) Mil s,+,>,

which is exactly what we are proving. ||

Using the two preceding lemmas, we can prove that the algorithm of the previous
section is optimal for w=2.

THEOREM 4.1.  For w=2, the optimal competitive ratio is given by

. { 1+r}
min <1+ .
r>1 Inr

Since this ratio is achievable by the algorithm of the previous section, the algorithm
SmartCow is optimal.

Proof. Assume that the values s,, s, ..., S, ..., define the optimal deterministic

algorithm for a fixed ¢, and let Opt(e, 2) denote the competitive ratio given in
Lemma 4.2. Rewrite this formula in cleaner form for w=2:

e}

Opi(e, 2) =1+~ <s0+ L S ﬁi’j‘).

For a fixed ¢, to lower bound this equation, we need only find a lower bound for

S;i+Si 1 Sots o S8 o St S
R(S):Z T+e glte +Z Gl+e :l+sl+z 1+e

i—0  So 0 im1 i ie1 i

(recall that s, =1 is fixed).
By setting ¢,=(s;,)/s;, we obtain a new sequence with 7,=1. The above sum
can be written in terms of this new sequence as

o Lttt
L+si+s5,7° ) 7t1+:1
i=0 i
But this is easily lower bounded by
e Lt .
R(e)=14s,+5;°Y T':l>1+sl+sle(s).

i=0

In other words,
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SO

& 1+s,
2)=1 1 - ).
Opt(s, 2) +1+8< +1s,‘">

By setting s;= s} and recalling Lemma 4.2, we see that the geometric sweep algo-
rithm has exactly the competitive ratio stated above as a lower bound. In other
words, the above is not just a lower bound, it is in fact the exact optimal value
when minimized over s,. So for fixed &,

& 1+7r
Onpt(e, 2)=mi 1 1 .
pi(e. 2) =min {1475 (1475 )|

By Lemma 4.1, we know that OptR(2)>1lim,_,,Opt(e, 2), so we can bound
OptR(2) by

1
OptR(2) = lim min{l—i— ¢ <1+ +r;_>}
1+e¢

e—>0 r>1 1—r—¢

. & I+r
=min lim <1+ 1+ —
r>1 &¢-0 1+8 l—r &

. { I—H}
=min <1+ .

r>1 Inr

The last line above is exactly the bound claimed in the theorem statement. ||

Subsequent to the conference publication of this paper, Kao et al. used similar
reasoning to show that, in fact, SmartCow is optimal for all w>=2 [10]. Their
proof is closely related to the one just presented, using small variants of Lemmas
4.1 and 4.2—an important contribution of their paper is a very intricate and
involved proof that replaces our Theorem 4.1 and works for all w > 2.

5. MINIMIZING THE COMPETITIVE RATIO

Recall from Theorem 3.1 that the algorithm SmartCow has competitive ratio

21 2 w—1
R(r,w)y=1+—- At tr
w

b

Inr

where r is a fixed algorithm parameter. In other words, for a fixed w SmartCow is
really a class of algorithms, indexed by the parameter . In order to get the best per-
formance possible, we would like to pick a value of r that minimizes R(r, w).



74 KAO, REIF, AND TATE

THEOREM 5.1.  The unique solution of the equation

_ 147424 o !
_V+2}"2+3}/'3+ +(W’*l)}"w_l

Inr

for r>1, denoted by r¥, gives the minimum value for R(r, w).

Proof. To minimize R(r, w) for a fixed w, we need only minimize the part that
depends on r. Call this function f, (r), where

: T+r4r4 4!
Julr)= I :
nr

This function is continuous, and f,,(r) goes to positive infinity when either end of
the interval (1, c0) is approached. Therefore, any minimum of the function on this
interval must be a local minimum, and we can find this by taking a derivative:

(r4+2r7+ o+ (w=Dr" " Hinr—(1+r+ -+

.f,w(r) = (]n V)2

The denominator is non-zero and finite for all € (1, o0), and the numerator is zero
exactly when Eq.(5) is true. In other words, the minimizing r must satisfy
Eq. (5)—by showing that there is only one such r, we will have proved the
theorem.

We need to show that Eq. (5) has exactly one solution for » > 1. To see this, first
note that the function In r is monotonically increasing for » > 1. Next, we will show
that the right-hand side of Eq. (5) is monotonically decreasing, so it follows that
Eq. (5) can have at most one solution. To see this, consider the right-hand side of

Eq. (5):

_ l4+r+r24 oo v
_r+272+3}"3+ +(W’*l)}"w_l .

gu(r) (6)

Taking the derivative with respect to r gives

H(l+2r+ .- +(W—1)r”’*2)2
—(I4r+ -+ (1 +4r+ - +(w—=1)>r""2)
(V+2r2+~--+(W—1)r“'*1)2 .

gu(r)=

The denominator of g/ (r) is clearly positive and non-zero for r>1, and the
numerator can be written as a polynomial in r. After some algebraic manipulation,
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TABLE 1

Approximate Values for Small w

Competitive Optimal
ratio of deterministic
w r¥ SmartCow ratio
2 3.59112 4.59112 9.00000
3 2.01092 7.73232 14.5
4 1.62193 10.84181 19.96296
5 1.44827 13.94159 25.41406
6 1.35020 17.03709 30.85984
7 1.28726 20.13033 36.30277
it is discovered that the numerator of g/, (r) can be written as Y.7" ;2 ¢, r*, where

the coefficients ¢, are

_(k+1)(k22)(k+3) for 0<k<sw—2;
ck=
7(2w—k—3)(2w—6k—2)(2w—k—1) for wo1l<k<2w_2.

Clearly, all these coefficients are negative, so for r > 1 the numerator of g/, (r), and
hence g/ (r) itself, is negative. In other words, we have shown that g (r) is
monotonically decreasing for r > 1.

Now that we have shown that Eq. (5) has at most one solution, we will show
that it has at least one solution. To see this, consider the function

L+r+r7+ - 4!
P23 4 (=)

Inr

For any fixed w, this function is clearly negative for » =1 and positive in the limit
as r — oo. Furthermore, since the function is continuous, it must have a root in the
interval (1, oo). Thus we have proved that Eq.(5) has exactly one solution for
r>1. |

The value ¥ can be found for any given w from Eq. (5) using standard numerical
techniques, and using this value we can construct the best algorithm from the
family of algorithms described by SmartCow. Approximate values for small values
of w are given in Table 1, with the optimal deterministic ratio shown for reference.

Due to the results of Section 4 and of Kao er al. [10], the competitive ratios
shown in Table 1 are in fact optimal for randomized algorithms.

6. GROWTH WITH THE NUMBER OF PATHS

In this section, we consider the growth of the competitive ratio of algorithm
SmartCow as the number of paths grows. Recall that R(r, w) was defined in Eq. (2)
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and shown to be the competitive ratio of algorithm SmartCow, and that in
Theorem 5.1 we showed that for each w there is a unique r > 1 (called r*) that gives
the best performance for algorithm SmartCow. We will use OR(w) = R(r¥, w) to
denote the optimum performance of SmartCow for w values. Furthermore, we
define a special constant x to be the value

41

’Cﬂ“i‘&{zdz

} ~ 3.088.

We will show that the competitive ratio of algorithm SmartCow is xw + o(w).
In our proof, we will make use of the following easily verified inequalities. For
all x>0,

1 X
ell/z"<<l+x> <e (7)

and
x2
mu+x)>x—5. (8)

We are now prepared to prove an upper bound on the competitive ratio of algo-
rithm SmartCow.

LemMa 6.1. OR(w)<xw+0O(1).

Proof. Fix some constant ¢ >0 and define the sequence of values r,, =1 + (¢/w).
From inequality (7) we know that

6‘(1 —(¢/(2w)))c < (rw)w < e-.
Now clearly OR(w) < R(r,,, w), so for w> ¢/2 we can derive

e“—1

(?/w)(1—(¢/(2w)))

e‘—1 c
=142 1
* c? W( +2w—c>

OR(w)<1+42

c

=25?fw+@uy

This is true for any arbitrarily chosen ¢, so in particular this is true for the ¢ that
minimizes the constant of the linear term. Therefore,

OR(w) <min [2 ¢ 5 } w+0(1)=rxw+ 6(1),
c

c>0

as claimed in the lemma statement. [J

Lemma 6.1 gives an upper bound on the growth of the competitive ratio with the
number of paths, and we now show a similar lower bound; however, first we need
a preliminary result bounding r¥.
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LEMMA 6.2. For any w=5, r¥ <1+ (5/w).

Proof. From Theorem 5.1 we know that for any w the optimizing r* satisfies
Eq. (5) and that the right-hand side of this equation, named g,(r) in Eq. (6), is
monotonically decreasing, while the left-hand side is monotonically increasing.

Therefore, if we can show that for all w=>S5,

5 5
in(143)> 0. (142)
w w

then we know that for all w=5, r¥ <1+ (5/w).
To prove this, first notice that since g,(r) is monotonically decreasing for all

r>=1, we can bound

5 2
gw<1+><gw(l): .
w w—1

Next, from inequality (8) we can derive, for w >3,

5 5 5 5 1 5
> _ = )= _ _ -
m(143)32 (1o)== (11 )(1-5%)

Combining these two bounds, we get

5 2 5
In 1+7 >7>gw 1+7 5
w w—1 w

so from the discussion at the beginning of the proof it follows that

5
r <l +—
w

as claimed. |

LEmMMmA 6.3. OR(w)=kw —o(w).
Proof. First, define ¢,=r*—1 (so r¥=1+¢,). Now notice that
(r¥)"=(1+4g¢,)" can be bounded using inequality (7) as

w

e(l —&w/2) e W < (r;]:)w < ez:,.vw.
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Thus we can bound

e(l —é&w/2)eww __ 1
OR(w)=R(r¥, w)=R(1+¢,, w)=1+2
e, w
(1 —e&yw/2)epw
e —1
— 42—
(&, w)

Now, let d,,=(1—¢,/2)¢, w, so that the above becomes

dw_l , 2 d—l , 2 A 5
one 25t (15 g (15 o 5]

Next, let 0 be an arbitrary positive constant. From Lemma 6.2 we know that
e, <5/wfor w=5, so for all w>=max(3/0, 5) we have

e\ 5\? 3
1—=) =2(l——] =21—=>1-9,
< 2> < 2w> w

which implies that

2
OR(w) = xw <1 —82”> = rw(l —9).

Since this is true for arbitrarily small J, this then implies that OR(w) = xw — o(w),
as claimed in the lemma. ||

The main theorem of this section is a direct and obvious consequence of
Lemmas 6.1 and 6.3. Of the several definitions of asymptotic notation, we use the
standard definition in which f(n) is o(g(n)) if for any constant ¢ > 0 there is a con-
stant n,>1 such that | f(n)| <cg(n) for all n>=n,—the absolute value on f(n) is
necessary for the following theorem to be an exact statement.

THEOREM 6.1. The competitive ratio for algorithm SmartCow is xw 4+ o(w),
where

]
K =min {2 "’dz } ~3.088.

d>0

The use of o(w) in the above theorem is due entirely to the lower bound on the
growth rate. As far as the algorithm’s performance goes, Lemma 6.1 shows that it
is perfectly valid (and somewhat stronger than Theorem 6.1) to say that the com-
petitive ratio is at most kw+ ©@(1). For the sake of comparison, recall that the
optimal deterministic algorithm of Baeza-Yates et al. [2] has competitive ratio
2ew + O(1), or approximately 5.437w + O(1).
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7. CONCLUSIONS

In this paper we have given a new randomized algorithm, SmartCow, for the
cow-path problem. We analyzed the competitive ratio of SmartCow and showed
that randomization gives our algorithm almost a factor of 2 improvement over the
best possible deterministic algorithm. Furthermore, we have shown that for the
important two-path problem our algorithm is an optimal randomized algorithm.
The lower bound proof of Section 4 includes a general form for lower bounds when
w>=2, but a closed form was obtained only for w=2 (showing that SmartCow is
optimal for w=2). This was recently extended by Kao et al. [10], who gave an
involved proof showing that SmartCow is in fact optimal for all w > 2.

Received March 3, 1992; final manuscript received September 25, 1996
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