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Stem cells
1) is a member of the Ly-6 family proteins that functions in cell growth,
differentiation, and self-renewal in multiple tissues. In skeletal muscle Sca-1 negatively regulates myoblast
proliferation and differentiation, and may function in the maintenance of progenitor cells. We investigated
the role of Sca-1 in skeletal muscle regeneration and show here that Sca-1 expression is upregulated in a
subset of myogenic cells upon muscle injury. We demonstrate that extract from crushed muscle upregulates
Sca-1 expression in myoblasts in vitro, and that this effect is reversible and independent of cell proliferation.
Sca-1−/− mice exhibit defects in muscle regeneration, with the development of fibrosis following injury. Sca-1−/−

muscle displays reduced activity of matrix metalloproteinases, critical regulators of extracellular matrix
remodeling. Interestingly, we show that the number of satellite cells is similar in wild-type and Sca-1−/− muscle,
suggesting that in satellite cells Sca-1 does not play a role in self-renewal. We hypothesize that Sca-1
upregulates, directly or indirectly, the activity of matrix metalloproteinases, leading to matrix breakdown and
efficient muscle regeneration. Further elucidation of the role of Sca-1 in matrix remodeling may aid in the
development of novel therapeutic strategies for the treatment of fibrotic diseases.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Skeletal muscle has an exceptional capacity for self-repair.
Whether induced by exercise, trauma, or disease, the regenerative
ability of skeletal muscle is largely dependent on satellite cells, a
population of resident stem cells identified by their location between
an individual myofiber and the basal lamina. In response to growth
stimuli, satellite cells are activated, and their progeny myoblasts
proliferate, differentiate, and fuse to form new myofibers or fuse into
existing myofibers (Charge and Rudnicki, 2004). Satellite cells exhibit
considerable heterogeneity in protein expression, as well as in their
proliferative, differentiative, and fuseogenic capacity, suggesting that
the satellite cell compartment is occupied by cells of differing function
(Wagers and Conboy, 2005). The biological significance of this
heterogeneity has not been elucidated.

Sca-1 (Stem Cell Antigen-1) is a member of the Ly-6 family of small
(12–15 kDa) GPI-linked proteins originally identified by its upregula-
tion in activated lymphocytes (Yutoku et al., 1974). Sca-1 is expressed
in progenitor cell populations in multiple tissues, including the
hematopoietic system, mammary gland, liver, heart, prostate, and
skeletal muscle (Holmes and Stanford, 2007), and plays a role in self-
renewal of hematopoietic and mesenchymal progenitors (Bonyadi
l rights reserved.
et al., 2003; Ito et al., 2003; Welm et al., 2002). The mechanisms and
signaling pathways through which Sca-1 functions are unclear. An
antibody against a 66 kDa protein expressed in the spleen inhibits Sca-
1 dependent cell–cell adhesion (English et al., 2000), and Sca-1 can
directly interact with CD22 in B lymphocytes (Pflugh et al., 2002).
These data suggest a role for Sca-1 in cell adhesion, although other
evidence suggests that Sca-1 may function to concentrate various
proteins in lipid rafts, thereby altering the local dynamics of signaling
molecules such that ligands are clustered nearby or sequestered from
their receptors (Holmes and Stanford, 2007; Pflugh et al., 2002).

We have previously shown that myogenic cells are heterogeneous
in their expression of Sca-1. In myofiber explant cultures, the number
of Sca-1+ cells increases over time. Freshly isolated myofibers have
virtually no Sca-1+ myogenic cells (one Sca-1+ cell per 100 myofibers),
while 4 days after isolation, 68% of myofibers are associated with
Sca-1+ cells (Mitchell et al., 2005). Sca-1 functions to negatively
regulate primary myoblast proliferation and differentiation; in vitro,
Sca-1+ cells divide slower than Sca-1− cells and fail to form myotubes.
Importantly, forced expression of Sca-1 in Sca-1− cells confers a Sca-1+

phenotype on these cells (Mitchell et al., 2005). Sca-1−/− myoblasts in
vivo are also hyperproliferative, resulting in delayed differentiation
and regeneration, suggesting that Sca-1 is critical for controlling the
balance between proliferation and differentiation during muscle
regeneration (Epting et al., 2008). A role for Sca-1 in maintaining
the progenitor cell pool has also been proposed, as Sca-1−/− mice
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display an age dependent decrease in myofiber size (Mitchell et al.,
2005). Collectively, these data suggest that Sca-1 is required to down-
regulate cell proliferation in order to maintain the pool of myogenic
progenitor cells.

Differential Sca-1 expression defines two distinct populations
within themyogenic pool (Sca-1− and Sca-1+).Wewished to determine
how this heterogeneity arises in vivo, and to investigate the function of
Sca-1 in skeletal muscle by determining the effect of Sca-1 absence on
regeneration. We show that Sca-1 expression is upregulated in
myogenic cells during regeneration, and that factors present in crushed
muscle extracts are capable of regulating Sca-1 expression. Further-
more, Sca-1−/− mice display impaired regeneration and increased
fibrosis, possibly due to an inability to remodel the extracellularmatrix.
Interestingly, our data suggest that Sca-1 in skeletal muscle does not
affect satellite cell proliferation or differentiation.

Materials and methods

Animals

Sca-1−/− mice backcrossed 10 generations to the Balb/c back-
ground were provided by W. Stanford (Stanford et al., 1997). Control
age- and sex-matched Balb/c as well as C57BL/6 mice were purchased
from Charles River Laboratories. Myf5-nLacZ mice were obtained
from S. Tajbakhsh (Tajbakhsh et al., 1996). Adult mice between the
ages of 8–12 weeks were used unless otherwise specified. Mdx mice
were crossed with Sca-1−/− mice to generate mdxSca-1−/− double
mutant mice. MdxSca-1+/+ mice also resulted from the crosses and
were used as controls. Muscle regeneration was induced in the
gastrocnemius and tibialis anterior muscles by injection of 1.2% BaCl2
or 10 ng/mL notexin NP, respectively, as described (Corbel et al.,
2003; O'Connor et al., 2007) and samples were collected at the
indicated times post-injury. All animals were handled in accordance
with the institutional guidelines of Emory University and The University
of British Columbia.

Antibodies

α-Sca-1 PE (1 μg/106 cells), α-CD31 APC/α-CD31 FITC (1:200), and
α-CD45 APC/α-CD45 FITC (1:200) were purchased from BD Bios-
ciences. FITC-, APC-, and PE-conjugated isotype controls were
purchased from BD Biosciences. α-Sca-1 APC (1:100) was from
ebiosciences. α-BrdU (5-bromo-2-deoxyuridine) FITC (1:25) was
from Invitrogen Corp. Alpha-7-integrin PE (1:100) was produced as
described (Blanco-Bose et al., 2001), and a PE-conjugated rat IgG2B

(ebiosciences) was used as isotype control.
α-Fibronectin was purchased from Abcam (1:250) and was

detected using a Texas red-conjugated donkey α-rabbit IgG (Jackson,
1:100). α-myosin heavy chain (MHC) antibodies were generated in
house from a hybridoma (Developmental Studies Hybridoma bank,
University of Iowa, clone A4,1025) and used at 0.6 μg/mL. Hybridoma
supernatant containing antibodies to Pax7 (developed by A. Kawa-
kami) were obtained from the Developmental Studies Hybridoma
Bank developed under the auspices of the NICHD and maintained by
the University of Iowa, Department of Biological Sciences, Iowa City, IA
52242.

Primary myoblast culture

Primary myoblasts were isolated from hindlimb muscles of adult
mice of the indicated genotypes as described previously (Bondesen et
al., 2004; Mitchell and Pavlath, 2001). Cells were suspended in growth
media (GM; Ham's F-10, 20% FBS, 5 ng/mL bFGF,100 U/mL penicillin G,
and 100 μg/mL streptomycin) and grown on collagen coated dishes in
a humidified 5% CO2 incubator at 37 °C. All cultures were N95%
myogenic cells as assessed by MyoD immunostaining.
Single myofiber isolation and culture

Single myofibers were isolated from gastrocnemius muscles as
described (Mitchell et al., 2005). Briefly, the gastrocnemius was
dissected and digested in DMEM containing 25 mM HEPES and 0.1%
collagenase (type I, Worthington) for 90 min with gentle agitation.
Single myofibers were extracted individually into fresh plates, then
transferred to 15 mL conical tubes and washed with media 3 times to
remove contaminants. Washed myofibers were returned to a 100 mm
dish prior to plating. For Pax7 immunostaining, individual myofibers
were transferred to 24-well plates pre-coated with 10% growth factor
reduced Matrigel (BD Biosciences). For flow cytometry, individual
myofibers from Myf5-nLacZ mice were transferred to Matrigel coated
6-well plates and plated at 12–15 myofibers per well; 12 ng/mL bFGF
was added to the media to inhibit differentiation of myoblasts.
Following plating, myofibers were centrifuged at 1100 ×g to facilitate
adhesion to the Matrigel and incubated for the indicated times in a
humidified, 37 °C, 5% CO2 incubator. To assess the myogenic purity of
each myofiber explant culture, a subset of myofibers fromMyf5-nLacZ
mice was stained with X-gal (5-bromo-4-chloro-3-indolyl-beta-D-
galactopyranoside, 1 mg/mL in 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6
3H2O, 2 mM MgCl2 in PBS) and the percentage of β-galactosidase+

cells determined. Only cultures with N95% β-galactosidase+ cells were
used. For Pax7 immunostaining, myofibers were plated in Matrigel-
coated 24 well plates, fixed immediately upon plating with 3.75%
formaldehyde, and immunostained as described (Bondesen et al.,
2006).

Determination of cell proliferation using Cell Trace CFSE

Singlemyofibers were isolated from 3month old C57BL/6mice and
plated on Matrigel coated 6-well plates at 12–15 myofibers per well in
DMEM with 10% FBS, 100 U/mL penicillin G, 100 μg/mL streptomycin,
and 12 ng/mL bFGF. Three days after isolation, 0.5 μM Cell Trace CFSE
(Invitrogen) in PBS was added to the explant cultures which were
incubated for 15 min at 37 °C. Wells were washed twice with PBS
followed by the addition of fresh media. Three days after Cell Trace
addition, mononucleated cells were isolated and immunostained with
a PE-conjugated Sca-1 antibody. Sca-1 expression and Cell Trace
retention were analyzed by flow cytometry.

Generation of crushed muscle extract

Crushed muscle extract (CME) was produced from the gastro-
cnemius, soleus, and quadriceps muscles of 8–10 week old female
C57BL/6 mice as described (Chen and Quinn, 1992). Briefly, the
muscles of 3–8 mice were dissected, pressed 7–10 times with forceps,
pooled, and incubated in TBS (Tris-buffered saline; 20 mM Tris pH 7.6,
137mMNaCl; 1mL of TBSwas used for themuscles of eachmouse) for
90 min at 4 °C on a rotator. The extract was centrifuged at 176,000 ×g
for 30 min followed by filtration through a 0.2 μm filter. CME was
visualized by gel electrophoresis on a 4–20% SDS gradient gel followed
by Coomassie Blue staining. CME was added to cells at the indicated
concentrations for the final 24 h of culture unless otherwise indicated.
Three independent isolates of primary myoblasts were used for each
experiment.

Flow cytometry

To analyze Sca-1 expression by flow cytometry, primary myoblasts
were immunostained with the PE-conjugated Sca-1 antibody and
analyzed on a FACSCalibur (Becton-Dickinson). For each sample,
10,000 cells were analyzed, and propidium iodidewas used to gate out
dead cells. For flow cytometry on myofiber explants, cultures were
trypsinized and filtered through a 100 μm filter to remove myofibers
prior to antibody incubation and analysis. A minimum of 5000 cells



49K.A. Kafadar et al. / Developmental Biology 326 (2009) 47–59
was analyzed for each sample. All data analysis was performed using
FlowJo v. 6.2.1 (TreeStar, Inc.). For analysis of Sca-1 expression during
regeneration, mononucleated cells were isolated from the tibialis
anterior muscles of 6 week old male C57BL/6 mice at the indicated
times (n=3 for each time point) following notexin injection,
dissociated, and immunostained with antibodies to CD31 and CD45
(FITC), Sca-1 (APC), and alpha-7-integrin (PE). CD31−CD45− cells were
analyzed for Sca-1 and alpha-7-integrin expression. Propidium iodide
staining was used to gate out dead cells. For cell sorting, the tibialis
anterior muscles of 12 6 week old C57BL/6 mice were injected with
notexin, the mononucleated cells isolated 48 h post injection and
immunostained as described above. For limited dilution analysis, each
population of cells was sorted and seeded intoMatrigel-coated 96well
plates at initial cell numbers of 1, 5,10, 30, or 100 cells per well with 30
or 60 replicate wells. Cells were cultured for 3 weeks (DMEM with
20% FBS, 5 ng/mL bFGF, 100 U/mL penicillin G, and 100 μg/mL
streptomycin), fixed in 4% paraformaldehyde for 5 min at room
temperature, followed by immunostaining with an antibody to MHC.
Nuclei were visualized by Hoechst staining, and the number of wells
containing MHC+ cells determined.

Analysis of cell proliferation during regeneration

Regeneration was induced in the tibialis anterior muscles of WT
and Sca-1−/− mice by notexin injection (5–6 mice per genotype). Mice
were injected intraperitoneally with 10 mg/mL BrdU twice per day;
0.8 mg/mL BrdU was also added to the drinking water, and the
drinkingwater replaced each day. Muscles were harvested 3 days after
injury, and mononucleated cells isolated for flow cytometry. BrdU
incorporation was analyzed in CD31−CD45− alpha-7-integrin+ cells
using a FITC-conjugated BrdU antibody. Isotype control antibodies
were used to determine proper gating for alpha-7-integrin, CD31, and
CD45. Myoblasts isolated from mice injured but not exposed to BrdU
were used as a negative control for α-BrdU immunostaining.

Collection of muscles and morphometric measurements

To analyze muscle growth during regeneration, injury was
induced in the gastrocnemius muscles of 2–4 month old WT and
Sca-1−/− mice (n=4) by injection of 40 μl of 1.2% BaCl2. Muscles were
collected 7 or 14 days after injury using standard dissection
techniques and frozen. Serial 10 μm sections were collected along
the entire length of the muscle and stained with hematoxylin and
eosin. Analyses and photography were performed using a Zeiss
Axioplan microscope equipped with a video camera and Scion Image
v.1.63 software as described (Horsley et al., 2001). Myofiber number
and cross sectional area (XSA) were determined in the muscle belly,
and anatomical landmarks of each muscle were used to find the same
region in different samples. The XSA of 100–250 individual myofibers
was determined within a 307,200-μm2

field. To quantify fibrosis, a
grid containing 506 points was overlaid on each image, and the
muscle beneath each point characterized as cellular (i.e. nucleus or
cytoplasm) or fibrotic (i.e. no recognizable cellular structure)
(Spencer et al., 2001). The fibrotic index was determined by the
number of points overlaying fibrotic tissue divided by the total
number of points.

Immunofluorescence

For fibronectin detection, sections were rehydrated with PBS
(phosphate buffered saline) for 10 min, then blocked with 5% donkey
serum in PBS for 20 min and incubated with α-fibronectin in 2%
donkey serum in PBS for 1 h. Following washes with PBS-T (PBS + 0.1%
Tween-20), sections were incubated with the appropriate secondary
antibody in 2% donkey serum in PBS-T for 45 min, and mounted using
VectaShield (Vector Labs).
Determination of collagen content

Sirius red staining of sections was performed as described (Lopez-
De Leon and Rojkind,1985). For hydroxyproline analysis, BaCl2 injured
gastrocnemius muscles from WT and Sca-1−/− mice were collected
7 days post injury, frozen in liquid nitrogen, and lyophilized. Analysis
was performed by AAA Laboratory, Mercer Island, WA. Four mice of
each genotype were used. Hydroxyproline content was normalized to
dry muscle weight.

Matrix metalloproteinase (MMP) activity assays

The gastrocnemius muscles of 4 month old WT and Sca-1−/− mice
were injected with 40 μl of 1.2% BaCl2 to induce injury. Muscles were
collected 2, 3, and 5 days following injury. The uninjured muscle was
collected from the contralateral leg. Threemice of each genotypewere
used for each timepoint. Muscles were homogenized in 1 mL RIPA
buffer (25 mM Tris pH7.6, 150 mM NaCl, 1% NP-40, 1% sodium
deoxycholate, 0.1% SDS) with Complete mini protease inhibitor tablets
(Roche) added. Homogenates were centrifuged at 21,000 ×g for 15min
to pellet insoluble material, and protein concentrations determined
using BCA reagent (Pierce). Twenty microliters of extract and 80 μl
MMP buffer (10 mM Tris pH7.5, 150 mM NaCl, 10 mM CaCl2, 7.5 μM
ZnCl2, 0.05% Triton X-100) were added to each well of a 96 well clear
bottom black plate (Costar), and fluorogenic peptide substrate I (R&D
systems) added to 10 μM. Each sample was analyzed in triplicate.
Samples were read in an M2 fluorescent plate reader (Molecular
Devices; λex=320 nm; λem=405 nm) at 37 °C. Readings were taken
every 10 min for 2 h. Rates (relative fluorescence units (RFU)/min)
were normalized to protein concentration. For enzyme activity in
primary myoblasts, WT and Sca-1−/− myoblasts were plated in GM in
6-well plates. Upon attachment to the plate, cells were switched to
Opti-MEM serum freemedia (Invitrogen), with 2.5mMCaCl2 and 5 μM
ZnCl2 added. After 48 h, the media was removed, passed over a
0.45 μm filter to remove cells, and 100 μl added to each well of a 96
well clear bottom black plate. Fluorogenic peptide substrate I was
added to 20 μM, and samples were incubated for 1 h at 37 °C. Samples
were read in the M2 fluorescent plate reader at the same wavelengths
as above. Three independent experiments were performed, and RFU
were normalized to cell number at the time of media collection.

Retroviral plasmids, production, and infection

A retroviral vector encoding full-length Sca-1 (PM4 (Mitchell et al.,
2005)) and a control vector (TJ66 (Murphy et al., 2002)), were used to
produce infectious supernatants as previously described (Abbott et al.,
1998). Primary WT and Sca-1−/− myoblasts were subjected to two
rounds of infection (Abbott et al., 1998). Twenty-four hours following
infection, cells were replated, and media collected after a further 48 h
for use in MMP assays. Three independent experiments were
performed, and MMP activity was normalized to cell number. Sca-1
overexpression was verified by flow cytometry.

Statistics and image assembly

To determine the significance between two groups, comparisons
were made using Student's t test. Analyses of multiple groups were
performed using a one-way analysis of variance with Bonferroni's
post-test. These statistical analyses were conducted using GraphPad
Prism 4.0 for Macintosh, and a confidence level of pb0.05 was
accepted for statistical significance. Two-way analysis of variance was
performed using R: A Language and Environment for Statistical
Computing (R Development Core Team, R Foundation for Statistical
Computing, Vienna, Austria). Images were assembled using Adobe
Photoshop CS and were not modified other than uniform adjustments
to size, color levels, brightness, and contrast.
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Results

Sca-1 is upregulated in myofiber explant cultures

We have previously demonstrated that the number of Sca-1+ cells
increases over time in myofiber explant cultures (Mitchell et al.,
2005). Whether this increase in Sca-1+ cells is due to enhanced
proliferation of the Sca-1+ population or is a result of Sca-1
upregulation is unknown. To distinguish between these possibilities,
individual myofibers isolated fromMyf5-nLacZ micewere cultured for
3 or 6 days, and the percentage of Sca-1+ mononucleated cells
determined by flow cytometry (Figs. 1A, B). After 3 days in culture,
21.6%±2.9 of cells were Sca-1+ whereas after 6 days 54.1%±3.5 of cells
Fig. 1. Sca-1 is upregulated in myofiber explant cultures. (A) Single myofibers were isolated f
were isolated and immunostained with a PE-conjugated Sca-1 antibody and Sca-1 expressio
the increase in Sca-1+ cells over time. The percentage of Sca-1+ cells is 2.5 fold greater at 6 day
For each experiment a subset of myofibers was stained with X-gal to assess the myogenic pu
Representative histogram showing Sca-1 PE fluorescence in mononucleated cells derived from
analyzed further for Cell Trace CFSE retention. (E) Representative Cell Trace CFSE profile of
were Sca-1+. The myogenic purity of these cultures was N95% as
determined by X-gal staining (Fig. 1C). This increase in the percentage
of Sca-1+ cells was not due to increased proliferation, as themajority of
both Sca-1neg and Sca-1hi cells exhibited similar retention of Cell Trace
CFSE, a membrane dye which is diluted upon cell division (Figs. 1D, E).
A population of Sca-1hi cells (11.4%) retained higher levels of Cell Trace
CFSE, indicating a slower proliferation rate (Fig. 1E). Interestingly,
long-term cultures of purified primary myoblasts contain 13.1%±2.0
Sca-1+ cells, suggesting that, with time in culture, Sca-1 expression is
downregulated to a lower steady-state level or a proportion of Sca-1+

cells does not survive long term growth in vitro. Myofibers them-
selves may also secrete factors whichmaintain elevated levels of Sca-1
expression.
romMyf5-nLacZ mice and cultured for 3 or 6 days, after which the mononucleated cells
n analyzed by flow cytometry. Representative flow plots are shown. (B) Quantitation of
s compared to 3 days. Data aremean±SE from 3 independent experiments; ⁎pb0.05. (C)
rity of the cultures. Only cultures with N95% β-gal+ cells were analyzed. Bar=60 μm. (D)
myofiber explant cultures incubated for 6 days. Sca-1neg (69%) and Sca-1hi (11.3%) were

Sca-1neg (grey line) and Sca-1hi (black line) cells.
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Sca-1+ myogenic cells are increased following muscle injury

To determine if the increase in Sca-1+ cells observed in myofiber
explant cultures also occurs in vivo, mononucleated cells were
isolated from regenerating muscle and the expression of Sca-1 in
myogenic cells analyzed by flow cytometry. Cells were isolated from
the tibialis anterior muscles of uninjured mice, as well as 2 and 3 days
following notexin injection. Very few myogenic cells (CD31−CD45−

alpha-7-integrin+; see Fig. S1 for gating strategy (Blanco-Bose et al.,
2001)) expressed Sca-1 in uninjured muscle (1.3%±0.54 of total cells
Fig. 2. Sca-1+ myogenic cells are increased during regeneration. (A) Mononucleated cells w
immunostained with antibodies to CD31 and CD45 (FITC), Sca-1 (APC), and alpha-7-integrin
expression. See Fig. S1 for gating strategy and controls. (A) Analysis of Sca-1 expression in alph
Sca-1. Two days post-injury, this population has increased. After a further 24 h, the percentag
shown. n=3. (B) Two days after injury, mononucleated cells were isolated from the tibialis an
(gate A) cells and alpha-7-integrin+ Sca-1− (gate B) cells were sorted and used for limited dilut
cell numbers from1 to100with 30 or 60 replicatewells. After 3weeks in culture in high serum
of cultures. The nuclei were visualized with Hoechst. (D) Results of limited dilution analysis
were alpha-7-integrin+ Sca-1+; 3.5% of alpha-7-integrin+ cells were
also Sca-1+); however, 2 days after injury a population of Sca-1+

myogenic cells was present (5.86%±0.48 of total cells were alpha-7-
integrin+ Sca-1+; 23.9% of alpha-7-integrin+ cells were also Sca-1+)
(Fig. 2A). Interestingly, this Sca-1+ population quickly declined by
3 days after injury (1.8%±0.86 of total cells were alpha-7-integrin+

Sca-1+; 13.3% of alpha-7-integrin+ cells were also Sca-1+) (Fig. 2A). The
transient appearance of this population suggests an upregulation of
Sca-1 expression in myogenic cells upon injury. However, the fate of
this population is unclear.
ere isolated from regenerating muscle of C57BL/6 mice 0, 2, or 3 days post injury and
(PE). Cells negative for CD31 and CD45 were analyzed for Sca-1 and alpha-7-integrin

a-7-integrin+ cells during regeneration. At day 0, very fewalpha-7-integrin+ cells express
e of Sca-1+ alpha-7-integrin+ cells has returned to baseline. Representative flow plots are
terior muscles of C57BL/6 mice and immunostained as above. Alpha-7-integrin+ Sca-1+

ion analysis. (C) Cells sorted from gate A or gate B were seeded in 96 well plates at initial
media, cells werefixed and immunostained forMHC (red) to determine themyogenicity
show that alpha-7-integrin+ Sca-1+ cells are capable of undergoing myogenesis.
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To verify the myogenicity of the Sca-1+ alpha-7-integrin+ cells
(CD31−CD45−), these cells were sorted and plated in a limited dilution
assay to assess their ability to undergo myogenesis (Fig. 2B, gate A). As
a positive control, Sca-1− alpha-7-integrin+ (CD31−CD45−) cells were
also sorted and used for an identical analysis (Fig. 2B, gate B). One, 5,
10, 30, or 100 cells were plated in single wells of a 96 well plate, with
30 or 60 replicate wells for each condition. After 3 weeks in culture
cells were immunostained for myosin heavy chain (MHC) (Fig. 2C),
and the number of wells containing MHC+ cells determined (Fig. 2D).
Although a higher proportion of wells containing Sca-1− alpha-7-
integrin+ cells had MHC+ cells, cells sorted from both gates were
capable of undergoing myogenesis, indicating that the Sca-1+ alpha-7-
integrin+ cells present during regeneration are indeed myogenic. In
contrast, no wells seeded with Sca-1+ alpha-7-integrin− (CD31−CD45−)
cells contained MHC+ cells (data not shown).

Crushed muscle extract increases the number of Sca-1+ cells

We hypothesized that injured muscle tissue may release factors
that result in the observed upregulation of Sca-1 expression in
myogenic cells. To test this hypothesis, we generated extract from
crushed hindlimb muscles and assessed its ability to regulate Sca-1
expression (Fig. 3A). Primary myoblasts were incubated with increas-
ing concentrations of crushed muscle extract (CME) for 24 h and the
percentage of Sca-1+ cells determined by flow cytometry (Fig. 3B).
CME increased the percentage of Sca-1+ cells in a dose-dependent
manner, with 200 μg/mL (used for the remainder of experiments)
resulting in a 2.5 fold increase relative to vehicle (Fig. 3C). To rule out
the possibility that any Sca-1 in the CME may be transferred to the
Fig. 3. Crushed muscle extract reversibly upregulates Sca-1 expression in primary myoblasts
followed by coomassie blue staining. (B) Primarymyoblastswere treatedwith vehicle or 200
Sca-1 expression analyzed by flow cytometry. Representative flow plots are shown. (C) Qua
treated for 24 h with vehicle or the indicated concentrations of CME and analyzed as in pane
cells relative to vehicle. (D) The effects of CME on Sca-1 expression are reversible. Primary my
replaced and the cells were analyzed immediately or allowed to grow for a further 24 or 48
different from vehicle, pb0.05. For panel D, ⁎⁎ indicates significantly different from 0 h, pb
surface of myoblasts, resulting in an apparent increase in Sca-1
expression, we tested the ability of CME derived from Sca-1−/− mice to
upregulate Sca-1 expression. The effect of CME lacking Sca-1 on
primary myoblasts was indistinguishable from that derived from WT
mice (data not shown).

Dynamic regulation of Sca-1 expression in myogenic cells may play
an important role in the activation and/or termination of cell
proliferation, differentiation, or self-renewal following muscle injury.
We therefore investigated whether the increase in Sca-1 expression is
permanent or if removal of stimuli results in the return of Sca-1
expression to baseline levels. Primary myoblasts were treated with
200 μg/mL CME for 24 h, after which the media was replaced, the cells
allowed to grow for an additional 0, 24, or 48 h, followed by analysis of
Sca-1 expression by flow cytometry (Fig. 3D). After removal of CME for
24 h, the number of CME-induced Sca-1+ cells was reduced by 43%,
whereas 48 h after CME removal, the percentage of Sca-1+ cells was
not significantly different from vehicle. The pool of Sca-1+ cells can
therefore be transiently expanded in response to CME. The effects of
CME on Sca-1 expression were independent of changes in cell
proliferation, as determined by BrdU incorporation, or of cell death,
as determined by cell number (Fig. S2).

We next determined whether two factors critical for muscle
growth, hepatocyte growth factor (HGF) or insulin-like growth factor-
1 (IGF-1) are responsible for the effects of CME on Sca-1 expression.
HGF is expressed in normal and regenerating muscle, regulates
satellite cell activation, proliferation, and migration, and is released
into CME (Allen et al., 1995; Bischoff, 1997; Jennische et al., 1993;
Tatsumi et al., 1998). IGF-1 is another critical regulator of muscle
growth and differentiation (Mourkioti and Rosenthal, 2005), and is
. (A) Crushed muscle extract (CME) was subjected to SDS-PAGE on a 4–15% gradient gel
μg/mL CME for 24 h. Cells were immunostainedwith a PE-conjugated Sca-1 antibody and
ntitation of the effects of CME on the number of Sca-1+ cells. Primary myoblasts were
l B. Treatment with 200 μg/mL results in a 2.5 fold increase in the percentage of Sca-1+

oblasts were treated with vehicle or 200 μg/mL CME for 24 h, after which the media was
h. Cells were analyzed as in panel B. Data are mean±SE, n=3. ⁎ indicates significantly

0.05.
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expressed in both normal and regenerating muscle (Hill and Gold-
spink, 2003; Hill et al., 2003; LeRoith and Roberts, 1991). As shown in
Fig. S3, neither HGF nor IGF-1 had an effect on Sca-1 expression at any
concentration tested, suggesting these are not the Sca-1 inducing
factor(s) present in CME.

These data indicate that Sca-1 expression is upregulated in
response to factors present in muscle, and that this effect is reversible.
We hypothesize that, following injury, Sca-1 is transiently upregulated
in a population of myogenic cells, and that this expression is required
for proper muscle regeneration.

Sca-1 is required for normal regeneration in vivo

We next investigated the ability of muscle to regenerate when Sca-
1 expression cannot be upregulated following injury. To this end,
regeneration was induced in the gastrocnemius muscles of WT and
Sca-1−/− mice, and 7 and 14 days following injury the muscles were
collected and sections stainedwith hematoxylin and eosin (Fig. 4A). To
assess regeneration, we analyzed myofiber cross-sectional area (XSA)
and myofiber number per field. No significant differences were
Fig. 4. Sca-1 is required for efficient muscle regeneration following injury. (A) Regeneration
Seven and 14 days following injury, muscles were collected, and sections stained with hem
significant difference is observed in average myofiber XSA or in the number of myofibers pe
n=4 mice per genotype. (D) Sca-1−/− mice exhibit a 3.5 fold increase in the fibrotic index 7 da
are mean±SE; n=4 mice per genotype, per timepoint. Statistical analysis was performed us
observed between genotypes in either parameter (Figs. 4B, C).
However, we noted a 3.5 fold increase in the fibrotic index of Sca-1−/−

muscle relative to WT (Fig. 4D). This increased fibrosis in Sca-1−/−

muscle was still present 14 days post injury (2.2 fold increase relative
toWT) (Fig. 4D).We attempted to determinewhether this difference in
fibrosis is apparent earlier in regeneration, and therefore examined
muscles 3 days after injury. However, at this time degeneration was
still too extensive for an accurate evaluation of the fibrotic index (data
not shown). These data indicate that the inability to upregulate Sca-1
expression following injury results in aberrant regeneration, char-
acterized by increased formation of fibrotic tissue.

Myogenic cells from Sca-1−/− mice do not display alterations in
proliferation rate

To determine the possible cause underlying the increased fibrosis
observed in regenerating Sca-1−/− muscle, we first investigated the
possibility of altered cell proliferation in Sca-1−/− myogenic cells. We
hypothesized that decreased myogenic proliferation may alter the
balance between myogenesis and fibrosis, resulting in increased ECM
was induced in the gastrocnemius muscles of WT and Sca-1−/− mice by BaCl2 injection.
atoxylin and eosin for analysis. Representative sections are shown. Bar=60 μm. (B) No
r field (C) between genotypes. White bars, WT; black bars, Sca-1−/−. Data are mean±SE.
ys post injury. This increase persists at 14 days following BaCl2 injection (2.2 fold). Data
ing 2-way analysis of variance. ⁎pb0.001.



Fig. 5. Absence of Sca-1 does not result in changes in myoblast proliferation during
regeneration. Regeneration was induced in the tibialis anterior muscles of WT and
Sca-1−/− mice by notexin injection. BrdU was administered intraperitoneally each day
following damage. Muscles were harvested 3 days post-injury to assess the
percentage of BrdU+ myoblasts by flow cytometry. CD31−CD45− alpha-7-integrin+

cells were immunostained with a FITC-conjugated antibody to BrdU. (A) Representa-
tive flow plots are shown. (B) Quantitation of BrdU+ myogenic cells in WT and Sca-1−/−

during regeneration. No significant difference was observed between genotypes. Isotype
controls were used to determine proper gating. WT n=5; Sca-1−/− n=6.

Fig. 6. Sca-1−/− mice do not exhibit significant differences in satellite cell numbers.
Individual myofibers were isolated from the gastrocnemius muscles of WT and Sca-1−/−

mice, fixed immediately upon plating, and immunostained with an antibody to Pax7 to
identify satellite cells. DAPI was used to visualize nuclei. (A) Representative image of a
Pax7+ cell is shown. Bar=10 μm. (B) No significant difference in average satellite cell
number per myofiber exists between WT and Sca-1−/− mice at either 4 months or
18 months. 4 month myofiber n; WT=157, Sca-1−/−=150. 18 month myofiber n;
WT=143, Sca-1−/−=128. (C, D) Frequency distribution of satellite cell number in 4 and
18 month Sca-1−/− and WT gastrocnemius muscles. (E) Repeated rounds of degeneration
and regeneration do not result in a difference in satellite cell number in mdxSca-1−/−

relative to mdxSca-1+/+. Individual gastrocnemius myofibers were isolated from 2 to
3 month old mice of both genotypes and treated as in (A). Myofiber n: mdxSca-1+/+=119;
mdxSca-1−/−=95. For all genotypes myofibers from 3 mice were analyzed.
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deposition. Previous work suggests that alpha-7 integrin+ cells in
regenerating Sca-1−/− muscle exhibit increased cell proliferation due
to a shortening of the cell cycle (Epting et al., 2008). To determine if
cell cycle alterations could contribute to the effects observed in our
study, WT and Sca-1−/− mice were subjected to notexin-induced
muscle injury, and BrdU was administered intraperitoneally twice
each day during regeneration to assess cell proliferation. CD31−CD45−

alpha-7-integrin+ cells were isolated from tibialis anterior muscles
3 days after injury (Fig. 5A). We observed no difference in BrdU
incorporation in the myogenic cells, the alpha-7-integrin−, or CD31+

CD45+ populations between WT and Sca-1−/− mice during regenera-
tion (Fig. 5B and data not shown). These data suggest that the
increased fibrosis observed in Sca-1−/− regenerating muscle is not due
to alterations of cell proliferation.

Sca-1 does not regulate satellite cell number

We hypothesized that the regeneration defect observed in Sca-1−/−

muscle might be due to decreased satellite cell numbers, resulting in
fewer myogenic progenitors to participate in regeneration. Because
Sca-1 plays a role in the self-renewal of hematopoietic and
mesenchymal stem cells (Bonyadi et al., 2003; Ito et al., 2003), we
investigated the possibility that Sca-1 plays a similar role in satellite
cell self-renewal. We hypothesized that if Sca-1 is required for satellite
cell self-renewal, Sca-1−/− animals would have fewer satellite cells. To
examine satellite cell number, individual myofibers were isolated
from the gastrocnemius muscles of WT and Sca-1−/− mice and
immunostained for Pax7, a satellite cell marker (Fig. 6A). No significant
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difference was observed between genotypes in the mean number of
satellite cells per myofiber in 4 month old mice (WT=6.5; Sca-1−/−=5.8)
(Fig. 6B). We did observe a small decrease in the number of myofibers
with greater than 10 satellite cells from Sca-1−/− mice relative to WT
(Fig. 6C), although the significance of this finding is unclear as this
difference is not present in 18 month old mice (see below). We
conducted the sameanalysis usingmyofibers isolated from18monthold
mice, hypothesizing that any effect on satellite cell numbers caused by
the absence of Sca-1 may not manifest until later in life. However,
although the average number and frequency of satellite cells per
myofiber was decreased in both genotypes at 18 months relative to
4 months (WT=4.4; Sca-1−/−=4.1), the Sca-1−/− myofibers did not differ
significantly fromWT in their satellite cell number, suggesting that Sca-1
is not required for satellite cell self-renewal or survival (Figs. 6B, D). To
further assess the role of Sca-1 in self-renewal, we crossed Sca-1−/−mice
into the mdx background to determine if the repeated rounds of
degeneration and regeneration present in the mdx mice would
unmask a role of Sca-1 in the regulation of satellite cell numbers.
Individual myofibers from the gastrocnemius muscles of 2–3month old
mdxSca-1+/+ and mdxSca-1−/− mice were isolated and satellite cell
number determined by Pax7 immunostaining. No significant change in
satellite cell number was observed in mdx mice lacking Sca-1 (Fig. 6E).
These data strongly suggest that Sca-1 does not playa role in satellite cell
self-renewal, indicating that the role of Sca-1 in skeletal muscle differs
from its role in other tissues.

Sca-1−/− mice display reduced ability to remodel the extracellular matrix

Skeletal muscle extracellular matrix (ECM) plays a critical role in
muscle growth and regeneration (Li et al., 2001). Not only does the
ECM impart structural support and strength to tissues, it also provides
attachment sites for cell surface receptors, and functions as a reservoir
of cytokines and other growth factors (Badylak, 2002; Carmeli et al.,
2004). To determine if genes encoding ECM components are
differentially expressed in Sca-1−/− regenerating muscle relative to
Fig. 7. Sca-1−/− mice have reduced MMP activity. (A) Muscles were collected from WT and S
extracts incubated with 10 μM fluorogenic peptide substrate I at 37 °C for 2 h. Readings were
each timepoint. Statistical analysis was performed using 2-way analysis of variance. ⁎pb0.00
due to reducedMMP activity in Sca-1−/−myoblasts. Conditionedmediawere collected fromW
I. Fold change in RFU in Sca-1−/− myoblasts is shown. RFU was normalized to cell number at t
with the indicated retrovirus (RV), and Sca-1 levels determined by flow cytometry. Represen
MMP activity to WT levels. Conditioned media were collected and analyzed for MMP activi
WT, we performed real-time PCR using an array containing 84 genes
important for cell–cell and cell–ECM interactions (SuperArray Corp).
We analyzed arrays for differences in gene expression in WT and
Sca-1−/− regenerating muscle; however, we observed no consistent
difference in expression in any genes involved in the structure or
regulation of the ECM (data not shown).

Because we observed no change in expression of ECM genes in
Sca-1−/− muscle during regeneration, we speculated that Sca-1 may
be required to regulate the activity of enzymes that remodel the ECM.
Matrix metalloproteinases (MMPs) are a large family (N25 members)
of enzymes that are responsible for degradation of connective tissue.
MMPs are responsible for degradation of the ECM during embryonic
development, cell migration, and tissue remodeling (Murphy and
Gavrilovic, 1999). We hypothesized that Sca-1 may upregulate the
activity of MMPs in regeneratingmuscle, and that the absence of Sca-1
would result in decreased MMP activity, leading to fibrosis and
aberrant regeneration. To assess MMP activity in WT and Sca-1−/−

regenerating muscle, gastrocnemius muscles from mice of both
genotypes were injured by BaCl2 injection, muscles were harvested
2, 3, and 5 days following injury, and muscle extracts generated.
Uninjuredmuscles were also collected. Extracts were incubatedwith a
fluorogenic peptide substrate capable of being cleaved by multiple
MMPs, includingMMP2 andMMP9, the predominantMMPs inmuscle
(Kherif et al., 1999). At all time points extracts from Sca-1−/− muscles
exhibited less MMP activity than WT (Fig. 7A).

To determine if MMP production by myogenic cells contributes to
this difference, conditioned media from purified WT and Sca-1−/−

myoblasts was assayed for MMP activity using the same substrate.
Conditioned media from Sca-1−/− myoblasts exhibited 24% less MMP
activity than media conditioned by WT cells (Fig. 7B). To verify that
the decrease in MMP activity observed in Sca-1−/− myoblasts is due to
the absence of Sca-1, we performed a rescue experiment in which
Sca-1−/− myoblasts were infected with either control or Sca-1
retroviruses, and conditioned media analyzed for MMP activity.
Infection with the Sca-1 retrovirus restored high level Sca-1
ca-1−/− mice 0, 2, 3, and 5 days after BaCl2 injection. Muscles were homogenized, and
taken every 10 min. Data are displayed as rate of RFU change/mg protein. n=3 mice for
8. (B) The difference in MMP activity between WT and Sca-1−/− muscle is at least partly
Tand Sca-1−/−myoblasts and incubated for 1 hwith 20 μM fluorogenic peptide substrate
he time of media collection. n=3; pb0.05. (C) WT and Sca-1−/− myoblasts were infected
tative histograms are shown. (D) Overexpression of Sca-1 in Sca-1−/− myoblasts restores
ty as in panel B. n=3: p=0.03.
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expression to Sca-1−/− myoblasts (Fig. 7C). As shown in Fig. 7D,
infection of Sca-1−/− cells with the Sca-1 retrovirus restored MMP
activity to WT levels (Fig. 7D). This suggests that the decrease in MMP
activity observed in Sca-1−/− muscle is directly due to the absence of
Sca-1, and that the decrease in MMP activity observed in vivo is at
least partly due to the myogenic cells.
Fig. 8. Sca-1−/− muscle displays increased levels of collagen and fibronectin. (A)
Regeneration was induced in the gastrocnemius muscles of WT and Sca-1−/− mice by
BaCl2 injection. Muscles were collected 7 days following injury and subjected to
hydroxyproline analysis. Sca-1−/− muscle exhibits a 20% increase in hydroxyproline
content. Hydroxyproline content normalized to dry muscle weight. n=4; p=0.03. (B)
Gastrocnemius muscles from mdxSca-1−/− mice also exhibit increased collagen content
compared to mdxSca-1+/+ mice. Muscle sections were stained with Sirius Red to detect
collagen. Four mice of each genotype (aged 6–8 months) were analyzed. Representative
images are shown. (C) The fibrous deposits observed in Sca-1−/− regenerating muscle
also contain fibronectin. Sections from regenerating gastrocnemius muscles were
isolated and immunostained with an antibody to fibronectin. mdxSca-1−/− muscle
displays greater fibronectin deposits than mdxSca-1+/+ muscle. Three to four mice of
each genotype were analyzed. Representative images are shown. Bar=60 μm.
Sca-1−/− muscles exhibit increased ECM during regeneration

Having shown that Sca-1−/− muscles exhibit an increased fibrotic
index aswell as decreasedMMP activity, we next examined changes in
ECM composition due to the absence of Sca-1. Because multiple ECM
components are targets of MMPs, we investigated the presence of a
variety of matrix proteins. Collagens are an important target of MMPs
(Page-McCaw et al., 2007), and we therefore investigated whether
regenerating Sca-1−/− muscles contain increased collagen deposits
relative to WT. To examine collagen content, we first stained sections
with Sirius Red, which allows visualization of collagen in tissue
sections (Lopez-De Leon and Rojkind, 1985). Gastrocnemius muscles
were collected from WT and Sca-1−/− animals 7 days following injury,
and sections were stained with Sirius Red. However, we were unable
to observe any difference in Sirius Red binding between genotypes
(data not shown). We considered that a modest difference in collagen
content might be difficult to discern by eye; we therefore subjected
day 7 regenerating muscles of both genotypes to hydroxyproline
analysis. Hydroxyproline is a modified amino acid prominent in
collagen whose presence can be used to quantify collagen levels in
tissue (Neuman and Logan, 1950). Using this method, we detected a
20% increase in the collagen content of Sca-1−/− regenerating muscles
(Fig. 8A). To determine if increases in collagen content are also present
inmdxSca-1−/−muscles, gastrocnemiusmuscles from 6 to 8month old
mdxSca-1+/+ and mdxSca-1−/− mice were sectioned and stained with
Sirius Red (Fig. 8B). mdxSca-1−/− muscles stained significantly brighter
with Sirius Red than mdxSca-1+/+, indicating that even in the fibrosis-
prone mdx background the absence of Sca-1 increases collagen
content. Although increased ECM is present in mdxSca-1−/− muscle, as
in the Sca-1−/− background, we observe no difference in myofiber XSA
or number (data not shown), similar to results obtained on the non-
mdx background.

We next analyzed laminin and fibronectin, two other ECM
components and targets of MMPs. Immunohistochemical analysis of
day 7 regenerating muscles did not indicate the presence of laminin in
the fibrotic deposits present in the Sca-1−/− muscles (data not shown).
However, fibronectin was present in these deposits (Fig. 8C).
Interestingly, not only were fibronectin deposits present in regenerat-
ing Sca-1−/− tissue, they were also increased in mdxSca-1−/− muscle
relative to mdxSca-1+/+ (Fig. 8C). These data demonstrate that the
decreasedMMP activity observed in Sca-1−/−muscle leads to increased
collagen and fibronectin content in the ECM in both acute and chronic
models of muscle regeneration.

Discussion

In this work we demonstrate a novel role for Sca-1 in skeletal
muscle, where it is required for remodeling of the extracellular matrix
during regeneration. We show that Sca-1−/− muscle contains less
matrix metalloproteinase activity, resulting in increased fibrosis
during regeneration characterized by excess collagen and fibronectin.
Matrix remodeling is essential during growth and regeneration not
only to clear a path for migrating cells, but also in facilitating cellular
interactions and the release of growth factors (Murphy and Gavrilovic,
1999). We propose that Sca-1 functions to upregulate, directly or
indirectly, the activity of MMPs, thereby promoting breakdown of the
ECM and facilitating normal regeneration. This is the first time such a
role for Sca-1 has been reported. Additionally, we provide evidence
suggesting that, while Sca-1 regulates stem cell self-renewal in other
tissues, it does not appear to act in this capacity in skeletal muscle, as
the absence of Sca-1 has no effect on satellite cell numbers in normal
or disease states.

Sca-1 expression was dynamically regulated in a subset of
myogenic cells both in vivo and in vitro. Changes in Sca-1 expression
occur in multiple cell types, and are associated with differentiation
(T-cells), receptor activation (B-cells), and stress conditions (osteoblasts,
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tumor cells) (Bamezai et al., 1995; Chen et al., 2003; Treister et al., 1998;
Yeh et al.,1986). InTcells, osteoblasts, andmyoblasts, Sca-1 expression is
upregulated by IFNα/β and IFNγ through a complex array of DNA
regulatory elements (Horowitz et al., 1994; Khan et al., 1990; Khan et al.,
1993; Khodadoust et al., 1999; Ma et al., 2001; Mitchell et al., 2005;
Sinclair et al., 1996). Interestingly, the changes we observed in Sca-1
expression were transient. During regeneration, Sca-1+ myogenic cells
were increased 2 days following injury but were greatly reduced
3 days post-injury, although it is unclear if such a reduction is due to
downregulation of Sca-1, migration of these cells out of the muscle, or
cell death. Additionally, our experiments involving crushed muscle
extract suggest that factors present in injured muscle are required not
only to induce, but also to maintain Sca-1 expression in myogenic cells
during a specific timeframe. Preliminary biochemical characterization
of CME suggests that the factor(s) responsible for upregulating Sca-1
expression are highly heat and protease resistant, and at least one
factor is smaller than 25 kDa. Sca-1 expression is also greatly increased
in myofiber explant cultures, yet this level of Sca-1 expression is not
maintained in expanded cultures of primary myoblasts, suggesting
downregulation of Sca-1 over time or death of many Sca-1+ cells.
Further experiments must be conducted to determine the fate of
these cells.

Regeneration experiments demonstrated that the inability to
upregulate Sca-1 following muscle injury (i.e. in Sca-1−/− mice)
resulted in the development of significant fibrosis, characterized by
increased collagen and fibronectin deposits in the ECM. This
phenotype was not due to alterations in myoblast proliferation
during regeneration, or to differences in satellite cell number. Instead,
we observed significantly reduced MMP activity in Sca-1−/− muscle as
well as isolated myoblasts, leading to the hypothesis that Sca-1
expression is required for full MMP activity. Rescue experiments in
which Sca-1 expression is restored to Sca-1−/− myoblasts restored
MMP activity, indicating that Sca-1 expression is functionally
important for proper MMP activity. Further experiments will be
required to determine by what mechanism Sca-1 achieves this effect.
Regulation of MMPs is highly complex, with controls at the levels of
transcription, translation, secretion, localization, activation of the
zymogen form, expression of endogenous MMP inhibitors, and
degradation (Page-McCaw et al., 2007). Based on our real-time PCR
data, which did not indicate a significant difference in expression of
multiple MMPs, we hypothesize that Sca-1 does not regulate MMP
expression; Sca-1 may instead directly regulate MMP activity, or it
may affect the expression/activity of proteins capable of affecting
MMP activity.

The precise function(s) of MMPs in muscle regeneration is not
clear. MMPsmay simply be required to remove ECM components, thus
allowing sufficient space for new myofibers to form. Alternatively,
MMPs may be required to release growth factors from the ECM;
degradation of decorin by MMPs leads to the release of TGF-β (Imai et
al., 1997), and digestion of perlecan releases FGF-2 (Whitelock et al.,
1996). Additionally, cleavage of some ECM components by MMPs
exposes cryptic signals: digestion of the γ2 chain of laminin exposes a
site which promotes epithelial cell migration (Visse and Nagase,
2003). Therefore, MMPs may also function in muscle regeneration to
release growth factors, unmask cryptic biological signals, or in other
functions as yet undiscovered.

Reduced MMP activity has been previously correlated with
increased fibrosis in skeletal muscle. In a crush model of muscle
injury, regenerating soleus muscles exhibit significantly increased
fibrosis relative to regenerating extensor digitorum longus muscles,
which is correlated with reduced MMP2 activity in the soleus
(Zimowska et al., 2008). Interestingly, we also observed a significant
decrease in MMP activity in uninjured Sca-1−/− muscle compared to
WT. We hypothesize that, although the absence of Sca-1 results in
decreasedMMP activity in uninjured tissue, MMPs do not play amajor
role in muscle homeostasis under normal conditions. Only during
regeneration, when active remodeling of the ECM is necessary
(Carmeli et al., 2004), does the absence of Sca-1 and subsequent
reduced MMP activity result in fibrosis. This hypothesis is in
accordance with the observation that most Sca-1−/− phenotypes are
associatedwith events that stress resident progenitor cell populations,
such as transplantation and injury (Holmes and Stanford, 2007).
While Sca-1−/− myoblasts have reduced MMP activity, loss of Sca-1 in
other cell types may also contribute to fibrosis. Further experiments
will determine which MMPs are regulated, directly or indirectly, by
Sca-1, how this regulation is achieved, as well as the precise function
of MMPs during muscle regeneration.

Our results differ in several ways from a recently published study
examining the role of Sca-1 in muscle regeneration (Epting et al.,
2008). Epting et al. demonstrate downregulation of Sca-1 during
regeneration (Epting et al., 2008). The reasons for this discrepancy are
not clear; however, they report that at day 0, 60% of alpha-7 integrin+

cells are also Sca-1+. We and others have shown that quiescent
satellite cells do not express Sca-1, so perhaps a portion of the cells
they analyzed are not myogenic or in the satellite cell position
(Asakura et al., 2002; Mitchell et al., 2005; Sherwood et al., 2004).
When analyzing alpha-7 integrin+ cells, we also gated against CD31+

and CD45+ cells to ensure we were not observing endothelial or
immune cells, a step apparently not undertaken by Epting et al. In fact,
a subpopulation of CD31+ cells expresses both Sca-1 and alpha-7
integrin (data not shown), suggesting that at least some of the cells
identified as myogenic by Epting et al. were in fact of endothelial
origin. In addition, they report a significant increase in myoblast
proliferation in injured Sca-1−/− muscle relative to WT. This discre-
pancy might be due to differences in proliferation markers used
(continuous BrdU versus Ki67), in the method of injury (notexin
versus cardiotoxin), or in mouse strain (C57BL/6 versus Balb/c).

Sca-1 plays a role in stem cell self-renewal in multiple tissues, and
has been proposed to play such a role in skeletal muscle satellite cells
(Bonyadi et al., 2003; Holmes and Stanford, 2007; Ito et al., 2003). The
data presented here showing no significant difference in satellite cell
number between WT and Sca-1−/− mice at 4 or 18 months of age
argues against a role for Sca-1 in satellite cell self-renewal. However,
18 month old mice may not have undergone sufficient satellite cell
turnover for an observable difference. In contrast, the lack of
difference in satellite cell number between mdxSca-1+/+ and
mdxSca-1−/− muscles, where significant degeneration/regeneration
has already occurred, adds further weight to the hypothesis that Sca-1
is not involved in regulation of satellite cell self-renewal. We cannot
rule out the possibility that our experimental conditions are
insufficient to reveal differences in the Sca-1−/− satellite cell pool.
Further experiments involving the ability of Sca-1−/− myofiber
transplants to successfully contribute to the host satellite cell pool
may be required to definitively address the role of Sca-1 in satellite cell
self-renewal.

Many stem cell populations express Sca-1, although its function in
these cells is not clear (Holmes and Stanford, 2007). Hematopoietic
progenitor cells from Sca-1−/− mice display a homing defect, suggest-
ing that Sca-1 may be involved in progenitors homing to the bone
marrow (Bradfute et al., 2005). MMPs have been implicated in stem
cell homing (Mannello, 2006) as well as in other cell migration events,
including tumor metastasis and migration from the neural crest (Cai
and Brauer, 2002; Duffy et al., 2008). Our data presented here suggest
that the role of Sca-1 in many stem cell populations may be to regulate
MMP activity, thus allowing cells to home to their target tissue.

Successful muscle regeneration involves a balance between myofi-
ber regeneration and connective tissue growth (Mutsaers et al., 1997).
Disruption of this balance leads to pathological fibrosis which impairs
myofiber regeneration and prevents complete recovery of the muscle
(Lehto et al., 1986). Extensivemuscle fibrosis is characteristic of multiple
muscular dystrophies, which leads to further loss of muscle function
(Li et al., 2001). Identification of Sca-1 as a regulator of MMP function
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adds to the growing repertoire of roles Sca-1 plays in cell and tissue
growth and homeostasis, and may ultimately provide future ther-
apeutic targets in combating fibrotic diseases.
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