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Can the curvaton paradigm accommodate a low inflation scale?
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Abstract

The cosmological curvature perturbation may be generated when some ‘curvaton’ field, different from the inflaton, oscillates
in a background of unperturbed radiation. In its simplest form the curvaton paradigm requires the Hubble parameter during
inflation to be bigger than 0GeV, but this bound may be evaded if the curvaton field (or an associated tachyon) is strongly
coupled to a field which acquires a large value at the end of inflation. As a result the curvaton paradigm might be useful in
improving the viability of low-scale inflation models, in which the supersymmetry-breaking mechanism is the same as the one
which operates in the vacuum.

0 2003 Published by Elsevier B.Wpen access under CC BY license.

1. Introduction ary Hubble parameter of order the gravitino mass is
therefore low compared with the maximum value of
order 16* GeV allowed by the CMB anisotropy [14],
and low compared with the value in other sensible-
looking models of inflation [1,2].

One of the most important constraints on models
of the very early Universe is the existence of a
curvature perturbatiort, known from observation
to be present on cosmological scales a few Hubble
times before such scales start to enter the horizon.
At that epoch, the earliest one at which it can be

In some of the most interesting inflation models,
the inflationary potential comes from the same SUSY-
breaking mechanism that operates in the vacuum,
giving a Hubble parameter is of order the gravitino
mass [1]. Inventing some of the terminology [2], these
are: (i) non-hybrid modular inflation [3,4], (ii) hybrid
modular inflation [5,6], (iii)u-field inflation invoking
either gauge-mediated [7], gravity-mediated [8] or

gaugino-mediated [9] SUSY breaking, (iv) modular *’ _ o .
thermal inflation [10,11], (v) locked inflation [12]. directly observed; is almost time-independent, with

In gravity-mediated SUSY breaking the gravitino an almost scale-independent spectréin given by

12 . e
mass is of order TeV, and in the other schemes it is [15] P;’* ~ 5 x 1075, This curvature perturbation is
some orders of magnitude lower except for anomaly- Supposed to be generated by some field which is light

mediated [13] where it is up to 100 TeV. An inflation- during inflation, because indeed inflation converts the
vacuum fluctuation of every such field into an almost

scale-invariant classical perturbation. The question is,
E-mail address: d.lyth@lancaster.ac.uk (D.H. Lyth). which light field does the job?
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The usual answer is the inflaton [14]. Unfortu-
nately, this ‘inflaton paradigm’ tends to make life
difficult for the low-scale models [1]. In its original
form, non-hybrid modular inflation predicts a curva-
ture perturbation that is far too small, and so dojihe
field models, unless one admits extreme fine-turing.
Hybrid modular inflation fares better, but some fine-
tuning is still required [5] unless the inflaton mass is
allowed to run [4,6] with the attendant danger of a run-
ning of the spectral index in conflict with observation.

Thus, it may reasonably be said that the inflaton para-

digm makes life difficult for low-scale inflation mod-
els.
According to the inflaton paradigm, the curvature
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2. Thesimplest curvaton model

In the simplest model [16], the curvaton field is
practically frozen, from the epoch of horizon exit dur-
ing inflation to the epoch when the Hubble parameter
H falls below the curvaton masgs. Also, the curvaton
potential in the early Universe is not appreciably mod-
ified, and in particular the mass is not modified.

With this setup, the value of the curvaton field
when the oscillation begins is practically the same as
its valueo, at the epoch when the observable Universe
leaves the horizon during inflation. (Throughout, I will
denote the latter epoch by star.) The curvaton energy

density is thenp, ~ m?s?, and the total energy

perturbation has already reached its observed value atgensity isp ~ M3m? ~ M3H?, making the ratio

the end of inflation and does not change thereafter. The
simplest alternative is to suppose that the curvature

perturbation is negligible at the end of inflation,
being generated later from the perturbation of some
‘curvaton’ field different from the inflaton [16] (see
also [17,18]). This curvaton paradigm has attracted
a lot of attention [10,17-54] because it opens up
new possibilities both for observation and for model-
building 2

It is attractive to suppose [11] that the curvaton
paradigm can be implemented in conjunction with
low-scale inflation models, so as to liberate them
from the troublesome requirement that the inflaton
generate the curvature perturbation. In this Letter |
show that in the simplest version of the curvaton
paradigm this will not work, because the curvaton can
generate the observed curvature perturbation only if
the inflationary Hubble parameter exceed$ GeV.
| go on to consider possible variants of the curvaton
paradigm.

1 The fine-tuning in model of [8] might be removed if the
curvature perturbation is generated during preheating, from the
decay products of the perturbed Higgs field [9]. This is an alternative
to the curvaton mechanism that we are about to discuss.

2 According to the scenario developed in the above papers, the
curvature perturbation is generated by the oscillation of the curvaton
field. A different idea [55] is that the field causing the curvature

perturbation does so because its value determines the epoch of

reheating, and another is that it does so through a preheating
mechanism [9]. In all these cases one might reasonably call the
relevant field the curvaton, but the present Letter deals only with
the original scenario.

2

- @

O
2
Mp

P H=m

This ratio is less than 1 by definition, corresponding
to o« < Mp which is a reasonable requirement. After-
wards it may grow, to achieve some final value which
we denote by-. Such growth takes place during any
era when the non-curvaton energy density is radiation-
dominated. Let us assume for the moment that the
growth is continuous, and denote the radiation density
by pr. Discounting any variation in the effective num-
ber of speciesp, /pr is proportional to the tempera-
ture, and curvaton decay increases this temperature by
a factor of order(p/pr)/4. (Complete thermalisation

is assumed after curvaton decay.) It follows [40] that

N mMpa*2
Q=34 TgecM3

r

2

Remembering now that the growth may not actually
be continuous we arrive at the inequality
mMp(T*2

r < 5
Tdech

S 3)
which will be crucial in boundindd,.

To obtain rather precise results in a simple way,
existing treatments of the curvaton scenario assume
that p, /p does grow significantly. We will use these
results, while noting that our rough order of magnitude
estimates should be valid in the limiting case where
there is no growth. Once significant growth has taken
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place, the curvature perturbation is given by [16,23]
1 po 806
(= @
P Po

In this expression the fractional curvaton density per-
turbation is evaluated on spatially flat slices of space-
time so that it is time-independent. It may therefore
be evaluated at the beginning of the oscillation, when
at each comoving poini, is proportional tas2, and

to first ordersp, / o = 280 /o . After the curvaton de-
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and hence
l m
H.> (10" GeV)( — ).
H,
This is stronger than Eq. (10)4f = 10 TeV.

(12)

3. Evolution of the curvaton field

As the simplest model is incompatible with low-
scale inflation, we need to explore alternatives. One

cays¢ is supposed to remain constant until horizon en- nossibility is to allow significant evolution of the cur-
try, so that the observed curvature perturbation is equal yaton field, with the curvaton potential either unmodi-

to the one just before curvaton decay,

2
L~ 580/0 (5)

(6)

~ 580*/0*.
Since the spectrum @b, is (H,/2r)?2, the spectrum
of the observed curvature perturbation is therefore
predicted to be [16,23]

1/2 2r H*
P — .
¢ 3 2oy

(@)

Using the observed valuﬁgl/2 =5 x 10°° one finds
that

Oy (5 x 1072 x 371)7er*.

(8)
Combining Egs. (3) and (8) leads to the bound [40]
VmMpH?
VETPTE > (5% 1075 x 37)2, 9)

TdecMg
Imposing the BBN boundgec > 1 MeV and the
constraintn < H, gives the advertised bound

H, > 10" GeV. (10)

Another bound comes from the fact that the curvaton
decay ratel” will be at least of orderm®/M3,
corresponding to gravitational-strength interactions.
Since the Hubble parameter at decay is of odéhis
implies

Tgec™~ v/ MpI" 2 Mp(m/Mp)*/?, (11)

fied in the early Universe, or else altered only through
a modification Am? ~ +H? of the effective mass-
squared that might be expected to come from super-
gravity. (In the latter case, the actual modification
should be at least an order of magnitude or so below
the expected one during inflation, and preferably also
afterwards [39].)

Since we are dealing with super-horizon scales,
the evolution of the curvaton field at each comoving
position is given by the same equation as for the
unperturbed Universe,

&+3H6 + V(o) =0, (13)

with the initial conditiono = o, ands >~ 0. Evaluated
at the epochH = m this will give some valuer =
g(oy), and a first-order perturbation

(14)

The effect of the evolution is to replaes by g
in Egs. (10) and (8), and to multipl¥Z, in Eq. (8)
by the factorg’ corresponding to the evolution 8& .

The bound onH, is affected only by the latter
change, causing it to be multiplied by a factotgl
Unfortunately, the evolution typically goes the wrong
way, decreasing both the value and the perturbation
of the curvaton [39]. The opposite can be true if the
evolving curvaton field almost reaches a maximum of
its potential [36], but this happens only for a narrow
range ofo,, which at least for the model of [36] can be
achieved only if there has not been too much inflation
before our Universe leaves the horizon.

In addition to being difficult to achieve, a strong in-
crease in the curvaton field brings with it the danger of
generating too much non-Gaussianity. Indeed, extend-
ing Egs. (5) and (14) to second order one finds that the

So >~ g'8o.
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perturbation in the curvaton density when the oscilla- Using Eg. (8) and repeating the arguments leading

tion begins is givenbil to Egs. (10) and (12), one finds that Eq. (10) is
5 g g2 g replaced by

L =22 80, + | 25 + = ) (800)% 15

Ll b L B b2 (107 Gev®/m, (19)

Repeating the argument in [23] (which implicitly \yhile Eq. (12) is replaced by
assume@” = 0) the non-linearity parameter becomes )
H, > (10" GeV)* /m. (20)

B gg//
I = E(lJr g2 ) (16) In the physical rangé1, < Mp the second bound is
always the stronger. Imposing Eq. (18) gives

In the absence of evolution the current observational

bound fyL < 100 is achieved for any 2 0.01, but H.> (107 GeV)r > 10° GeV. (21)

strong evolution might violate the bound even for o ] ] ] ] .

r = 1. It would be worth checking that the bound is This is marginally compatible with low-scale inflation

not violated for the example of [39]. models, though it will become incompatible if future
non-Gaussianity observations require 1.

4. Theheavy curvaton
5. Expansion of the curvaton field scale after
The curvaton may have an unsuppressed coupling inflation
102 x2 to some fieldy, which is close to zero during
inflation but moves quickly to a large VEV atthe end ~ The last possibility that | consider applies only if
of inflation. (Candidates foy are the inflaton field ~ the curvatonis a PNGB corresponding to a symmetry
in the case of non-hybrid inflation, and the waterfall Which acts on the phase of one or more complex fields
field in the case of hybrid inflation.) In that case, [16,40]. Taking the simplest case of a single complex
the effective2 curvaton mass-squared increases by anfield 2, the potential will be of the form
amounti(x )< just after the end of inflation, allowing - 2 w2 1| w1 d4n
the true curvaton mass to be bigger thidn One may V(X)) =2 Vo—m5| 21"+ M |27 41, (22)
call this kind of curvaton a heavy curvaton. with n > 0. The third term is the term mainly respon-
The heavy curvaton begins to oscillate as soon as its sible for the stabilisation ofX|, which gives it a VEV
mass is generated at the end of inflation. At this stage, 1/(24n
its energy density is of order?s? while the total v~ (m5Mp/2) e, (23)
density is of orden3H?, so that Eq. (1) is replaced  and defines the curvaton field through= v explic/
by V/2v). The dots indicate higher powers Bf, which in
2.2 general are expected to break the symmetry and gen-
Po meoy X
— ~ . a7) erate the curvaton potential, as well as any quantum
P li=m MpH; effects which do the same thing.
This is less than 1 by definition, and using Eq. (8) this ~ We now suppose that there is a coupliig |2
requires with negative A, to a fieldx which suddenly acquires
4 5 a large VEV after inflation. The negative coupling is
m/Mp 5% 1077/r <5x 1077, (18) un-typical, especially in the context of supersymmetry,
where the second inequality comes from the current butit can be achieved as discussed for instance in [57].
[56] non-Gaussianity bourvd> 0.01. With such a coupling, the tachyonic masss
will suddenly increase at the end of inflation. This
3 . i will suddenly increase the VEW by some factor,
In this and the preceding formulas one can proceed more .
rigorously if the epoctf = m is replaced by a somewhat later one, and mcreasg botkr a_nd 8o by the same factor. As
such that the harmonic oscillation of the curvaton field is well under W€ Saw earlier, the increase do has the effect of
way ando is understood to be the amplitude of the oscillation [23]. weakening the bound Eq. (10) oH,, which may
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allow low-scale inflation. Of course, there will in

general also be a sudden change in the effective mass-
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[14] A.R. Liddle, D.H. Lyth, Cosmological Inflation and Large-
Scale Structure, Cambridge Univ. Press, Cambridge, 2000.

squared of the curvaton, by an amount which depends[15] D.N. Spergel, et al., Astrophys. J. Suppl. Ser. 148 (2003) 175.

on the mechanism which explicitly breaks the global
symmetry. This change may or may not cancel out
the beneficial effect of the increase in the value of the
curvaton field perturbation.

6. Conclusion

In the simplest form of the curvaton paradigm, nei-
ther the curvaton field nor the form of the curvaton
potential change appreciably before the curvaton be-
gins to oscillate. This form is incompatible with low-
scale inflation. On the other hand, the curvaton para-
digm may become compatible with low-scale inflation

if the mass of the curvaton increases sharply at the end

of inflation. The same may be true if the curvaton field
is the angular part of a complex field, whose tachyonic
mass increases sharply.
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