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Abstract

The cosmological curvature perturbation may be generated when some ‘curvaton’ field, different from the inflaton, o
in a background of unperturbed radiation. In its simplest form the curvaton paradigm requires the Hubble paramete
inflation to be bigger than 107 GeV, but this bound may be evaded if the curvaton field (or an associated tachyon) is s
coupled to a field which acquires a large value at the end of inflation. As a result the curvaton paradigm might be u
improving the viability of low-scale inflation models, in which the supersymmetry-breaking mechanism is the same as
which operates in the vacuum.
 2003 Published by Elsevier B.V.Open access under CC BY license.
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1. Introduction

In some of the most interesting inflation mode
the inflationary potential comes from the same SUS
breaking mechanism that operates in the vacu
giving a Hubble parameter is of order the graviti
mass [1]. Inventing some of the terminology [2], the
are: (i) non-hybrid modular inflation [3,4], (ii) hybri
modular inflation [5,6], (iii)µ-field inflation invoking
either gauge-mediated [7], gravity-mediated [8]
gaugino-mediated [9] SUSY breaking, (iv) modu
thermal inflation [10,11], (v) locked inflation [12].

In gravity-mediated SUSY breaking the gravitin
mass is of order TeV, and in the other schemes
some orders of magnitude lower except for anoma
mediated [13] where it is up to 100 TeV. An inflatio
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ary Hubble parameter of order the gravitino mass
therefore low compared with the maximum value
order 1014 GeV allowed by the CMB anisotropy [14
and low compared with the value in other sensib
looking models of inflation [1,2].

One of the most important constraints on mod
of the very early Universe is the existence of
curvature perturbationζ , known from observation
to be present on cosmological scales a few Hub
times before such scales start to enter the hori
At that epoch, the earliest one at which it can
directly observed,ζ is almost time-independent, wit
an almost scale-independent spectrumPζ given by

[15] P1/2
ζ � 5 × 10−5. This curvature perturbation i

supposed to be generated by some field which is l
during inflation, because indeed inflation converts
vacuum fluctuation of every such field into an alm
scale-invariant classical perturbation. The question
which light field does the job?
license.
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The usual answer is the inflaton [14]. Unfort
nately, this ‘inflaton paradigm’ tends to make li
difficult for the low-scale models [1]. In its origina
form, non-hybrid modular inflation predicts a curv
ture perturbation that is far too small, and so do theµ-
field models, unless one admits extreme fine-tunin1

Hybrid modular inflation fares better, but some fin
tuning is still required [5] unless the inflaton mass
allowed to run [4,6] with the attendant danger of a ru
ning of the spectral index in conflict with observatio
Thus, it may reasonably be said that the inflaton pa
digm makes life difficult for low-scale inflation mod
els.

According to the inflaton paradigm, the curvatu
perturbation has already reached its observed valu
the end of inflation and does not change thereafter.
simplest alternative is to suppose that the curva
perturbation is negligible at the end of inflatio
being generated later from the perturbation of so
‘curvaton’ field different from the inflaton [16] (se
also [17,18]). This curvaton paradigm has attrac
a lot of attention [10,17–54] because it opens
new possibilities both for observation and for mod
building.2

It is attractive to suppose [11] that the curvat
paradigm can be implemented in conjunction w
low-scale inflation models, so as to liberate th
from the troublesome requirement that the infla
generate the curvature perturbation. In this Lette
show that in the simplest version of the curvat
paradigm this will not work, because the curvaton c
generate the observed curvature perturbation on
the inflationary Hubble parameter exceeds 107 GeV.
I go on to consider possible variants of the curva
paradigm.

1 The fine-tuning in model of [8] might be removed if th
curvature perturbation is generated during preheating, from
decay products of the perturbed Higgs field [9]. This is an alterna
to the curvaton mechanism that we are about to discuss.

2 According to the scenario developed in the above papers
curvature perturbation is generated by the oscillation of the curv
field. A different idea [55] is that the field causing the curvatu
perturbation does so because its value determines the epo
reheating, and another is that it does so through a prehe
mechanism [9]. In all these cases one might reasonably cal
relevant field the curvaton, but the present Letter deals only
the original scenario.
t

2. The simplest curvaton model

In the simplest model [16], the curvaton field
practically frozen, from the epoch of horizon exit du
ing inflation to the epoch when the Hubble parame
H falls below the curvaton massm. Also, the curvaton
potential in the early Universe is not appreciably mo
ified, and in particular the massm is not modified.

With this setup, the value of the curvaton fieldσ

when the oscillation begins is practically the same
its valueσ∗ at the epoch when the observable Unive
leaves the horizon during inflation. (Throughout, I w
denote the latter epoch by star.) The curvaton ene
density is thenρσ ∼ m2σ 2∗ , and the total energ
density isρ ∼ M2

Pm2 ∼ M2
PH 2, making the ratio

(1)
ρσ

ρ

∣∣∣∣
H=m

∼ σ 2∗
M2

P

.

This ratio is less than 1 by definition, correspond
to σ∗ � MP which is a reasonable requirement. Afte
wards it may grow, to achieve some final value wh
we denote byr. Such growth takes place during a
era when the non-curvaton energy density is radiat
dominated. Let us assume for the moment that
growth is continuous, and denote the radiation den
by ρr. Discounting any variation in the effective num
ber of species,ρσ /ρr is proportional to the tempera
ture, and curvaton decay increases this temperatu
a factor of order(ρ/ρr)

1/4. (Complete thermalisatio
is assumed after curvaton decay.) It follows [40] tha

(2)
r

(1− r)3/4 ∼
√

mMPσ 2∗
TdecM

2
P

.

Remembering now that the growth may not actua
be continuous we arrive at the inequality

(3)r �
√

mMPσ 2∗
TdecM

2
P

,

which will be crucial in boundingH∗.
To obtain rather precise results in a simple w

existing treatments of the curvaton scenario ass
that ρσ /ρ does grow significantly. We will use thes
results, while noting that our rough order of magnitu
estimates should be valid in the limiting case wh
there is no growth. Once significant growth has ta
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place, the curvature perturbation is given by [16,23

(4)ζ(t) � 1

3

ρσ

ρ

δρσ

ρσ

.

In this expression the fractional curvaton density p
turbation is evaluated on spatially flat slices of spa
time so that it is time-independent. It may therefo
be evaluated at the beginning of the oscillation, wh
at each comoving pointρσ is proportional toσ 2, and
to first orderδρσ /ρσ = 2δσ/σ . After the curvaton de
caysζ is supposed to remain constant until horizon
try, so that the observed curvature perturbation is eq
to the one just before curvaton decay,

(5)ζ � 2

3
δσ/σ

(6)� 2

3
δσ∗/σ∗.

Since the spectrum ofδσ∗ is (H∗/2π)2, the spectrum
of the observed curvature perturbation is theref
predicted to be [16,23]

(7)P1/2
ζ � 2r

3

H∗
2πσ∗

.

Using the observed valueP1/2
ζ = 5 × 10−5 one finds

that

(8)σ∗ � (
5× 10−5 × 3π

)−1
rH∗.

Combining Eqs. (3) and (8) leads to the bound [40

(9)

√
mMPH 2∗
TdecM

2
P

�
(
5× 10−5 × 3π

)2
.

Imposing the BBN boundTdec > 1 MeV and the
constraintm < H∗ gives the advertised bound

(10)H∗ � 107 GeV.

Another bound comes from the fact that the curva
decay rateΓ will be at least of orderm3/M2

P,
corresponding to gravitational-strength interactio
Since the Hubble parameter at decay is of orderΓ this
implies

(11)Tdec∼
√

MPΓ � MP(m/MP)3/2,
and hence

(12)H∗ �
(
1011 GeV

)( m

H∗

)
.

This is stronger than Eq. (10) ifm � 10 TeV.

3. Evolution of the curvaton field

As the simplest model is incompatible with low
scale inflation, we need to explore alternatives. O
possibility is to allow significant evolution of the cu
vaton field, with the curvaton potential either unmo
fied in the early Universe, or else altered only throu
a modification∆m2 ∼ ±H 2∗ of the effective mass
squared that might be expected to come from su
gravity. (In the latter case, the actual modificati
should be at least an order of magnitude or so be
the expected one during inflation, and preferably a
afterwards [39].)

Since we are dealing with super-horizon sca
the evolution of the curvaton field at each comov
position is given by the same equation as for
unperturbed Universe,

(13)σ̈ + 3Hσ̇ + V ′(σ ) = 0,

with the initial conditionσ = σ∗ andσ̇ � 0. Evaluated
at the epochH = m this will give some valueσ =
g(σ∗), and a first-order perturbation

(14)δσ � g′δσ∗.

The effect of the evolution is to replaceσ∗ by g

in Eqs. (10) and (8), and to multiplyH∗ in Eq. (8)
by the factorg′ corresponding to the evolution ofδσ .
The bound onH∗ is affected only by the latte
change, causing it to be multiplied by a factor 1/g′.
Unfortunately, the evolution typically goes the wro
way, decreasing both the value and the perturbatio
of the curvaton [39]. The opposite can be true if
evolving curvaton field almost reaches a maximum
its potential [36], but this happens only for a narro
range ofσ∗, which at least for the model of [36] can b
achieved only if there has not been too much inflat
before our Universe leaves the horizon.

In addition to being difficult to achieve, a strong i
crease in the curvaton field brings with it the dange
generating too much non-Gaussianity. Indeed, exte
ing Eqs. (5) and (14) to second order one finds that
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perturbation in the curvaton density when the osci
tion begins is given by3

(15)
δρσ

ρσ

= 2
g′

g
δσ∗ +

(
g′2

g2
+ g′′

g

)
(δσ∗)2.

Repeating the argument in [23] (which implicit
assumedg′′ = 0) the non-linearity parameter becom

(16)fNL = 5

4r

(
1+ gg′′

g′2

)
.

In the absence of evolution the current observatio
boundfNL � 100 is achieved for anyr � 0.01, but
strong evolution might violate the bound even
r = 1. It would be worth checking that the bound
not violated for the example of [39].

4. The heavy curvaton

The curvaton may have an unsuppressed coup
λσ 2χ2 to some fieldχ , which is close to zero durin
inflation but moves quickly to a large VEV at the e
of inflation. (Candidates forχ are the inflaton field
in the case of non-hybrid inflation, and the waterf
field in the case of hybrid inflation.) In that cas
the effective curvaton mass-squared increases b
amountλ〈χ〉2 just after the end of inflation, allowin
the true curvaton mass to be bigger thanH∗. One may
call this kind of curvaton a heavy curvaton.

The heavy curvaton begins to oscillate as soon a
mass is generated at the end of inflation. At this sta
its energy density is of orderm2σ 2∗ while the total
density is of orderM2

PH 2∗ , so that Eq. (1) is replace
by

(17)
ρσ

ρ

∣∣∣∣
H=m

∼ m2σ 2∗
M2

PH 2∗
.

This is less than 1 by definition, and using Eq. (8) t
requires

(18)m/MP � 5× 10−4/r < 5× 10−2,

where the second inequality comes from the curr
[56] non-Gaussianity boundr > 0.01.

3 In this and the preceding formulas one can proceed m
rigorously if the epochH = m is replaced by a somewhat later on
such that the harmonic oscillation of the curvaton field is well un
way andσ is understood to be the amplitude of the oscillation [2
Using Eq. (8) and repeating the arguments lead
to Eqs. (10) and (12), one finds that Eq. (10)
replaced by

(19)H∗ �
(
107 GeV

)5/
m4,

while Eq. (12) is replaced by

(20)H∗ �
(
1011 GeV

)2/
m.

In the physical rangeH∗ < MP the second bound i
always the stronger. Imposing Eq. (18) gives

(21)H∗ �
(
107 GeV

)
r � 105 GeV.

This is marginally compatible with low-scale inflatio
models, though it will become incompatible if futu
non-Gaussianity observations requirer � 1.

5. Expansion of the curvaton field scale after
inflation

The last possibility that I consider applies only
the curvaton is a PNGB corresponding to a symme
which acts on the phase of one or more complex fie
[16,40]. Taking the simplest case of a single comp
field Σ , the potential will be of the form

(22)V (Σ) � V0 − m2
Σ |Σ|2 + λM−n

P |Σ|4+n + · · · ,
with n � 0. The third term is the term mainly respo
sible for the stabilisation of|Σ|, which gives it a VEV

(23)v ∼ (
m2

ΣMn
P/λ

)1/(2+n)
,

and defines the curvaton field throughΣ = v exp(iσ/√
2v). The dots indicate higher powers ofΣ , which in

general are expected to break the symmetry and
erate the curvaton potential, as well as any quan
effects which do the same thing.

We now suppose that there is a couplingλ|Σ|2χ2

with negative λ, to a fieldχ which suddenly acquire
a large VEV after inflation. The negative coupling
un-typical, especially in the context of supersymme
but it can be achieved as discussed for instance in [

With such a coupling, the tachyonic massmΣ

will suddenly increase at the end of inflation. Th
will suddenly increase the VEVv by some factor
and increase bothσ and δσ by the same factor. A
we saw earlier, the increase inδσ has the effect o
weakening the bound Eq. (10) onH∗, which may
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allow low-scale inflation. Of course, there will i
general also be a sudden change in the effective m
squared of the curvaton, by an amount which depe
on the mechanism which explicitly breaks the glo
symmetry. This change may or may not cancel
the beneficial effect of the increase in the value of
curvaton field perturbation.

6. Conclusion

In the simplest form of the curvaton paradigm, n
ther the curvaton field nor the form of the curvat
potential change appreciably before the curvaton
gins to oscillate. This form is incompatible with low
scale inflation. On the other hand, the curvaton pa
digm may become compatible with low-scale inflati
if the mass of the curvaton increases sharply at the
of inflation. The same may be true if the curvaton fie
is the angular part of a complex field, whose tachyo
mass increases sharply.
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