
 Procedia Computer Science 91 (2016) 891 – 900

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ITQM 2016
doi: 10.1016/j.procs.2016.07.107

ScienceDirect

Information Technology and Quantitative Management (ITQM 2016)

An Automated Transformation Approach for Requirement
Specification

Amel Benabboua*, Safia Nait Bahloula, Philippe Dhaussyb
aLitio Laboratory, IDTW team, University Oran1 Ahmed Ben bella, BP 1524, El -M’Naour, 31000Oran, Algeria

b Lab-STICC Laboratory, MOCS team, ENSTA-Bretagne, France

Abstract

Use cases are often useful in capturing requirements by defining goal-oriented set of interactions between the system and its
environment. Formalization of precise requirement is then important for context-aware verification based on use cases
scenarios in the form of contexts. In this paper, we propose a high-level formalism for expressing requirements based on
interaction overview diagrams that orchestrate activity diagrams automatically transformed from textual use cases. Our
approach is qualified as context-aware model-checking; it supposes the availability of the system model as concurrent
communicating automata and a specification language for describing requirements. Specification of requirements is
performed through transformation phases to generate intermediate artefacts able to reduce the semantic gap between
informal and informal requirement. The transformation is based on meta-models implemented in Ecore environment,
algorithm and rules are defined using QVT Relational language, and primarily illustrated on an example.

© 2016 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of the organizers of ITQM 2016

Keyword: Model-checking, use case, context-aware verification, meta-models, Interaction Overview Diagram

1. Introduction

In design of complex systems, more time and effort are spent on verification task. Model-checking is a
verification technique based on models that describe the possible behaviours of systems. Its inputs are the
System Under study (SUS) model and a formal characterization of properties (requirements). The principle is
to explore all the model behaviours and check whether such properties are true or not. An exhaustive
exploration of the model behaviours leads to the problem of the state explosion problem [1]. The context-aware

* Corresponding author.
E-mail address: benabbou_amel@yahoo.fr.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ITQM 2016

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.07.107&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.07.107&domain=pdf

892 Amel Benabbou et al. / Procedia Computer Science 91 (2016) 891 – 900

verification has been introduced [2] as a technique to reduce this problem. The idea is based on state space
decomposition by closing the SUS with a well defined finite and acyclic environment described through
particular use cases, called context (with which the system interacts). The objective is to guide the model-
checker to concentrate its efforts on a relevant restriction rather on the whole of the model. This technique
enables at least three different decomposition axes: a) the environment can be decomposed in contexts; b)
contexts enable the automatic partitioning of the state-space into independent verification problems; c) the
requirements are focused on specific environmental conditions in which they should be satisfied.

 Based on this idea, our approach fits in a context-aware verification methodology based on a domain-
specific language called CDL (Context Description Language) used for the specification of context in the form
of use cases scenario [3]. A context C is defined as a simple MSC (Message Sequence Chart) [4] M composed
of a sequence of emission events a! and reception ones a?. CDL structure is inspired from the Use Case Chart
proposal [5] and is hierarchically constructed in three levels: Level-1 is a set of constructs which describes
hierarchical activity diagrams where either alternative (alternative/merge) or concurrency (fork/join) (parallel
par”||”), between several executions is available. Level-2 is a set of scenario diagrams organized in
alternatives (alt “+”). Each scenario is fully described at Level-3 by sequence diagrams (seq “;”). For more
description of CDL language, see the published articles [6, 7] available on http: //www.obpcdl.org. The CDL
structure is given in Fig1 as follows:

Within a CDL specification, the behaviour of each actor is considered as series of scenarios. Users are

required to identify the behaviour of each actor to formalize it in the form of a CDL scenario. This is a manual
process that requires a significant effort and good knowledge of CDL syntax and semantic. There is a semantic
gap between the textual descriptions of use cases and CDL models. Moreover, produce an exhaustive
description of events seems to be a complicated task. Although CDL has been evaluated to solve several state
explosion cases [8], however, the industrial feedback reports that it is perceived as a low-level language,
restrictive and difficult to grasp on complex models. Then, we need to express environmental scenarios at a
higher level of abstraction that maps better to the specification engineers. The new UML interaction diagrams
are suitable for high-level specifications. Interaction Overview Diagrams (IOD)s constitute a high-level
structuring mechanism that we use to synthesize scenarios. In our approach, IODs are used to: i) capture the
behaviour of the system, ii) describe the messages flow in the system and iii) describe the structural
organization of CDL.

 In this paper, we are concerned by the following contributions: 1) a process to generate in an automated

Fig. 1. An example of CDL Model: Textual and Graphical version

cdl example_cdl is // level-1 { main is { Dev1 || Dev2 || Dev3 } }
activity Dev1 is { //level-2 {
event goIni tDev ; event login 1 } ; { event ackLog ; event operate ; { { event ackOperate ; event logout1 } [] event nackOperate ; //Level-3 } [] event nackLog . . . } }

893 Amel Benabbou et al. / Procedia Computer Science 91 (2016) 891 – 900

way an activity diagram from textual use case performed by a model transformation that conforms to UML
meta-models, defined in this paper; 2) a process of transformation into IOD for each actor and using gates to
relate IODs with system boundaries to facilitate interface specification; 3)The orchestration of several actors
and related use cases are specified by the requirements engineer using IODs that are closely related to the CDL
structure and easily transformed into CDL contexts. The objective of this work is to facilitate contexts
elaboration by producing intermediate models between use cases and CDL. This allows the automatic
generation of CDL models from IODs and then assists the specification engineer to accomplish his task.

The paper is organized as follows. Section 2 is an overall presentation of the methodology our context-
aware approach. We give our meta-models and transformation rules in section 3 Orchestration and automation
aspects are given in section 4 and 5. Related work and limits are presented in section 6. Finally, a conclusion
closes the paper in section 7.

2. General overview of the context aware verification approach

In our model-checking approach, the SUS is modelled using the formal language Fiacre [9] through
automata. The surrounding environment and requirements are specified using the CDL formalism. Properties
are formalized and verified on the elaborated model by the model-checker OBP (Observer Based Prover) [14].

Our work focuses on context description based on informal use cases. The specification of these use cases
should be controlled through a set of writing rules and instantiated from use cases meta-models. This control is
performed so as to reduce ambiguity and facilitate the generation of behavioural models (CDL) from such
instances. This allows precisely synthesizing the structure of our context description formalism as activity
diagrams (with both actors and system partitions) by a set of transformation rules using interaction meta-model.
Because contexts focus on the system boundaries, the system partition is replaced by gates connected to the
actors’ interactions. IODs express use cases coordination at the higher level. The whole set of interaction
diagrams constitute the high-level specification point of view from which CDL contexts are generated. The
generated CDL models are used directly by OBP tools to assess the context part of the model submitted for
verification. The double arrows between meta-models transformations mean the ability to establish traceability
links to ease the debugging process. Fig 2 schematizes the whole context-aware verification methodology [15].

 Fig. 2. Methodology for a context-aware verification process

It’s out of the scope of this paper to illustrate the whole verification process; rather we focus on application

of our proposal of automated transformation rules to generate contexts (area squared with red in Fig 2).

894 Amel Benabbou et al. / Procedia Computer Science 91 (2016) 891 – 900

3. Context elaboration

In this section, we give our meta-models, transformation rules, resulting diagrams and generated IODs.

3.1. Meta-models

We need to have meta-models conforming to the UML meta-models in order to ease the exchange of
models produced by various UML tools. But we need also to keep the meta-models concise and sound. Hence,
our use case and activity diagram meta-models borrow as much as possible constructs and hierarchy from those
in UML 2.4.1[10]. However, we have simplified and tuned them for our own purposes. In Fig4, a use case is
associated to one or many scenarios, called BehaviourFlow, some of them are main scenarios. A
BehaviourFlow is made of an ordered sequence of Steps: StepGroup contains an ordered sequence of Step,
including other StepGroups recursively. A Step may be also TriggerStep (the condition triggering a
BehaviourFlow), IncludeStep (the step contains another BehaviourFlow), ReturnStep (a return to another Step).
A StepGroup is a LoopGroup or a ConditionalGroup. A BehaviourFlow can have extension(s), which are
alternatives that describe different steps than those in a success scenario, and it applies recursively. A child
BehaviourFlow refers to a parent BehaviourFlow and states the branching point where the extension condition
(a TriggerStep) should be checked: a single branching point or a bounded interval; in the latter case, the
condition can occur at any steps within the bounds and triggers the child BehaviourFlow.

The second meta-model that we use is that of activity diagram. In this meta-model, Activity is a

generalization of ActivityNodes and ActivityEdges for linking between them. ActivityNode is either a simple
action, a ControlNode (decision, fusion, etc) or some specialization of groups of StructuredActivity in looped
and conditional forms. An ActivitygGroup generalizes also the partition notion that gathers activities for each
actor. See Activity meta-model given as follows:

 Fig. 3. Use case Meta-model elements in Ecore Fig. 4. Use case Meta-model

895 Amel Benabbou et al. / Procedia Computer Science 91 (2016) 891 – 900

3.2. Transformation process

Transformation of textual use cases to activity diagrams is realized in three phases as follows:

1) Basics creation (BCRi rules): a use case generates an activity diagram, each actor generates a partition and
a partition for the system is added.

2) Activity node creation (ANRi rules): control nodes, structured nodes and action nodes are created from
corresponded element in use case. For example, in this phase steps are transformed to actions.

3) Activity edge creation (AERi rules): connecting activity nodes with control flows. For example, linking
initial node to the first element.

We present in a pseudo-code form, the algorithm (implemented yet in QVT-Query View
Transformation- relational language) of the transformation process where variables are typed as model
elements in the use cases meta-model (ucMM::) and the activity meta-model acMM::). A summary of rules is
given bellow, but the complete transformation list is given in [11].

 Fig. 5. Activity Meta-model elements in Ecore Fig. 6. Activity Meta-model

Algorithm Transform (uc): activity
Input uc: ucMM::UseCase //The use case to be transformed into activity
Output activity: acMM::Activity //The result generated activity from the input use case
declare

behaviourFlow : ordered sequence(ucMM::Step) // The main flow of the use case
extentionFlows : Set(ucMM::BehaviourFlow::childBehaviourFlow) // The flows extensions of the use case
groups:Set(acMM::ActivityGroup) // the group of sub activities in activity
initialNode : acMM::ControlNode::InitialNode // The initial node of the activity
partitions: Set(acMM::ActivityPartition) // The partitions of the activity
finalNode: acMM::ControlNode::ActivityFinalNode // The final node of the activity
edge: acMM::ActivityEdge // The link that rely elements in activity.

 Begin
 activity := ucMM::Activity.create // rule BCR 1: a use case generates an activity diagram
 activity.name := uc.name

896 Amel Benabbou et al. / Procedia Computer Science 91 (2016) 891 – 900

 partitions.add(CreatePartitionForEachActor(uc)) // rule BCR 2: an Actor generates a Partition
 partitions.add(CreatePartitionForSystem(uc)) // a system partition is added
 activity.partition.addAll(partitions)
 groups.add(CreateGroupFor Each BehaviourFlow(uc)) // rule BCR3 : BehaviourFlow generates an ActivityGroup

 activity.group.addAll(groups)
 initialNode: = acMM::InitialNode.create // rule BCR 4: a main BehaviourFlow generates an InitialNode
 activity.node.add(initialNode)

 For all behaviourFlowStep (stp : ucMM::Step) {

Rule ANR3: A Step in a BehaviorFlow generates, generally, an ActionNode (in the ActivityGroup generated
from the BehaviorFlow) with the following exceptions:

 if (stp.isInstanceOf(ucMM::Step) then invoke ANR3 (uc, stp, activity)

 if (stp.isInstanceOf(ucMM::TiggerStep) then invoke_rule_ ANR3.1 (uc, stp, activity) end

 Rule ANR3.1: Generates a DecisionControlNode associated to the ActivityGroup and an ActivityEdge having as
a source this DecisionControlNode and as a pending target the first ActivityNode of the ActivityGroup.

 if (stp.isInstanceOf(ucMM::StepGroup) then invoke_rule_ ANR3.2 (uc, stp, activity) end
Rule ANR3.2: A StepGroup (either a LoopGroup or a ConditionalGroup) generates a StructuredActivityNode
(either a LoopNode or a ConditionalNode), then rule ANR3 is applied recursively to the StepGroup.

 if (stp.isInstanceOf(ucMM::ReturnStep) then invoke_rule_ ANR3.3 (uc, stp, activity) end
Rule ANR3.3: The first ReturnStep to a given Step generates a FusionControlNode and an ActivityEdge
having as source this FusionControlNode and as target the ActivityNode generated from the given Step;
another ReturnStep to the same Step does not generate anything else.

 if (stp.isInstanceOf(ucMM::IncludeStep) then invoke_rule_ ANR3.4 (uc, stp, activity) end
Rule ANR3.4: The first IncludeStep to a given BehaviorFlow generate a FusionControlNode and an
ActivityEdge having as source this FusionControlNode and as a target the first ActivityNode from the Activity
Diagram; another IncludeStep to the same BehaviorFlow does not generate anything else.

 }
 For all extentionFlows {invoke _rule_ANR1

Rule ANR1: Generate FusionControlNode for the ParentBehaviorFlow (from a DepartureStep m to an ArrivalStep
n) at the first place of the ActivityGroup generated from the c h i l d BehaviorFlow and an ActivityEdge having as
source this FusionControlNode and as a pending target the second ActivityNode of this ActivityGroup.

 For all extentionFlowsStep stp:ucMM::Step invoke _rule_ANR.2

Rule ANR2: If N extension, generate N DecisionControlNode for each step in the interval [m, n] of the
p arentBehaviourFlow, N (n-m+1) DecisionControlNode are generated in total.
G e n e r a t e N (n-m+1) ActivityEdge, hence each having as source its corresponding
DecisionControlNode and as a pending target the first FusionControlNode of the ActivityGroup generated
from the c h i l d BehaviorFlow).
}

ResolvePending(uc, activity) invoke _rule_ANR4

 Rule ANR4: Resolve all pending targets of any ActivityEdge thanks to the completion of the ActivityGroup.

finalNode := ucMM::ActivityFinalNode.create // Apply rule ANR5: generate an ActivityFinalNode for each BehaviourFlows
that ends (Ends=true) such as each ActivityFinalNode is added to its corresponding Activity- Group
activity.node.add(finalNode)
invoke_rule_ENR (uc, activity) // rules AER
edge : = createEdge(uc, activity)

AER1: Generate an ActivityEdge having as source the InitialNode and as target the first ActionNode from the
ActivityGroup generated from such BehaviourFlow.

897 Amel Benabbou et al. / Procedia Computer Science 91 (2016) 891 – 900

3.3. A running example

We use a famous concurrency problem to illustrate a typical model-checking process to introduce our
proposal: Lamport’s problem of two neighbours Alice and Bob that share a yard in an exclusive manner
[12]. This problem is presented within the following algorithm:

Alice : { while (true) flagAlice = up ; while (flagBob == up) skip ; catInYard ; flagAlice = down ; }
Bob : while (true) { flagBob = up ; { while (flagAlice == up) flagBob = down ; while (flag Alice==up) skip ; flagBob = up ; } dogInYard ; flagBob = down ; }

According to our context-aware verification approach, we need the following artefacts: i) the system is
translated in the form of automata. ii) Contexts are given through use cases for example “Alice’s cat comes
home” (given in Fig7). iii) A property to be checked, formalized using CDL, for instance the mutual exclusion
property of the simultaneous existence of Alice’s cat and Bob’s dog in the yard.

AER2: Generate an ActivityEdge having as target its ActivityFinalNode and as source the last ActivityNode of the
ActivityGroup generated from such BehaviourFlow.

AER3: generate one or N ActivityEdge for linking together the generated DecisionControlNode. The N-th
ActivityEdge links the last DecisionControlNode to the FusionControlNode associated with the Step in question if
this FusionControlNode exists else to the ActivityNode generated from such Step (either an ActionNode or a
StructuredActivityNode)

AER4: For each ActionNode generated from a non-ending Step (being not followed by a ReturnStep or End),
generates an ActivityEdge having as source the ActionNode and as target, either the next ActionNode if no
DecisionNode or FusionControlNode are associated to, or the first of these ControlNodes.

return activity
End

898 Amel Benabbou et al. / Procedia Computer Science 91 (2016) 891 – 900

After applying our transformation rules on the running example, we show in Fig 8 the generated activity

diagram as follows:

Fig. 8. The generated activity diagram for “Alice’s Cat goes home” use case

Fig. 7. “Alice’s cat comes home” use case and a part of generated XMI file within Ecore environment

<UC:UseCase
 xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:UC="http://fr.ensta.amel.usecase"
 xsi:schemaLocation="http://fr.ensta.amel.usecase
usecase.ecore"
 Name="Alice's cat comes home">
 <behavioFlow
 ends="true"
 FlowName="Main"

branchStep1="//@behavioFlow.0/@childBehaviorflow.2/@step.1"
 Type="main">
 <step xsi:type="UC:TriggerStep"
 Branching="true"
 Statement="Alice's cat asks for coming home"
 performedBy="//@actor.0"
 nextStep="//@behavioFlow.0/@step.2"/>
 <step Branching="true"
 Statement="Alice's cat asks for coming home"

boundedBehaviorFlow="//@behavioFlow.0/@childBehaviorflow.2"
 performedBy="//@actor.0"/>
 <step Statement="Alice opens the door to her cat"

boundedBehaviorFlow="//@behavioFlow.0/@childBehaviorflow.2"

Main success scenario
1. Alice's cat asks for coming home.
2. Alice asks the system to lower her flag.
3. Alice asks the system to lower her flag.
4. The system lowers Alice’s flag.

The use case ends.

Extensions:
 1a. Phone call

1. The phone rings.
2. The system provides Alice with a phone call.
3. Alice talks on the phone.

Return to step 2.

 2a. Silly cat
1. Alice’s cat goes back to the yard.

The use case ends.

Extensions
 1-3a. Cancelling

1. Alice cancels the use case.
 The use case ends.

899 Amel Benabbou et al. / Procedia Computer Science 91 (2016) 891 – 900

3.4. Specification of the system boundaries and Orchestration of activity diagrams with IODs

The resulting activity diagrams are transformed into IODs, focusing only on the actor’s partition and its
interactions with the system. To do this, we need to use boundaries to establish the interface (focusing on
exchanged messages) between the system and its environment. Our IODs are established as follows: first, we
recommend writing actions with simple sentences having a subject, a verb, and eventually an object. Actions
without the system as a subject or an object (such as Alice opens the door to her cat) are out of the scope and
will be discarded. Compound actions (such as Alice releases her cat and warns the system) have to be split in
simple actions (such as Alice releases her cat - out of the scope - and Alice warns the system) - within the
scope). When the simple sentence rule is applied, it is easy to process ActionNodes and recognize if the system
is a subject or an object and eventually discard the ActionNode from the system scope. The same rule applies to
DecisionControlNodes: if the condition includes any reference to the system, the DecisionControlNode will be
kept, else discarded. Any incoming or outgoing ActivityEdges to a discarded ActivityNode (Action or Decision)
will be discarded too, and the pending ActivityEdge reconnected to the following ActivityNode (that might be
discarded later, forcing the ActivityEdge to be reconnected). At the end, a set of nodes are discarded. Moreover,
there are ActivityEdges crossing the boundary and because the system partition is not included, such
ActivityEdge will be cut and replaced by a pair of related gates, one is the actor’s model and another is the
system model. The IOD generated from the activity diagram of the use case “Bob releases a dog” is given in
Fig. 9.

 Fig. 9. IOD corresponding to the use case “Bob releases a dog” and System Boundaries

After this step, the specification engineer has to identify and gather all gates pair in the Interface

Requirements Specification Document. We expect to have an interface specification including types, messages
and events. For our purposes, the interface specification has to be abstracted as a list of UML Messages whose
semantic is simply the trace <sendEvent, receiveEvent>.

900 Amel Benabbou et al. / Procedia Computer Science 91 (2016) 891 – 900

The last step towards elaborating contexts is to organize all interactions in higher-level diagrams. Our
second type of IODs fits for this purpose. Such IODs focus on the overview of the flow of control where the
nodes are (inline) Interactions or InteractionUses. The specification engineer is free to orchestrate the
interactions of all actors from different system viewpoints or according to his engineering needs. He should be
aware of the structure of the CDL language: using concurrency at the higher level, corresponding to CDL
Level-1 and fully describe scenarios by sequence diagrams, corresponding to CDL Level-3, for example.
With these recommendations, there will be no difficulties to generate CDL diagrams from these IODs.

4. Conclusion and future work

We have presented an overview of a part of a methodology aiming to facilitate formal verification from
informal requirements. Thanks to elaboration and transformation activities, the semantic gap between informal
and formal requirements is reduced and engineers are helped towards formal verification. We have
implemented our rule transformation and applying it on a famous academic example. However, what it remains
in the future is the validation purpose on an industrial case study to check completeness and correctness of our
transformation rules. We will also invest the theoretical soundness of the transformation and our team started a
research thread using the Coq theorem prover in order to express assertions on the transformations and checks
proofs on. As future work, we plan to continue towards the fully automation of the subsequent phases in the
verification methodology presented in this paper until the automatic generation of CDL models.

References

[1] PELANEK, R. 2009." FIGHTING STATE SPACE EXPLOSION: REVIEW AND EVALUATION". IN FORMAL METHODS FOR

INDUSTRIAL CRITICAL SYSTEMS, VOLUME 5596, PAGES 37{52. SPRINGER BERLIN HEIDELBERG, 2009
[2] Alur, R., Brayton, R., Henzinger, T., Qadeer, S. and Rajamani, S. 1997." Partial-order reduction in symbolic state space exploration".

In Computer Aided Veri_cation, volume 1254, pages 340_351. Springer Verlag, LNCS, 1997.
[3] Dhaussy, P. and Roger, J. "CDL (Context Description Language) : Syntax and Semantics". Rapport technique, ENSTA- Bretagne,

2011. 37
[4] Hassine, J.2005. "An ASM operational semantics for use case maps. In Requirements Engineering "2005. Proceedings. 13th IEEE

International Conference on, pages 467–468, 2005. 22
[5] Whittle, J. 2006. "Specifying precise use cases with use case charts". In Proceedings of the 2005 International Conference on Satellite

Events at the MoDELS, pages 290{301. Springer-Verlag, 2006.
[6] Dhaussy, P. Boniol, F. Roger, J. and Leroux, L. 2012. Improving model-checking with context modeling. Advances in Software

Engineering, ID 547157:13 pages, 2012.
[7] Dhaussy, P., Roger, J., Leroux, L. and Boniol, F. "Context Aware Model Exploration with OBP tool to Improve Model-Checking".

ERTS'12, February 1-3, 2012.
[8] Dhaussy, P., Pillain, P., Creff, S., Raji ,A., Le Traon, Y. and Baudry, B. 2009 "Evaluating context descriptions and property definition

patterns for software formal validation". In 12th IEEE/ACM conference on Model Driven Engineering Languages and Systems
(Models'09), volume 5795, pages 438_452. Springer-Verlag, LNCS, 2009.

[9] Berthomieu, J., Bodeveix, JP., Farail, P., Filali, M., Garavel, H., Gaufillet, P., Lang, F. and .Vernadat, F. 2008." Fiacre:
an intermediate language for model verification in the topcased environment". In ERTS 2008. 2008.

[10] OMG UML. “OMG unified modeling languageTM, infrastructure". Technical report, Object Management Group,
(http://www.omg.org/spec/UML/)

[11] Lamport, L. 1983. "invited address solved problems, unsolved problems and non-problems in concurrency". In Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing, pages 1{11. ACM, 1984.

[12] Benabbou A. 2015. "Formalisation des interactions et des exigences pour la génération des modèles cdl "- partie 1 : Contextes.
Technical Report 2015-03-01, ENSTA Bretagne.

[13] Mustafiz, S., Kienzle, J., and Vangheluwe, H. 2009. "Model transformation of dependability-focused requirements models". In ICSE
Workshop on Modeling in Software Engineering, MISE '09, pages 50{55. 2009.

[14] Language and Tools set website: http://www.obpcdl.org.
[15] Amel Benabbou, Safia Nait Bahlou, Philippe Dhaussy, Context aware approach for formal verification, EAI endorsed Transactions,

Context-aware Systems and applications.3(7):e2, 2016.

