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Abstract
Anti-angiogenic therapy benefits many patients with advanced renal cell carcinoma (RCC), but there is still a need for
predictive markers that help in selecting the best therapy for individual patients. MicroRNAs (miRNAs) regulate cancer
cell behavior and may be attractive biomarkers for prognosis and prediction of response. Forty-four patients with RCC
were recruited into this observational prospective study conducted in nine Spanish institutions. Peripheral blood
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samples were taken before initiation of therapy and 14 days later in patients receiving first-line therapy with sunitinib
for advanced RCC. miRNA expression in peripheral blood was assessed using microarrays and L2 boosting was
applied to filtered miRNA expression data. Several models predicting poor and prolonged response to sunitinib were
constructed and evaluated by binary logistic regression. Blood samples from 38 patients and 287 miRNAs were eval-
uated. Twenty-eight miRNAs of the 287 were related to poor response and 23 of the 287 were related to prolonged
response to sunitinib treatment. Predictive models identified populations with differences in the established end
points. In the poor response group, median time to progression was 3.5 months and the overall survival was 8.5,
whereas in the prolonged response group these values were 24 and 29.5 months, respectively. Ontology analyses
pointed out to cancer-related pathways, such angiogenesis and apoptosis. miRNA expression signatures, measured
in peripheral blood, may stratify patients with advanced RCC according to their response to first-line therapy with
sunitinib, improving diagnostic accuracy. After proper validation, these signatures could be used to tailor therapy in
this setting.

Neoplasia (2012) 14, 1144–1152

Introduction
Renal cell carcinoma (RCC) accounts for 3% of all malignant tumors
and affects more than 12,000 people every year in the United States
[1]. Most patients with localized disease can be cured with surgery,
but less than 20% of patients with advanced disease remain alive at
5 years [2,3]. Anti-angiogenic therapy has revolutionized therapy for
metastatic disease, so that life expectancy has risen from 13 to 15 months
in the year 2002 to 26 months nowadays [4–6]. Available options for
first-line therapy include sunitinib [7], pazopanib [8], and the combi-
nation of interferon plus bevacizumab [9,10], as well as temsirolimus
for poor prognosis patients [11].
Although most patients benefit from new drugs, some still have

early progression [11–29% of patients treated with vascular endothelial
growth factor (VEGF) target therapy exhibit progressive disease (PD) as
best response] and suffer unnecessary toxicity. For this reason, recent
studies have focused on the identification of factors that predict drug
response [12,13]. These studies have analyzed a limited number of
markers and their results can be considered preliminary, so further
refinement is needed in the field.
MicroRNAs (miRNAs) are a class of small noncoding RNAs that

control gene expression by targeting mRNA [14]. miRNAs play an
important role as regulators of gene expression in tumorigenesis by
controlling many biologic processes in growth, development, differen-
tiation, and apoptosis. miRNA expression profiles have been suggested
as a promising new class of biomarkers for tumor diagnosis [15–17],
prognosis [18], and prediction of response to different drugs [19]. Pre-
dictive markers are particularly interesting to optimize therapy. In the
present study, we assessed miRNA expression in peripheral blood of
patients receiving sunitinib for advanced RCC, estimating diagnostic
accuracy of these miRNAs in the prediction of sunitinib response.

Materials and Methods

Patient Selection
Eligible patients were 18 years old or above, with a pathologically

confirmed diagnosis of RCC, having locally or distant advanced dis-
ease who has not received any systemic treatment for kidney cancer,
including cytokines, and who were scheduled for sunitinib in a daily

practice setting. Peripheral blood samples were taken before initiation
of therapy and 2 weeks later. Eligible patients should remain at least
14 days on therapy to be considered for analysis. This study was
approved by an Institutional Ethics Review Board, and written and
signed consent was obtained in all cases.

Study Design
Patients were prospectively entered into this multiinstitutional

SUT-IIG9 study performed in nine Spanish Hospitals. Drug schedule,
policy for dose reductions or dose delay, and timing for radiologic
assessments were made in accordance with current, local practice guide-
lines. Demographic and clinical data were recorded on specific case
record forms and periodically reviewed by an external monitor. Sam-
ples were anonymized and molecular analysis was performed blinded
to clinical data. Study recruitment started on 26 November 2007
and finished on 17 September 2010, and the database was closed for
follow-up on 17 May 2011. The authors designed the study, analyzed
and held the data, wrote the manuscript, made the decision to submit
the manuscript for publication, and vouch for the accuracy and com-
pleteness of the data and analyses. Prospective diagnostic study was ac-
cording to Standards for Reporting of Diagnostic Accuracy guidelines.

Total RNA Extraction
Leukocytes were captured using the LeukoLOCK System and stabi-

lized using RNAlater (Ambion, Life Technologies, Carlsbad, CA). Total
RNA was extracted with the miRNeasy Mini Kit (Qiagen, Hilden,
Germany) following the manufacturer’s protocol. Purified RNA quality
control for quantity and purity was assessed using an ND-1000 Nano-
Drop spectrophotometer (NanoDrop Technologies, Wilmington, DE).

miRNA Arrays
Samples were hybridized to Human miRNA Microarray Release

14.0, 8x15K (Agilent Technologies, Santa Clara, CA). MicroRNA
Labeling Kit (Agilent Technologies) was used to label RNA. Basically,
100 ng of total RNA was dephosphorylated and cyanine 3–cytidine
biphosphate (pCp) molecule was ligated to the 3′ end of each RNA
molecule by using T4 RNA ligase. One hundred nanograms of cyanine
3–labeled RNA was hybridized for 20 hours at 55°C in a hybridization
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oven (G2545A; Agilent Technologies) set to 20 rpm in a final concen-
tration of 1× GE blocking agent and 1× Hi-RPM hybridization buffer,
according to the manufacturer’s instructions (miRNA Microarray
System Protocol; Agilent Technologies). Arrays were washed according
to the manufacturer’s instructions (miRNA Microarray System Proto-
col; Agilent Technologies), dried out using a centrifuge at 1000 rpm
for 2 minutes, and scanned at 5-μm resolution on an Agilent DNA
Microarray Scanner (G2565BA; Agilent Technologies) equipped with
extended dynamic range (XDR) software. Images provided by the
scanner were analyzed using Agilent’s software Feature Extraction
version 10.7.3.1. Data were normalized using Variance Stabilization
Normalization [20]. Only miRNAs with an average intensity over
the 20th percentile of the overall intensities, a detectable signal in at
least 15 of the 76 samples hybridized, and a normalized mean expres-
sion of more than 0.9 were considered for further analysis.

Predictive Models
Predictive models were built independently for poor response and

prolonged response. L2 boosting for classification with classic Akaike
information criterion (AIC) based on the binomial log likelihood for
stopping the boosting iteration algorithmwas applied to filtered miRNA
expression data obtained from basal blood samples [21] to identify vari-
ables related to clinical information. Twelve predictive models for one,
two, three, or four variables were built using a binary logistic regression
with the Fisher scoring as an optimization technique. Predictive accu-
racy for calibration was assessed by the Hosmer-Lemeshow test [22].
Discriminant power was evaluated by area under the receiver operating
characteristic (ROC) curve (AUC) of data training and leave-one-out
cross-validated (LOOCV) ROC curves and C index [23]. A cutoff of 0
was used for every model. A subgroup analysis according to Memorial
Sloan-Kettering Cancer Center (MSKCC) prognostic scale was per-
formed. One point was assigned for diagnosis-to-treatment interval <
1 year, Karnofsky performance status (KPS) < 80, low hemoglobin,
elevated serum calcium, elevated lactate dehydrogenase (LDH) 1.5 times
the upper limit of normal; zero points constituting the favorable prog-
nosis group, one or two points the intermediate prognosis group, and
three or more points the poor prognosis group [24].

Statistical Analyses
We defined progression-free survival (PFS) as the time between the

first day of treatment with sunitinib and the date of radiologic PD,
clear clinical evidence of PD, or death. Patients who had not prog-
ressed at database closure were censored at final follow-up. If the date
of PD was unknown, we censored PFS at the last tumor assessment.
Overall survival (OS) was defined as the time between the first day of
sunitinib treatment and the date of death or last date of follow-up.
Objective response was assessed by physicians, according to response
evaluation criteria in solid tumors (RECIST), and classified as com-
plete response, partial response, stable disease, or PD. Normalized
expression values and fold change values were assessed by nonpara-
metric tests: the Wilcoxon test to compare two paired groups, the
Mann-Whitney test to compare two unpaired groups, and the Kruskall-
Wallis test to compare three unmatched groups. Survival curves were
estimated using Kaplan-Meier analysis and compared using the log-rank
test. The primary end point was time to disease progression, defined as the
time from start of therapy until the time of documented radiologic pro-
gression of the disease, clear clinical progression of the disease, or death
from cancer. OS was calculated from the start of therapy until the date
of death or last follow-up. All statistical analyses were performed using

SAS 9.1 and R(4) with “rdesign” and “mboost” packages. The relation-
ship between OS, the MSKCC prognostic profile, and the poor
response models was analyzed using the log-rank test and the Cox
proportional hazards model. All tests were two-sided.

Model Validation Using Reverse Transcription–Quantitative
Polymerase Chain Reaction

Expressions from miRNAs included in poor response model 3.3 and
prolonged response model 3.2 were evaluated using reverse transcription–
quantitative polymerase chain reaction (RT-qPCR). cDNA synthesis
and real-time qPCR of miR-192, miR-193a-5p, miR-501-3p, miR-
410, miR-1181, and miR-424 were performed using the miRCURY
LNA Universal RT microRNA PCR system (Exiqon, Vedbaek,
Denmark) according to the manufacturer’s instructions. The cDNA

Table 1. Clinical Data.

Number of Patients (%)

Gender
Men 27 (71)
Women 11 (29)

Age
Range 47–86
Median 66

Histologic subtype
Clear cell carcinoma 27 (71)
Papillary 4 (10)
Other 7 (19)

Metastasis location
Lung 23 (61)
Bone 11 (29)
Lymph nodes 17 (45)
Other 13 (34)

Best response
Complete 7 (19)
Partial 10 (26)
Stable 10 (26)
Progression 11 (29)

MSKCC prognostic criteria
Good 3 (8)
Intermediate 26 (68)
Bad 9 (24)

ECOG performance status
0 21 (55)
1 13 (34)
2 3 (8)
ND 1 (3)

Prior nephrectomy
Yes 28 (74)
No 10 (26)

Time from diagnosis to treatment
≥1 year 14 (37)
<1 year 24 (63)

No. of metastatic sites
≤1 14 (37)
<2 16 (42)
≥3 8 (21)

Hemoglobin
≥LLN 19 (50)
<LLN 18 (47)
ND 1 (3)

LDH
≤1.5 × ULN 23 (60)
>1.5 × ULN 14 (37)
ND 1 (3)

Corrected calcium (mg/dl)
≤10 30 (78)
>10 4 (11)
ND 4 (11)

ECOG, Eastern Cooperative Oncology Group; LLN, lower limit of normal; LDH, lactate dehydro-
genase; ULN, upper limit of normal; ND, not described.
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products were subsequently diluted 80-fold, and 4 μl was used in 10 μl
of PCR reactions and quantified using SYBR Green–based real-time
PCR and individual miRNA LNA primer sets. The qPCRs were run
on a 7900HT thermocycler (ABI; Applied Biosystems, Life Technolo-
gies, Carlsbad, CA) using the thermal cycling parameters recommended
by Exiqon. Raw C t values were calculated as recommended by Exiqon
using the RQ manager software v1.2.1 (ABI) with manual settings for
threshold and baseline. Relative expression level of each target gene was
expressed as ΔCq = Cqref − Cqtarget. Normalization was performed us-
ing the mean expression value of two housekeeping miRNAs (mi-103
and miR-191). As predictive models for poor response and prolonged
response were defined using microarrays, normalized gene Cq values
were z-score transformed and scaled as previously described [25].

Analysis of miRNA Targets
Validated targets of miRNAs related with sunitinib response were

evaluated using the Validated Target module of miRWalk [26]. Gene
ontology analyses including pathways, biologic process, and molecular
functions of identified genes were performed in PANTHER [27,28].
miRNA expression in kidney samples was assessed using available
data [29].
This work fulfills the Standards for Reporting of Diagnostic Accuracy

recommendations.

Results
At the moment of the molecular analysis, 44 consecutive patients
were included in the study. Two of them were lost to follow-up with-
out response evaluation, three did not have the second blood sample,
and one died before receiving the study drug. Table 1 provides clinical

data of the remaining 38 patients. Twelve patients had a progression
before 6 months and constitute the poor response group; 10 patients
did not have a progression in the first 18 months and were included in
the prolonged response group, whereas 16 patients were allocated to
the moderate response group. Cutoff point at 6 months was chosen
because this was the median time to progression of the control group
in the pivotal phase III trial of sunitinib [6].

miRNAs Related with Response to Sunitinib Treatment
Peripheral blood samples obtained before initiation of therapy

with sunitinib and 14 days later were used to assess expression values
of miRNAs. After data filtering, 287 of 939 miRNAs were consid-
ered for subsequent analysis. The data discussed in this publication
have been deposited in the National Center for Biotechnology Infor-
mation’s Gene Expression Omnibus and are accessible through Gene
Expression Omnibus Series accession number GSE32099 [30]. Com-
parison of the poor response and response groups found significant
differences in the expressions of 28 miRNAs of the 287 evaluated
when L2 boosting was applied to filtered miRNA expression data
obtained from basal blood. Additionally, L2 boosting identified 28
variables related to prolonged response to sunitinib. Fourteen of these
variables corresponded to miRNAs found in the basal blood sam-
ples, four of them were detected in day 14 blood samples, and the
remaining 10 variables corresponded to significant changes in miRNA
expression between basal and day 14 samples (Table 3).

Predictive Models for Poor Response to Sunitinib
Twelve predictive signatures of poor response to sunitinib were built

using a binary logistic procedure. The Hosmer-Lemeshow test showed
adequate calibration accuracy for all signatures. Discriminant power

Table 2. Twenty-eight miRNAs Related to Response of Sunitinib, Identified by L2 Boosting from the 287 miRNA Basal Expression Values Evaluated.

miRNA Boosting
Coefficient

4.1 4.2 4.3 3.1 3.2 3.3 2.1 2.2 2.3 1.1 1.2 1.3

hiv1-miR-H1 0.0181
hsa-miR-125a-5p 0.0167 x
hsa-miR-1308 −0.0385
hsa-miR-139-3p 0.0343 x
hsa-miR-141 0.0195
hsa-miR-145 0.0133
hsa-miR-150 0.0173
hsa-miR-181a* −0.0703 x x x x x
hsa-miR-1825 −0.0988
hsa-miR-192 −0.0045 x x x
hsa-miR-193a-3p −0.0279 x
hsa-miR-193a-5p −0.0558
hsa-miR-199a-5p −0.0565
hsa-miR-29a 0.0196
hsa-miR-30b* 0.0743 x
hsa-miR-31 0.0060
hsa-miR-34a −0.0531 x x
hsa-miR-362-3p 0.0105 x x
hsa-miR-370 0.0138
hsa-miR-501-3p 0.0554 x x x x x x x
hsa-miR-505* −0.1370 x x x
hsa-miR-516a-5p 0.0369 x x
hsa-miR-564 0.0089 x
hsa-miR-582-5p 0.0037 x
hsa-miR-624* −0.0043
hsa-miR-629 −0.0017
hsa-miR-659 0.0184
hsa-miR-933 0.0443

Twelve predictive models were established; x indicates that miRNA is included in the model.
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of the predictive signatures was assessed using different criteria (Fig-
ure W1). Complete analyses can be found in the Supplementary
Materials. Signatures with two or more miRNAs had better discrimina-
tive power than single mRNAs. Table 2 shows the miRNAs included
in each predictor. Figure 1 displays expression values of some miRNAs
included in models that predicted a poor response to sunitinib.
Six-month PFS was 85% for patients included in the response group
by, at least, four signatures and 20% for patients in the poor re-
sponse group (Figure 1 and Tables 3 and W1). In the poor response
group, median time to progression was 3.5 months and the OS was
8.5 months, whereas in the prolonged response group these values
were 14 and 24 months, respectively.

Predictive Models for Prolonged Response to Sunitinib
Twelve predictive signatures of prolonged response to sunitinib

were built. Models with more than one miRNA harbor more dis-
criminative power than just one miRNA (Figure W2). Complete
analyses can be found in the Supplementary Materials. Figure 2 dis-
plays expression values of some miRNAs included in models that
predicted a prolonged response. Eighteen-month PFS was 90% for
patients included in the prolonged response group by, at least, five
signatures and 6.67% for patients in the moderate response group
(Figure 2 and Table W1). In the moderate response group, median
time to progression was 11 months and the OS was 23 months,

whereas in the prolonged response group these values were 24 and
29.5 months, respectively.

Predictive Model Validation
Expressions from miRNAs included in poor response model 3.3

and prolonged response model 3.2 were evaluated using RT-qPCR
in 37 of 38 patients with available RNA (Table W4). Despite plat-
form change (from microarrays to RT-qPCR), both poor response
model 3.3 and prolonged response model 3.2 still harbor predictive
power (Figure W7).

OS Prediction
MSKCC prognostic scale was calculated for each patient [31]. The

proportion of patients in the favorable, intermediate, and poor
groups was 8%, 68%, and 24%, respectively. There were no statis-
tical differences in OS between the groups (P = .972). There was no
relation between the MSKCC prognosis profile and OS in the uni-
variate analysis (P = .935). Poor response model 3.3, which showed
best statistical significance, assigned 11 and 27 patients to the poor re-
sponse and response groups, respectively. Hazard ratio (HR) between
groups was 0.385 [95% confidence interval (95%CI) = 0.161–0.963,
P = .032]. The multivariate analysis demonstrated that the poor
response model 3.3 was related to OS (HR = 0.463, IC95 = 0.219–
0.979, P = .044) but not the MSKCC prognostic profile (P = .897).

Figure 1. (A) Kaplan-Meier analyses, (B) ROC curves for model and LOOCV, and (C) expression of miRNAs included in the poor response
model 3.3.
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Gene Ontology and Metadata Analyses
An overview of genes regulated by miRNAs included in poor re-

sponse and prolonged response models was obtained using the Val-
idated Target module of miRWalk (Table W2). Gene ontology
analyses of these genes were performed using PANTHER database.
Most genes target cancer-related pathways such as angiogenesis, p53,
Ras, PDGF, apoptosis, and so on (Figure W3). There is also an in-
creased presence of metabolism and signal transduction–related genes
(Table W3, online only). Poor response model 3.3 miRNAs (miR-
192, miR-193a-5p, miR-501-3p) and prolonged response model 3.2
miRNAs (miR-410 before treatment and miR-1181 and miR-424*
fold change) target genes related with KEGG Renal Cell Carcinoma
pathway (Figures W4 and W5 and Table W2). The presence of
miR-192 and miR-193-5p in normal and tumor kidney samples
was confirmed using previously available data (Figure W6) [29].

Discussion
In the present study, the expression of miRNA in the peripheral blood
of patients receiving sunitinib for advanced RCC was explored. We
combined expression values of several miRNAs to build models related
to poor response (progression before 6 months) or prolonged response
(progression after 18 months) to this drug. The poor response group is
particularly relevant from the clinical point of view, because it might help
in identifying patients towhom alternative or even experimental therapies
should be offered.
Most promising models were validated using RT-qPCR. Despite

the platform change (from microarrays to qPCR), both poor response
3.3 and prolonged response 3.2 models maintained predictive power
(Figure W7). This is remarkable, as long as low inter-platform re-

producibility among different miRNA platforms has been previously
reported [32].

Previous studies have found markers that predict a response to
sunitinib in patients with advanced RCC. Hypertension is associated
with improved outcome [33], whereas the presence of bone metastases
or high tumor burden has a negative impact on survival [34,35]. Some
studies have focused onmolecular biomarkers of response. For instance,
strong expression of VEGF receptor 2 is associated with increased PFS
[36], and serum levels of VEGF are related to PD and OS prognosis
[37–39]. Other markers such as the level of circulating bone marrow–
derived progenitor cells [40], the number of circulating endothelial cells
[41], and the levels of brain natriuretic peptide, apolipoprotein A2
(ApoA2), and serum amyloid alpha (SSA) have been reported to affect
the outcome in this population [42]. Finally, polymorphisms in
CYP3A5, NR113, and ABCB1 (genes affecting the pharmacokinetics
of sunitinib) are associated with PFS [43].

Information about the role of miRNAs is more limited in this field.
A number of studies link miRNAs with cancer, as they regulate tran-
scription factors and can eventually alter apoptosis, cell cycle, and cell
migration [15]. miRNA expression patterns vary between clear cell
carcinoma and normal kidney [15–17,44], among tumors of different
anatomic location and also among multiple tumor subtypes within a
single location [45]. miRNA patterns can distinguish between renal
cancer subtypes [46] and have been found to correlate with prognosis
in patients with RCC [45,47]. It has been suggested that miRNA-106b
might be used to predict early metastasis after nephrectomy [48]. With
regard to sunitinib, the drug has effects on miRNA expression in mice
models [49].

There are previous studies of gene expression [50,51] and miRNA
[52] profiling in peripheral blood of patients with RCC. Our study is

Table 3. Twenty-eight Variables Related to Prolonged Response to Sunitinib Treatment Identified by L2 Boosting from 287 miRNA Basal Expression, miRNA after Treatment Expression, and miRNA
Fold Change.

miRNA Sample Boosting Coefficient 4.1 4.2 4.3 3.1 3.2 3.3 2.1 2.2 2.3 1.1 1.2 1.3

hsa-miR-1228 Basal −0.1594 x x
hsa-miR-1267 Basal 0.0136
hsa-miR-1290 Basal −0.1408 x x
hsa-miR-136 Basal 0.0635 x x
hsa-miR-199a-3p Basal −0.0248
hsa-miR-199a-5p Basal −0.0033
hsa-miR-221 Basal −0.0999 x
hsa-miR-31 Basal 0.0336 x
hsa-miR-34a Basal −0.0877 x x
hsa-miR-371-5p Basal 0.0060
hsa-miR-376a Basal 0.0037 x
hsa-miR-410 Basal 0.0277 x x x
hsa-miR-659 Basal 0.0112
hsa-miR-923 Basal −0.0263
hsa-miR-1274a After −0.0262 x x x
hsa-miR-193a-5p After −0.0542
hsa-miR-31 After 0.0360 x
hsa-miR-99b After −0.0173
hsa-miR-1181 Change −0.0227 x x x x
hsa-miR-126* Change −0.0136 x
hsa-miR-1267 Change 0.0015
hsa-miR-193a-5p Change 0.0037 x
hsa-miR-198 Change −0.0250 x
hsa-miR-410 Change 0.0053
hsa-miR-424* Change −0.0367 x x x x x
hsa-miR-564 Change −0.0061
hsa-miR-630 Change −0.0054
hsa-miR-659 Change 0.0036

Twelve predictive models were established; x indicates that miRNA is included in the model.
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the first that assess the expression of miRNAs in this tissue to predict
response to sunitinib. Although we did not assess the expression of these
miRNAs in primary tumors, some of them are detectable in both nor-
mal and tumor kidneys according to the literature (Figure W6) [29].

Taken together, the aberrant expression of the miRNAs in the
peripheral lymphocytes or monocytes of advanced RCC patients could,
to some extent, reflect the sensitivity to sunitinib therapy, which is
compatible with the predicted canonical pathways for these miRNAs,
including angiogenesis, apoptosis, p53, Ras, and so on. Additionally,
some of the targeted genes are directly related with the genesis and
development of RCC (Figures W4 and W5). In any case, more studies
are needed to elucidate if changes in peripheral blood miRNA expres-
sion have any relation with tumor susceptibility or simply reflect host
features affecting drug efficacy.

Our predictive model was also related to OS, which could be ex-
pected considering that patients with no response to first-line therapy
have very limited therapeutic options. The MSKCC prognostic scale
did not detect OS differences in our population, as it has been shown
previously [53], because most patients had a good performance status,
which is a major determinant of prognosis.

Limited size is an obvious limitation in our series, which could have
led tomodel overfitting.Moreover, an independent validation is needed,
because miRNAs may vary depending on the population used for
the discovery phase. Regardless of these limitations, our point was to
demonstrate that a small subset of miRNAs could be informative in

peripheral blood. miRNA field is under development, so significant
advances are likely to happen in the near future.

Considering the number of available options, treatment recom-
mendations for advanced RCC must be adapted and tailored to each
individual patient. Peripheral blood offers a noninvasive alternative to
assess predictive markers. miRNA expression profiling in peripheral
blood may identify patients that will not benefit from sunitinib therapy
before treatment. These patients should receive an alternative fist-line
therapy or even be included in clinical trials. However, miRNA expres-
sion profiling identified patients with moderate benefit of sunitinib
therapy. This population is suitable to explore new therapeutic com-
binations including sunitinib.

In conclusion, peripheral blood miRNA signatures could be em-
ployed to personalize therapy for advanced RCC, both in the selection
of existing drugs and in the development of new drugs.
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Figure W1. Discriminant power of poor response predictive sig-
natures. λ, correlation shrinkage intensity; AIC, Akaike information
criterion; c, Harrell’s bias-corrected concordance index; AUC, area
under the ROC curve; AUC-LOOCV: leave-one-out cross-validated
area under the ROC curve. All variables are referred to the right
y-axis except for AIC. AUC and c partially overlap.

Table W1. PD-Free Survival in Poor and Prolonged Response Models.

Model %PDFS 6 m PoorR %PDFS 6 m Response HR 95% CI

PoorR 4.1 20 85.7 5.64 1.925–16.54
PoorR 4.2 16.6 92.3 2.87 1.14–7.22
PoorR 4.3 10 89.3 18.54 5.21–66.01
PoorR 3.1 30 82.14 1.89 0.75–4.71
PoorR 3.2 33.33 79.31 1.81 0.69–4.73
PoorR 3.3 27.27 85.18 2.76 1.11–6.87
PoorR 2.1 25 80 3.74 1.24–11.35
PoorR 2.2 41.67 80.77 1.65 0.72–3.75
PoorR 2.3 16.67 78.12 8.23 1.92–35.13

Model %PDFS 18 m ModR %PDFS 18 m ProR HR 95% CI

ProR 4.1 0 100 16.4 5.34–50.38
ProR 4.2 6.67 90 10.47 3.63–30.13
ProR 4.3 0 100 16.4 5.34–50.38
ProR 3.1 6.67 90 4.66 1.74–12.48
ProR 3.2 6.67 90 11.73 3.98–34.51
ProR 3.3 13.33 80 9.12 3.09–26.93
ProR 2.1 18.75 77.78 3.42 1.33–8.75
ProR 2.2 13.33 80 5.05 1.90–13.41
ProR 2.3 23.53 75 2.72 1.05–7.03

PDFS, PD-free survival; m, months; PoorR, poor response; ProR, prolonged response; ModR,
moderate response; HR, hazard ratio; 95% CI, 95% confidence interval.

Figure W2. Discriminant power of prolonged response predictive
signatures. All variables are referred to the right y-axis except for
AIC. AUC and c partially overlap.



Table W2. miRWalk-Validated Genes Targeted by Poor Response and Prolonged Response miRNAs.

miRNA Response Model Gene

hsa-miR-125a-5p Poor CD2, CTNNB1, NBN, FMR1, DICER1, IGF2BP2, COX8A, PRDM1, TNFSF11, CD4, ELA2, ATM, MOV10, CCL5, CTGF, CDKN1A, BCL2, G3BP2,
RRBP1, GPI, PCNA, TNRC6B, KLF13, ETS2, PDPN, CTSD, ODZ1, BRCA1, TCF7L2, POLR2K, CDKN2D, LCT, RAB30, EGFR, ERBB2, HSPG2,
IGF1R, LIF, TLE1, RB1, LIN28, MDM2, JUNB, ETV4, ERBB3, IGFBP5, FZD7, TP53, MAP2K7, MECP2, ELAVL1, IL10, IGFBP6, RNASEN,
SLC9A3R1, BAP1, UBE2N, PCDH8, MAPK3, INS, RHOU, PCAF, USP7, PDGFRB, TLR4, KPNA2, MYC, SOX17, MED6, RCHY1, PSMD2, APC,
NR1I2, MRE11A, NTRK3, WNT10A, BCL2L11, CD40LG, MTUS1, AHSA1, ATF1, PEA15, PSMA7, RNASEH2A, BRCA2, IFNA1, RARA

hsa-miR-139-3p Poor SSSCA1, CDC73, ROCK2, RHOD, CDKN1B
hsa-miR-141 Poor ACTG1, AHSA1, AKT1, AKT1, AMACR, ARS2, BMP2, BRD3, C6orf134, CCND1, CCND2, CCNT2, CD79A, CDC25C, CDH1, CDH17, CDKN1B,

CDON, CREB1, CSH1, CSNK1A1, DHH, DLC1, DMTF1, EGF, EIF4E, ERBB4, ETS1, EZH2, FBXW11, FBXW7, FOXA2, FOXC2, FOXE1,
FOXF1, FOXL1, FOXP3, FZR1, GLI1, GLI2, GLI3, GPD1, HIF1A, HOXD10, HPRT1, IHH, INHBC, INHBE, JAG2, JUN, JUN, KCNMA1,
KIAA0152, KLF5, KLF8, KLK3, LAMC2, LARP6, LOX, MAP2K4, MAP3K10, MAPK14, MAPK9, MAPKAPK5, MET, MYB, MYC, MYCN,
NPC1, PARP8, PDCD4, PIK3CA, PLCG1, PLEKHM1, PLUNC, POU3F1, PPIA, PSAT1, PTEN, PTPN12, PTPN13, PTPN14, RAPGEF5, RHOD,
RIT2, RPIA, RUNX2, SEMA6A, SFRP1, SFRP1, SFRS2IP, SHH, SIDT1, SIP1, SLC12A1, SLC9A3R2, SMC1A, SNAI1, SNAI2, SNAI3, SOX13,
SSSCA1, STK24, STK3, SUFU, SULT2A1, TACSTD1, TBP, TBX2, TCF21, TGFB1, TGFB2, TMEM184B, TMOD3, TP53, TPPP3, TWIST1,
TWIST2, UBAP1, VEGFA, VEGFA, YAP1, ZEB1, ZEB2, ZFPM2, ZNF135, ZNF77

hsa-miR-145 Poor RNASEN, STAT1, PDGFB, RNASEN, EIF4EBP1, SRGAP2, MMP9, KLF4, RBBP6, SOX2, PAK3, CDK4, IGF1, DGCR8, ADAM17, BCL2, MYC,
MCL1, ERBB2, MYH11, KCNH8, TP53, EWSR1, BNIP3, EIF4E, IGF1R, SOD2, YES1, CBFB, PAK1, CCND1, COX8A, SMTN, NKX2-3,
TP73, FLI1, MUC1, IRS1, WT1, VANGL1, PPP3CA, PTEN, CCNG1, ODZ1, TAGLN, KLF5, CKAP4, MYO6, FABP4, ASAHL, DICER1,
AKT1, CLINT1, ZEB1, KRAS, EGFR, SRC, PGK1, KRT7, CD2AP, SFRS8, SRF, RREB1, PPP2R1B, GALNT1, EGF, RTKN, PPIA, HOXA9,
CAP1, EPHB2, DDX5, EIF2C1, FSCN1, SOX4, FRAP1, SWAP70, ACTA2, EIF2C2, IFNA1, ESR1, CDH11, FCER2, RPS14, CDKN1A, POLD3,
DFFA, RPS6KB1, CTNNB1, TGFBR2, CLEC4G, BIRC2, ERCC8, DFFB, SMPD1, F11R, SOX18, E2F3, ROBO2, MMP3, NKX2-5, TNFSF10,
TSC2, BEX1

hsa-miR-150 Poor IL6, ZAP70, SSSCA1, MYB, CCND1, NFKB1, SLC35B2, CD4, PRKCA, RELB, CDK4, FOXP1, CD8A, BCR, , CLCN3, P2RX7, USF2, CAPNS1,
MAP3K8, BCL2, MCL1, EGR2, PTGS1, IRAK2, TNFSF10, AGTR1, IL17A, CTSL1, RAC1, IRAK4, FGF7, RAB27A, ALG2, ZIC3, FASN, KIT,
JAK2, IKBKE, IGF1, CNTN3, TSHZ3

hsa-miR-181a* Poor NPM1, PML, PDK4, PSMD9, MMP9, SSSCA1, CDX2, WT1, DMPK, DICER1, TGFB1, CD36, GPI, BAALC, NBN, RNASEN, TIMP3, GYPA,
TACSTD1, ZFPM1, LCT, DGCR8, TFRC, BCL2, GATA6, FLT3, NTS, RDX, NLK, MECP2, NPM1, ODZ1, ELA2, IL6, CEBPA, ATM, PTEN,
HOXA11, MT4, SUFU, EPOR, BCL2L11, THRB, STAT1, CD4, TWIST1, ERG, BCR, RC3H1, CDKN1B, CD8A, SOCS1, LYN, TSPO, RASSF1,
GATA1, MCL1, ALAS1, DCTN6, SMAD4, ERBB2, AFP

hsa-miR-192 Poor DICER1, SLC9A3R2, RAPGEF5, NODAL, FOXA1, DNAI1, CDKN1A, SSSCA1, CTNNB1, RAG2, COL1A2, ZEB2, AKT1, FGF3, CCND2, PAK3,
SMAD2, BRAF, COL4A1, TGFB1, PTEN, BRCA1, ALCAM, CYCS, SMAD3, APC, TP53, ZEB1, CDH1, DICER1, CCND1, CYP7A1, BIRC5,
SMAD7, TYMS, TFE3, IFNG, COL1A1, APOE, AMACR, USF1, PIK3CA, IL1B, CTGF, SLC22A3, MDM2, MSH2, NOS2A, SIP1, ITK, CD79A,
MLH1, TNF, BBS9, FADD, KRAS, MLC1, BMP6, RAD9A, MCL1, MSH6, SFRS2IP, HNF1A, NUMA1, HNF4A, TNPO1, EGFR

hsa-miR-193a-3p Poor MCL1, NOS2A, PTK2, TNF, BRAF, CTNNB1, NRAS, DNMT1, CD4, TP53, CD8A, TP73, CD28, CKAP4, E2F3, CYP7A1, CDK6, IFNG
hsa-miR-193a-5p Poor and prolonged NRAS, CD4, CD8A, CD28, CTNNB1, CDK6, DNMT1, NCOA2, TP53, MCL1, TP73, PTK2, CKAP4, TGFB1, BRAF
hsa-miR-199a-5p Poor and Prolonged PI3, AMELX, FASLG, AKT1, MAPK14, NEUROD1, CALB1, FASN, CD44, ALOX5, EZH2, PTEN, IKBKB, MAPK8, ALOX5AP, PRNP, SIRT1,

MAPK9, ENAM, DDR1, TWIST1, RNMT, COX8A, HIF1A, DECR1, SOX9, INSR, CYP2A6, NFKB1, EGFL7, PPIG, CRYGC, MET, PRKG1,
MAPK1, AHSA1

hsa-miR-30b* Poor ARHGDIA, GPR172B, STRN, NAPG, REG3A, KLK8, GAK, SLC38A5, GSTM4, HSD17B12, PTPRK, SHOC2, TGFBR1, WDR68, EIF4E, HBXIP,
VPS39, MLLT1, TRMU, WNT5A, YIF1B, LHX1, DNAJC19, ARFIP1, FHL5, HSPA1A, PGM1, BCKDHB, ABHD11, ARID4B, JUN, FAM105A,
GNPNAT1, LMNB2, SLC12A2, PRSS21, SLC7A11, NOTCH2, SCYL1, DHX40, RUNX2, SHH, ADSS, FADS1, PPP1R7, SYPL1, TNFRSF10B,
DMN, PRAF2, TXN2, GPR56, SAC3D1, NT5C3, PURA, AARSD1, CHST14, CALCOCO2, PTPLB, RPP38, SYNE1, MOV10, BRWD2, CA12,
IGF1, ASH2L, DICER1, GRPEL2, CHMP2A, SLC4A7, HSPA1B, SERPINE2, RCN2, HSDL1, TAC1, AGRN, TMCO1, CDCP1, DOCK7, TOMM34,
TMEM2, NP, PTGS2, IPO4, GARS, CYP51A1, FADS3, PPP2R4, THBS1, TNFRSF10A, DMD, DUSP12, METTL7A, MARS2, SNX15, PDE3A,
PTBP2, SLC25A32, HIPK3, AKAP8, F2, UTRN, SPTLC1, KIAA0776, TMEM41B, CEP72, SLC30A1, CCND1, CLDN1, DGCR8, CPOX,
RAB30, FXR2, DNAJB1, ATP6V1C1, RHEB, ATAD3B, KCNN4, GNL3L, MRPS24, AP3B1, UBE2I, TMED2, SH3BP4, ATP2A2, NUFIP2,
SLC25A22, SMAD3, RNASEN, AP2A1, ARL2, PPP2R5C, TLOC1, PEX11B, ID1, LYPLA2, GALNT1, ATP6V1F, DPP7, UBE2J1, SRPRB, SLC38A1,
CDKN2A, OPRS1, ARL5B, RAB34, VSNL1, PDLIM5, KIAA0409, MTRR, CAND1, LUZP1, CLTC, DHX57, GRIA2, PTRH1, GNAI2, SCAMP1,
HYAL1, ACP2, SPCS3, KPNA3, ATRX, SLC1A4, GFM1, GAPDH, MLLT11, PISD, NPR3, AADACL1, GEMIN7, ESR1, NKX2-3, ZNF384, LPL,
PPP3CA, TNFAIP2, NRP1, ITGB3, FMNL2, TMEM87A, TRIP13, SLC25A24, ANKFY1, SNX6, COIL, FSTL1, BET1, FGF2, UTP15, ACVR1B,
IGF2BP1, TMED3, MYO1E, PRKCI, CACNA2D1, IFNA1, SLC16A3, EIF2C2, KDELC2, GPD2, MPDU1, IDH1, PLK1, CCL13, TMEM189,
LY6K, SLC7A1, SSNA1, IRAK2, TMED10, IFIT5, NT5E, WDFY1, EHMT1, TGFB1, TPPP, DSG2, LRP1, PPP3R1, TPM1, SQSTM1, PTPMT1,
ZNF294, VAMP3, PSAT1, PTPLAD1, RAB6A, UNC93B1, MAPK14, CDIPT, FGF13, SDCBP, STX7, KIAA0152, GNA13, HARS2, MYO10, PKN2,
PXDN, BCL6, RQCD1, CPNE8, TTC9C, TMEM59, IFRD1, ATP6V0A1, RHOB, PPIB, MAP2K1IP1, JAK2, FERMT2, NAT6, NUCB1, RNF213,
AGMAT, CHAF1A, DSP, TACSTD2, ABHD10, TPM2, AP3D1, AKT1, THEM4, RAI14, SNAP29, GYS1, TAF9B, RAB27B, CAPG, C1D, FNDC3A,
POLE3, NCAPG, MLSTD2, TNFSF11, CTSC, TRAM1, HNRPM, LRRC8A, IFRD2, PRDM1, RFT1, OAS1, CSNK1D, SFI1, AMIGO2, KRT85,
CDKAL1, SLC12A4, CBFB, HMGA2, CHD1, PANX1, SPRYD4, PAFAH1B2, GPAM, MRM1, ZIC1, ABCF2, DSPP, SMAD1, PPP5C, TPM3,
P4HA2, XIAP, GALNTL2, SLC9A3R2, ANXA2, MRPS33, RAB5C, ARID1A, GJA1, SEC23A, TRIM32, PODXL, NXN, FAM96A, PAH, MTHFD2,
CARHSP1, NARS, POLE4, ATG9A, SOX2, AURKB, NOTCH1, CSRP1, MRC2, IGF2R, RHOG, PPL, SLC25A1, RNMT, SLC6A3, DNAJB4, FRG1,
ARL10, TMED7, KIAA1618, DOCK5, SMAD2, PPIF, PHC2, MAT2A, PRIM1, TXNRD1, PHLDB2, BCL2, CLN5, GFPT1, UBE4A, HARS,
CDK5RAP1, RAD23B, PICALM, VTI1B, PLXND1, TICAM2, POLD2, ATG3, LRRC8C, SEC24A, CORO1C, NCL, RTN4, TMEM109, LIN28,
PAX3, CTNNB1, RBM19, LAMC1, DUSP23, UAP1, TNFSF9, SNCA, PWP1, LYCAT, PDLIM7, ANPEP, TXNDC12, PTPRF, NARG1, MET,
SLC25A13, EGFR, MBNL1, TRMT1, TYMS, MPZL1, TP53, MSI2, CHORDC1, SFXN1, HMGA1, RAB23, RARS, ADPGK, MYLIP, CEBPB,
RCOR1, ITGA2, POLR2C, MOSC1, CUL4B, RELA, PGRMC1, ARFIP2, NEDD4, PTBP1, BAT2, ALPL, PAX6, RDH10, LCP1, MRPL20, SRPR,
SNAP23, NOS1, SEC23IP, ELMOD2, DTD1, COMMD9, GOLGA7, PTPRJ, CDK5RAP3, RCAN2, ARID2, SYNE2, PRPF40A, UGT8, ZNF622,
DNM1L, IQGAP3, BRPF3, FADS2, HMOX1, GALNT7, RBMS1, SH3BGRL3, ANP32B, ITGB4, SLC38A2, FNDC3B, GTPBP3, BDNF, EHMT2,
POLA2, NELL1, PTGFRN, TMEM43, BMP2, TRIM27, MOSPD2

hsa-miR-31 Poor and Prolonged BAMBI, FOXP3, TP53, MCM2, HBEGF, DACT3, SP7, CCL16, ODZ1, HRSP12, TIAL1, JAK2, TBX1, MID1, PPP6C, PTEN, CASR, TIMP2, MYB,
SATB2, BGLAP, CD4, FGFR3, HIF1A, VSNL1, PRB1, BIN3, RUNX2, ETS1, PRKD1, HMGA2, HIF1AN, CCT4, RHOA, CDKN2B, FOS, WASF3,
ICAM1, CDKN2A, ITGA5, MTAP, PPP2R2A, KRT15, DCN, SELE, CDKN2D, RDX, PGGT1B, PPP2R4, PDLIM7, SFRP1, TNF, BCL2L2, DLX3,
TRIM36, LATS2, JAG1, COX8A, SFRP4, TIAM1, KRT16, BAX, STMN1, WIF1, E2F3, KRT17, E2F2, ERCC4, MYC, DKK1, IBSP



Table W2. (continued )

miRNA Response Model Gene

hsa-miR-34a Poor and Prolonged CD47, TP53, CDK4, RUNX2, LOX, CNN3, E2F3, G6PD, VEGFA,MDM2, BCL2, LEF1,MDC1, CAV1, E2F1, EPHB2, TBK1, HELLS, CDK6, AKT1,
IRS1,MYC, PPARG, PTPN13, EIF2C4,MITF, FASN, DLL1, HDAC9, RB1, BCL6, CDKN1A, SIRT1, STK39, RNMT,MAP2K1,MYBL1, SLC11A1,
CCND1, BIRC3, TOM1, TLR4, MAP1LC3A, COL11A2, GRM7, CREB1, BAMBI, SFRP1, ELK3, HES1, HOXA5, PIK3CA, HNF4A, LIF, CCNE2,
ACSL1, APC, CREBZF, CCND3, MET, MAP3K9, NDRG1, PTEN, CRIM1, SLC12A1, ATP6V1B2, MYCN, MECP2, ZEB1, NOTCH1, OCA2,
ZAP70, SMARCA5, JAG1, CDC25C, BCR, BNIP3L, CDC25A, RGS3, CD44, COL2A1, E2F5, CDKN2A, TCF21, IFNG, POU4F2, FRAP1,
ZEB2, ACTB, SLC2A1, ANP32B, JARID1B, NDUFA2, PPP1R13L, SND1, BRAP, ING2, NR1H4, IL1B, GABPA, FOXP1, COX8A, DICER1,
SSSCA1, PEA15, BBC3, WNT1, MYB, RTEL1, SCPEP1, TIMM8A, FOXO1, LIN28, PTPN12, MAPK14, NOS2A, BDNF, MGST1, MDM4, KRAS,
SEMA6A, DDIT4, ST3GAL4, PROM1, ECD, ARCN1, CXCL12, NFE2L2, ATN1, HMG2L1, HMGA2, YY1, SEC24D, MAPKAPK2, HDAC2,
GRM3, VAMP2, TCL1A, TNRC6A, ARIH2, CTNNBIP1, NFKB1, BAX, ZNF135, ERBB4, DDX4, CSF1, PHGDH, UBL4A, SPI1, CISH, SFRS2,
FOXJ1, PAWR, AXIN2, NOL3, CDC20B, ZNF77, KCNMA1, LARP4, PRMT5, EZH2, KLF4, RPS19, CEBPA, DKK2, RNASEN, NPC1

hsa-miR-370 Poor TCF4, ZEB2, WBSCR22, ZEB1, BRD8, TGFB1, ACACA, TGFB2, CPT1A, FASN, SREBF1, SPARC, DGAT2, TCF4, KIT, HMGA2, PDGFRA,
TAGLN2, HMGA1, MAP3K8, IL6

hsa-miR-505* Poor ARSF, CDKN2A, CDKN2D, ELF4, SFRS1, TP53, C5orf41
hsa-miR-516a-5p Poor KLK10
hsa-miR-564 Poor and Prolonged DICER1
hsa-miR-582-5p Poor TGFB1, DLK1, SMAD3, SMAD6, SMAD9
hsa-miR-659 Poor and Prolonged GRN
hsa-miR-126* Prolonged TLR4, ACVR2A, UBASH3A, EGF, SOX2, EGFL7, POLR2A, CEBPZ, CRK, PIK3R2, SRY, PIK3CA, CREB1, VEGFA, SPRED1, JUN, PECAM1, TOM1,

DICER1, PLK2, SRC, KDR, SLC45A3, PLAC1, AKT1, CASP3, GLI1, RNASEN, WT1, EGFR, HOXA9, CD4, SOX4, EPHB2, CXCL12, KRAS, MYB,
HNF1A, CD8A, MERTK, CD70, PI3, CXCR4, NRAS, CD2AP, FOXJ2, TGFBR2, RHOC, CD28, PTPRN2, DNMT1, MRGPRX3, SMOX, MAPK8,
ETS1, CD44, ITGA2B, ITGAL, COX8A, PTEN, C9orf127, ETS2, HOXD10, MAFB, FLI1, SMO, HPS1, TNC, HOXA1, CDKN1A, PDGFB, TP53,
IL1B, RUNX1, PAK1, GATA3, TP63, CCND1, VCAM1, TLR2, JAK2, RUNX1T1

hsa-miR-1274a Prolonged CYP7A1, IFNG, IL1B, NOS2A, TNF, AASDHPPT
hsa-miR-136 Prolonged ME1, RRBP1
hsa-miR-198 Prolonged ESR1, BRCA1, GJA1, TUSC2, GRIA2, FUS, MYLIP, CCND1, NOTCH1, CCND2, ARID4B, ATF2, TAC1, JUN, HIPK3, UTRN, PTPN1, CDKN2A,

VSNL1, TAF1, FSTL1, ACVR1B, MAPK14, KIAA0152
hsa-miR-199a-3p Prolonged AKT1, BMP2, COMP, EPHB2, FRAP1, GARS, MET, PIK3CA, PTEN, RAG2, RB1, SOX9, TIMM8A, TNF
hsa-miR-371-5p Prolonged DNMT3A, DNMT3B, FABP4, ADIPOQ, TP53, LATS2
hsa-miR-376a Prolonged PRPS1, SLC16A1, TTK, SFRS11, RHOD, ZNF513, PRPS1L1, SNX19
hsa-miR-410 Prolonged JUN, NFKB1, RB1, TP53, PUM1, COX8A, MAPK1IP1L, CDC2, CDKN2A
hsa-miR-424* Prolonged CCND3, GTF2IRD1, CEBPB, NIT1, CDKN1A, CCNE1, SETD2, EGFR, MED1, CREB1, MAPK9, CHEK1, CCNF, BCR, MUC1, OPRS1, ATF2,

MAP2K1, ETS1, CCNE2, FLT3, LGALS3, CHD4, E2F3, RASA1, ATF6, KIF23, SPINK1, DDX20, AP2M1, HOXA4, CCND1, TAF10, EIF2C1,
CDC25A, E2F1, EIF2C2, DDX5, NFE2L1, ARPC5L, PAK3, PLAG1, ESR1, FGFR1, NFE2L2, MYB, ANLN, SMAD3, PIAS1, NCOA6, SP3, SIAH1,
POU2F2, SYNGAP1, FOSB, USF2, BCL6, LATS2, CDK6, RARA, MBD4, INPPL1, YY1, WEE1, CUL2, RNASEN, RXRA, RUNX1, ITPR1, KCNH8,
CDC14A, HIF1A

hsa-miR-630 Prolonged H2AFX, CDKN1A, TP53, CISH, SSSCA1, GADD45A, TP73, YES1, YAP1, PARP1, HIPK2, ATM, BCL2, BAX, BCL2L2, CDKN1B, CASP3

Figure W3. Pathways overrepresented by action of poor response and prolonged response miRNAs.



Figure W4. RCC pathway and poor response genes. Genes from KEGG RCC pathway targeted by miRNAs (red) included in poor
response models.



Figure W5. RCC pathway and prolonged response genes. Genes from KEGG RCC pathway targeted bymiRNAs (red) included in prolonged
response models.



Figure W6. Expression ofmiRNAs in renal carcinomas.miR-192 and
miR-193a-3p expression in normal (N_KID) and tumoral (T_KID)
kidneys. ***P < .001. Data obtained from Lu et al.

Figure W7. Validation of some predictive signatures using RT-qPCR. (A) Kaplan-Meier analyses of poor response model 3.3; HR between
groupswas 2.067 (IC95= 0.97–4.39, P= .059). (B) Kaplan-Meier analyses of prolonged responsemodel 3.2; HR between groupswas 1.962
(IC95 = 0.77–4.96, P = .155).




