A short proof of the tree-packing theorem

Tomáš Kaiser
Department of Mathematics and Institute for Theoretical Computer Science (ITI), University of West Bohemia, Univerzitní 8, CZ-306 14 Plzeň, Czech Republic

ARTICLE INFO

Article history:
Received 27 August 2010
Received in revised form 18 January 2012
Accepted 19 January 2012
Available online 15 February 2012

Keywords:

Spanning tree
Packing

Abstract

We give a short elementary proof of Tutte and Nash-Williams' characterization of graphs with k edge-disjoint spanning trees.

© 2012 Elsevier B.V. All rights reserved.

We deal with graphs that may have parallel edges and loops; the vertex and edge sets of a graph H are denoted by $V(H)$ and $E(H)$, respectively. Let G be a graph. If \mathcal{P} is a partition of $V(G)$, we let G / \mathcal{P} be the graph on the set \mathcal{P} with an edge joining distinct vertices $X, Y \in \mathscr{P}$ for every edge of G with one end in X and another in Y. Tutte [7] and Nash-Williams [4] proved the following classical result:

Theorem 1. A graph G contains k pairwise edge-disjoint spanning trees if and only if for every partition \mathcal{P} of $V(G)$, the graph G / \mathcal{P} has at least $k(|\mathcal{P}|-1)$ edges.

Necessity of the condition in Theorem 1 is immediate. An elegant proof of sufficiency is based on the matroid union theorem (see, e.g., [5, Corollary 51.1a]) which yields the more general matroid base packing theorem of Edmonds [2]. A relatively short elementary proof of sufficiency in Theorem 1, due to W. Mader (personal communication from R. Diestel), is given in [1, Theorem 2.4.1].

In this paper, we give another elementary proof that is also short and perhaps somewhat more straightforward. The argument directly translates to an efficient algorithm to find either k disjoint spanning trees, or a proof that none exist.

To give the reader an idea of the approach, let us briefly sketch the proof of sufficiency, restricting to the case $k=2$. Let T be a spanning tree of G, and let $\bar{T}=G-E(T)$. We may assume that \bar{T} is disconnected as a spanning subgraph of G (otherwise, we have two disjoint spanning trees). We seek a partition \mathcal{P} of $V(G)$ such that each class of \mathcal{P} induces a connected subgraph in both T and \bar{T}. In order to find it, we start with the trivial partition $\{V(G)\}$ and iteratively refine it (in a suitable way) until we reach the desired partition \mathcal{P}.

Let $E_{\mathcal{P}}$ denote the set of edges of G joining different classes of \mathcal{P}. The fact that $T[X]$ is connected for each $X \in \mathcal{P}$ enables us to count the edges of T in $E_{\mathcal{P}}$. Meanwhile, the density condition yields a lower bound on $\left|E_{\mathcal{P}}\right|$ and implies $\left|E(\bar{T}) \cap E_{\mathscr{P}}\right| \geq|\mathscr{P}|-1$. Since \bar{T} is disconnected, and since $\bar{T}[X]$ is connected for all $X \in \mathscr{P}$, this forces a cycle in \bar{T} intersecting at least two classes of \mathcal{P}. We can replace some edge of T by an edge of this cycle, so as to obtain a new spanning tree T^{\prime}. When done correctly, the exchange 'improves' the spanning tree T in a well-defined way. Thus, if the initial spanning tree T is chosen as optimal, then the basic assumption that \bar{T} is disconnected must fail, which gives us the desired disjoint spanning trees.

A variant of this approach was used by Kaiser and Vrána [3] in connection with the conjecture of Thomassen [6] that 4 -connected line graphs are Hamiltonian. In that context, the method is applied to hypergraphs instead of graphs and gives

[^0]

Fig. 1. The sequence of partitions associated with a 2-decomposition $\mathcal{T}=\left(T_{1}, T_{2}\right)$ of G. The edges of T_{1} are shown bold. (a) The partition \mathcal{P}_{1} (dark grey regions). (b) The partition \mathcal{P}_{2} (light grey regions). Note that $\mathcal{P}_{2}=\mathcal{P}_{\infty}$.
a connectivity condition under which a hypergraph admits a 'spanning hypertree' whose complement is, in a way, close to being connected. A significant difference from the above setup is that the situation in [3] is asymmetric (unlike the packing of two spanning trees in a graph). It would be interesting to identify more general conditions allowing for the application of the method.

As noted by D. Král' (personal communication), a matroid-theoretical reformulation of the argument of the present paper yields a proof of the matroid base packing theorem mentioned above.

Before we start with the detailed proof of Theorem 1, we introduce some terminology. Let $k \geq 1$. A k-decomposition \mathcal{T} of a graph G is a k-tuple $\left(T_{1}, \ldots, T_{k}\right)$ of spanning subgraphs of G such that $\left\{E\left(T_{i}\right): 1 \leq i \leq k\right\}$ is a partition of $E(G)$.

We define the sequence $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\infty}\right)$ of partitions of $V(G)$ associated with \mathcal{T} as follows. (See the illustration in Fig. 1.) First, $\mathscr{P}_{0}=\{V(G)\}$. For $i \geq 0$, if there exists $c \in\{1, \ldots, k\}$ such that the induced subgraph $T_{c}[X]$ is disconnected for some $X \in \mathcal{P}_{i}$, then let c_{i} be the least such c, and let \mathscr{P}_{i+1} consist of the vertex sets of all components of $T_{c_{i}}[X]$, where X ranges over all the classes of \mathscr{P}_{i}. Otherwise, the process ends by setting $\mathcal{P}_{\infty}=\mathscr{P}_{i}$. In this case, we also set $c_{j}=k+1$ and $\mathscr{P}_{j}=\mathscr{P}_{i}$ for all $j \geq i$.

The level $\ell(e)$ of an edge $e \in E(G)$ (with respect to \mathcal{T}) is defined as the largest i (possibly ∞) such that both ends of e are contained in one class of \mathscr{P}_{i}. To keep the notation simple, the symbols \mathscr{P}_{i} and $\ell(e)$ (as well as \mathcal{P}_{∞} and c_{i}) will relate to a k-decomposition \mathcal{T}, while \mathscr{P}_{i}^{\prime} and $\ell^{\prime}(e)$ will relate to a k-decomposition \mathcal{T}^{\prime}. Thus, for instance, the level $\ell^{\prime}(e)$ of an edge e with respect to \mathcal{T}^{\prime} is defined using the partitions \mathscr{P}_{i}^{\prime} associated with \mathcal{T}^{\prime}.

When \mathcal{P} and \mathcal{Q} are partitions of $V(G)$, we say that \mathcal{P} refines \mathcal{Q} (and write $\mathcal{P} \leq \mathcal{Q}$) if every class of \mathcal{P} is a subset of a class of \mathcal{Q}. When $\mathcal{P} \leq \mathcal{Q}$ and $\mathcal{P} \neq \mathcal{Q}$, we write $\mathcal{P}<\mathcal{Q}$.

We define a strict partial order \prec on k-decompositions of G. Given two k-decompositions \mathcal{T} and \mathcal{T}^{\prime}, we set $\mathcal{T} \prec \mathcal{T}^{\prime}$ if there is some (finite) $j \geq 0$ such that both of the following conditions hold:
(i) for $0 \leq i<j, \mathscr{P}_{i}=\mathscr{P}_{i}^{\prime}$ and $c_{i}=c_{i}^{\prime}$,
(ii) either $\mathscr{P}_{j}<\mathscr{P}_{j}^{\prime}$, or $\mathscr{P}_{j}=\mathscr{P}_{j}^{\prime}$ and $c_{j}<c_{j}^{\prime}$.

Proof of Theorem 1. The necessity of the condition is clear. To prove the sufficiency, we proceed by induction on k. The claim is trivially true for $k=0$, so assume $k \geq 1$ and choose a k-decomposition $\mathcal{T}=\left(T_{1}, \ldots, T_{k}\right)$ of G such that T_{1}, \ldots, T_{k-1} are trees and, subject to this condition, \mathcal{T} is maximal with respect to \prec.

If T_{k} is connected, then we are done. Otherwise, suppose that T_{k} has at least two components (i.e., $\left|\mathcal{P}_{1}\right| \geq 2$). We prove that there exists an edge of finite level (with respect to \mathcal{T}) contained in a cycle of T_{k}. Let $\mathcal{P}=\mathcal{P}_{\infty}$. Recall that for $1 \leq i<k$ and $X \in \mathscr{P}$, the graph $T_{i}[X]$ is connected. Hence T_{i} / \mathscr{P} is a tree and has exactly $|\mathscr{P}|-1$ edges. By hypothesis, G / \mathscr{P} has at least $k(|\mathscr{P}|-1)$ edges, so T_{k} / \mathscr{P} has at least $|\mathscr{P}|-1$ edges. Since T_{k} / \mathscr{P} has $|\mathscr{P}|$ vertices and is disconnected, it must contain a cycle. Thus T_{k} contains a cycle, since $T_{k}[X]$ is connected for each $X \in \mathcal{P}$. At least two edges of the cycle join different classes of \mathcal{P}, and therefore their level is finite, as required.

Let $e \in E\left(T_{k}\right)$ be an edge of minimum level that is contained in a cycle of T_{k}, and set $m=\ell(e)$. (See Fig. 2 for an illustration with $m=1$.) Let P be the class of \mathcal{P}_{m} containing both ends of e. Since e joins different components of $T_{c_{m}}[P]$, we have $c_{m} \neq k$, and the unique cycle C in $T_{c_{m}}+e$ contains an edge with only one end in P. Thus, for an edge e^{\prime} of C of lowest possible level we have $\ell\left(e^{\prime}\right)<m$. Let Q be the class of $\mathscr{P}_{\ell\left(e^{\prime}\right)}$ containing both ends of e^{\prime}. Observe that $V(C) \subseteq Q$. We will exchange e for e^{\prime} in the members of the k-decomposition to eventually obtain the desired contradiction.

Let \mathcal{T}^{\prime} be the k-decomposition obtained from \mathcal{T} by replacing $T_{c_{m}}$ with $T_{c_{m}}+e-e^{\prime}$ and T_{k} with $T_{k}-e+e^{\prime}$. The i-th element of \mathcal{T}^{\prime}, where $1 \leq i \leq k$, is denoted by T_{i}^{\prime}. To relate the sequences of partitions associated with \mathcal{T} and \mathcal{T}^{\prime}, we prove the following two claims.

Fig. 2. The exchange step for the 2-decomposition \mathcal{T} of Fig. 1. (a) A cycle in T_{2} containing e (dotted) and the cycle C in $T_{1}+e$ (dashed). (b) The spanning tree T_{1}^{\prime} (bold) obtained from T_{1} by exchanging e for the edge e^{\prime} of C. The partitions \mathscr{P}_{1}^{\prime} and \mathscr{P}_{2}^{\prime} associated with the resulting 2-decomposition \mathcal{T}^{\prime} are shown in dark grey and light grey, respectively. Note that \mathscr{P}_{2}^{\prime} is equal to $\mathcal{P}_{\infty}^{\prime}$ and that $\mathcal{T} \prec \mathcal{T}^{\prime}$.

Claim 1. If $T_{c}[X]$ is connected, for some $X \subseteq V(G)$ and $1 \leq c \leq k$, then $T_{c}^{\prime}[X]$ is connected unless one of the following holds:
(a) $c=c_{m}$, and X contains both ends of e^{\prime}, and $Q \nsubseteq X$, or
(b) $c=k$, and X contains both ends of e, and $P \nsubseteq X$.

To prove the claim, suppose that $T_{c}^{\prime}[X]$ is disconnected. We have $c \in\left\{c_{m}, k\right\}$, since otherwise $T_{c}=T_{c}^{\prime}$. Consider $c=c_{m}$. Since $E\left(T_{c_{m}}\right)-E\left(T_{c_{m}}^{\prime}\right)=\left\{e^{\prime}\right\}$, both ends of e^{\prime} lie in X. Furthermore, $Q \nsubseteq X$, since otherwise $T_{c_{m}}^{\prime}[X]$ would contain the path $C-e^{\prime}$ joining the ends of e^{\prime}, which would make $T_{c_{m}}^{\prime}[X]$ connected. A similar argument for the case $c=k$ completes the proof of Claim 1.

Claim 2. For all $i \leq m$, it holds that $c_{i}^{\prime}=c_{i}$ and $\mathcal{P}_{i}^{\prime}=\mathcal{P}_{i}$.
We proceed by induction on i. The case $i=0$ follows from $\mathscr{P}_{0}=\mathscr{P}_{0}^{\prime}=\{V(G)\}$ and $c_{0}=c_{0}^{\prime}=k$. Let us thus assume that the assertion holds for some $i, 0 \leq i<m$, and prove it for $i+1$.

We first prove that $\mathcal{P}_{i+1}=\mathcal{P}_{i+1}^{\prime}$. Let S be an arbitrary class of \mathcal{P}_{i+1}; we assert that $T_{c_{i}^{\prime}}^{\prime}[S]$ is connected. Since $T_{c_{i}}[S]$ is connected and since $c_{i}^{\prime}=c_{i}$ by the inductive hypothesis, we can use Claim 1 (with $X=S$ and $c=c_{i}$). Condition (a) in the claim cannot hold, because every class of \mathscr{P}_{i+1} containing both ends of e^{\prime} contains Q as a subset. For a similar reason, condition (b) fails. Consequently, $T_{c_{i}}^{\prime}[S]$ is connected, and hence S is a subset of some class of $\mathscr{P}_{i+1}^{\prime}$. Since S was arbitrary, it follows that $\mathscr{P}_{i+1} \leq \mathcal{P}_{i+1}^{\prime}$. Now by the choice of \mathcal{T} (and the inductive assumption), we cannot have $\mathscr{P}_{i+1}<\mathscr{P}_{i+1}^{\prime}$. We conclude that $\mathscr{P}_{i+1}=\mathcal{P}_{i+1}^{\prime}$.

Next, we prove that $c_{i+1}^{\prime}=c_{i+1}$. Let $R \in \mathscr{P}_{i+1}^{\prime}$ and $c<c_{i+1}$. By the above, $R \in \mathcal{P}_{i+1}$. The definition of c_{i+1} implies that $T_{c}[R]$ is connected. Using Claim 1 as above, we find that $T_{c}^{\prime}[R]$ is also connected. Consequently, $c_{i+1}^{\prime} \geq c_{i+1}$, and by the maximality of \mathcal{T} once again, we must have $c_{i+1}^{\prime}=c_{i+1}$. The proof of Claim 2 is complete.

It is now easy to finish the proof of Theorem 1 . Since $\mathcal{P}_{m}^{\prime}=\mathcal{P}_{m}$ and $c_{m}^{\prime}=c_{m}$, the classes of $\mathcal{P}_{m+1}^{\prime}$ are the vertex sets of components of $T_{c_{m}}^{\prime}[U]$, where $U \in \mathcal{P}_{m}$. Observe that for $U \in \mathcal{P}_{m}-\{P\}$, we have $T_{c_{m}}^{\prime}[U]=T_{c_{m}}[U]$, and so the components of $T_{c_{m}}^{\prime}[U]$ coincide with those of $T_{c_{m}}[U]$. The graph $T_{c_{m}}^{\prime}[P]$ is obtained from $T_{c_{m}}[P]$ by adding the edge e that connects two components of $T_{c_{m}}[P]$. It follows that $\mathcal{P}_{m+1}<\mathcal{P}_{m+1}^{\prime}$, contradicting the choice of \mathcal{T}.

Acknowledgments

I am indebted to Douglas West and two anonymous referees who suggested a number of improvements to the paper.
This research was supported by project 1M0545 and Research Plan MSM 4977751301 of the Czech Ministry of Education, and by project GAČR 201/09/0197 of the Czech Science Foundation.

References

[1] R. Diestel, Graph Theory, third ed., Springer, 2005.
[2] J. Edmonds, Lehman's switching game and a theorem of Tutte and Nash-Williams, J. Res. Nat. Bur. Standards Sect. B 69B (1965) 73-77.
[3] T. Kaiser, P. Vrána, Hamilton cycles in 5-connected line graphs, European J. Combin., doi:10.1016/j.ejc.2011.09.015.
[4] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961) 445-450.
[5] A. Schrijver, Combinatorial Optimization, Springer, 2003.
[6] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324.
[7] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961) 221-230.

[^0]: E-mail address: kaisert@kma.zcu.cz.
 0012-365X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2012.01.020

