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a b s t r a c t

We give a short elementary proof of Tutte and Nash-Williams’ characterization of graphs
with k edge-disjoint spanning trees.

© 2012 Elsevier B.V. All rights reserved.

We deal with graphs that may have parallel edges and loops; the vertex and edge sets of a graph H are denoted by V (H)
and E(H), respectively. Let G be a graph. IfP is a partition of V (G), we let G/P be the graph on the setP with an edge joining
distinct vertices X, Y ∈ P for every edge of G with one end in X and another in Y . Tutte [7] and Nash-Williams [4] proved
the following classical result:

Theorem 1. A graph G contains k pairwise edge-disjoint spanning trees if and only if for every partition P of V (G), the graph
G/P has at least k(|P | − 1) edges.

Necessity of the condition in Theorem 1 is immediate. An elegant proof of sufficiency is based on the matroid union
theorem (see, e.g., [5, Corollary 51.1a]) which yields the more general matroid base packing theorem of Edmonds [2]. A
relatively short elementary proof of sufficiency in Theorem 1, due to W. Mader (personal communication from R. Diestel),
is given in [1, Theorem 2.4.1].

In this paper, we give another elementary proof that is also short and perhaps somewhat more straightforward. The
argument directly translates to an efficient algorithm to find either k disjoint spanning trees, or a proof that none exist.

To give the reader an idea of the approach, let us briefly sketch the proof of sufficiency, restricting to the case k = 2. Let T
be a spanning tree of G, and let T = G−E(T ). Wemay assume that T is disconnected as a spanning subgraph of G (otherwise,
we have two disjoint spanning trees). We seek a partitionP of V (G) such that each class ofP induces a connected subgraph
in both T and T . In order to find it, we start with the trivial partition {V (G)} and iteratively refine it (in a suitable way) until
we reach the desired partition P .

Let EP denote the set of edges of G joining different classes of P . The fact that T [X] is connected for each X ∈ P
enables us to count the edges of T in EP . Meanwhile, the density condition yields a lower bound on |EP | and implies
|E(T )∩EP | ≥ |P |−1. Since T is disconnected, and since T [X] is connected for all X ∈ P , this forces a cycle in T intersecting
at least two classes of P . We can replace some edge of T by an edge of this cycle, so as to obtain a new spanning tree
T ′. When done correctly, the exchange ‘improves’ the spanning tree T in a well-defined way. Thus, if the initial spanning
tree T is chosen as optimal, then the basic assumption that T is disconnected must fail, which gives us the desired disjoint
spanning trees.

A variant of this approach was used by Kaiser and Vrána [3] in connection with the conjecture of Thomassen [6] that
4-connected line graphs are Hamiltonian. In that context, the method is applied to hypergraphs instead of graphs and gives
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Fig. 1. The sequence of partitions associated with a 2-decomposition T = (T1, T2) of G. The edges of T1 are shown bold. (a) The partition P1 (dark grey
regions). (b) The partition P2 (light grey regions). Note that P2 = P∞ .

a connectivity condition under which a hypergraph admits a ‘spanning hypertree’ whose complement is, in a way, close to
being connected. A significant difference from the above setup is that the situation in [3] is asymmetric (unlike the packing
of two spanning trees in a graph). It would be interesting to identify more general conditions allowing for the application of
the method.

As noted by D. Král’ (personal communication), amatroid-theoretical reformulation of the argument of the present paper
yields a proof of the matroid base packing theorem mentioned above.

Before we start with the detailed proof of Theorem 1, we introduce some terminology. Let k ≥ 1. A k-decomposition T of
a graph G is a k-tuple (T1, . . . , Tk) of spanning subgraphs of G such that {E(Ti) : 1 ≤ i ≤ k} is a partition of E(G).

We define the sequence (P0, P1, . . . , P∞) of partitions ofV (G) associatedwithT as follows. (See the illustration in Fig. 1.)
First, P0 = {V (G)}. For i ≥ 0, if there exists c ∈ {1, . . . , k} such that the induced subgraph Tc[X] is disconnected for some
X ∈ Pi, then let ci be the least such c , and let Pi+1 consist of the vertex sets of all components of Tci [X], where X ranges over
all the classes of Pi. Otherwise, the process ends by setting P∞ = Pi. In this case, we also set cj = k + 1 and Pj = Pi for all
j ≥ i.

The level ℓ(e) of an edge e ∈ E(G) (with respect to T ) is defined as the largest i (possibly ∞) such that both ends of e
are contained in one class of Pi. To keep the notation simple, the symbols Pi and ℓ(e) (as well as P∞ and ci) will relate to
a k-decomposition T , while P ′

i and ℓ′(e) will relate to a k-decomposition T ′. Thus, for instance, the level ℓ′(e) of an edge e
with respect to T ′ is defined using the partitions P ′

i associated with T ′.
When P and Q are partitions of V (G), we say that P refines Q (and write P ≤ Q) if every class of P is a subset of a class

of Q. When P ≤ Q and P ≠ Q, we write P < Q.
We define a strict partial order ≺ on k-decompositions of G. Given two k-decompositions T and T ′, we set T ≺ T ′ if

there is some (finite) j ≥ 0 such that both of the following conditions hold:

(i) for 0 ≤ i < j, Pi = P ′

i and ci = c ′

i ,
(ii) either Pj < P ′

j , or Pj = P ′

j and cj < c ′

j .

Proof of Theorem 1. The necessity of the condition is clear. To prove the sufficiency, we proceed by induction on k. The
claim is trivially true for k = 0, so assume k ≥ 1 and choose a k-decomposition T = (T1, . . . , Tk) of G such that T1, . . . , Tk−1
are trees and, subject to this condition, T is maximal with respect to ≺.

If Tk is connected, then we are done. Otherwise, suppose that Tk has at least two components (i.e., |P1| ≥ 2). We prove
that there exists an edge of finite level (with respect to T ) contained in a cycle of Tk. Let P = P∞. Recall that for 1 ≤ i < k
and X ∈ P , the graph Ti[X] is connected. Hence Ti/P is a tree and has exactly |P | − 1 edges. By hypothesis, G/P has at
least k(|P |−1) edges, so Tk/P has at least |P |−1 edges. Since Tk/P has |P | vertices and is disconnected, it must contain a
cycle. Thus Tk contains a cycle, since Tk[X] is connected for each X ∈ P . At least two edges of the cycle join different classes
of P , and therefore their level is finite, as required.

Let e ∈ E(Tk) be an edge ofminimum level that is contained in a cycle of Tk, and setm = ℓ(e). (See Fig. 2 for an illustration
withm = 1.) Let P be the class ofPm containing both ends of e. Since e joins different components of Tcm [P], we have cm ≠ k,
and the unique cycle C in Tcm + e contains an edge with only one end in P . Thus, for an edge e′ of C of lowest possible level
we have ℓ(e′) < m. Let Q be the class of Pℓ(e′) containing both ends of e′. Observe that V (C) ⊆ Q . We will exchange e for e′

in the members of the k-decomposition to eventually obtain the desired contradiction.
Let T ′ be the k-decomposition obtained from T by replacing Tcm with Tcm + e − e′ and Tk with Tk − e + e′. The i-th

element of T ′, where 1 ≤ i ≤ k, is denoted by T ′

i . To relate the sequences of partitions associated with T and T ′, we prove
the following two claims.
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Fig. 2. The exchange step for the 2-decomposition T of Fig. 1. (a) A cycle in T2 containing e (dotted) and the cycle C in T1 + e (dashed). (b) The spanning
tree T ′

1 (bold) obtained from T1 by exchanging e for the edge e′ of C . The partitions P ′

1 and P ′

2 associated with the resulting 2-decomposition T ′ are shown
in dark grey and light grey, respectively. Note that P ′

2 is equal to P ′
∞

and that T ≺ T ′ .

Claim 1. If Tc[X] is connected, for some X ⊆ V (G) and 1 ≤ c ≤ k, then T ′
c[X] is connected unless one of the following holds:

(a) c = cm, and X contains both ends of e′, and Q ⊈ X, or
(b) c = k, and X contains both ends of e, and P ⊈ X.

To prove the claim, suppose that T ′
c[X] is disconnected. We have c ∈ {cm, k}, since otherwise Tc = T ′

c . Consider c = cm.
Since E(Tcm) − E(T ′

cm) = {e′
}, both ends of e′ lie in X . Furthermore, Q ⊈ X , since otherwise T ′

cm [X] would contain the path
C −e′ joining the ends of e′, which wouldmake T ′

cm [X] connected. A similar argument for the case c = k completes the proof
of Claim 1.

Claim 2. For all i ≤ m, it holds that c ′

i = ci and P ′

i = Pi.

We proceed by induction on i. The case i = 0 follows from P0 = P ′

0 = {V (G)} and c0 = c ′

0 = k. Let us thus assume that the
assertion holds for some i, 0 ≤ i < m, and prove it for i + 1.

We first prove that Pi+1 = P ′

i+1. Let S be an arbitrary class of Pi+1; we assert that T ′

c′i
[S] is connected. Since Tci [S] is

connected and since c ′

i = ci by the inductive hypothesis, we can use Claim 1 (with X = S and c = ci). Condition (a) in
the claim cannot hold, because every class of Pi+1 containing both ends of e′ contains Q as a subset. For a similar reason,
condition (b) fails. Consequently, T ′

ci [S] is connected, and hence S is a subset of some class of P ′

i+1. Since S was arbitrary,
it follows that Pi+1 ≤ P ′

i+1. Now by the choice of T (and the inductive assumption), we cannot have Pi+1 < P ′

i+1. We
conclude that Pi+1 = P ′

i+1.
Next, we prove that c ′

i+1 = ci+1. Let R ∈ P ′

i+1 and c < ci+1. By the above, R ∈ Pi+1. The definition of ci+1 implies that Tc[R]
is connected. Using Claim 1 as above, we find that T ′

c[R] is also connected. Consequently, c ′

i+1 ≥ ci+1, and by the maximality
of T once again, we must have c ′

i+1 = ci+1. The proof of Claim 2 is complete.
It is now easy to finish the proof of Theorem 1. Since P ′

m = Pm and c ′
m = cm, the classes of P ′

m+1 are the vertex sets of
components of T ′

cm [U], where U ∈ Pm. Observe that for U ∈ Pm − {P}, we have T ′
cm [U] = Tcm [U], and so the components

of T ′
cm [U] coincide with those of Tcm [U]. The graph T ′

cm [P] is obtained from Tcm [P] by adding the edge e that connects two
components of Tcm [P]. It follows that Pm+1 < P ′

m+1, contradicting the choice of T . �
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