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ABSTRACT 

The existence of at least two inequivalent balanced incomplete block designs is 
established for certain designs with ~ = 1 and block size m + 1 where m is a prime 
power. An asymptotic result for the number of inequivalent solutions of such designs 
is also proved. 

1. INTRODUCTION 

A balanced incomplete block design (BIBD) is an arrangement of 
v symbols in b subsets, called blocks, of k distinct symbols each (k < v) 
satisfying the condition that any two distinct symbols occur together in 
exactly ,~ blocks. It then follows that each symbol occurs in exactly r 
blocks and that 

vr = bk ,  

A(v -- 1) = r (k  - -  1). 

In view of these relations we will call a balanced incomplete block design 
with parameters v, b, r, k, ~ as a (v, k, A) configuration. 

Two (v, k, ;~) configurations are said to be equivalent  if one can be 
obtained from the other by a permutation of v symbols; otherwise they 
are said to be inequh~alent. The members of a non-empty family of (v, k, A) 
configurations are said to be inequivalent if no two members are 
equivalent. Two (v, k, A) configurations are said to be dis t inct  if in each 
configuration there is a block which is not in the other configuration. 
The members of a non-empty family of (v, k, A) configurations are said 
to be distinct if every two members of it are distinct. 

A balanced incomplete block design with k = 3 and A ~ 1 is known 
as a Steiner triple system. Assmus and Mattson [1] have proved that, for 
v = 2 ~ - - 1 ,  q >/4,  there are at least two inequivalent Steiner triple 
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systems and that the number of inequivalent Steiner triple systems goes 
to infinity with q. 

The object of this paper is to prove in detail the existence of at least two 
inequivalent (v, 4, 1) configurations for every 

3 e + l -  1 
v - -  3 ~ '  q>~3 ,  

and that the number of inequivalent qt~adruple systems tends to infinity 
with q, and then to prove that in general this result is true for a (v ,p  n § 1, 1) 
configuration where p~ is a prime power, p~ > 2, and 

(pn)~+l _ 1 
v =  pn 1 , q>~3 .  

The case pn = 2 has been considered by Assmus and Mattson [1]. 

2. ORTHOGONAL ARRAYS ON THREE SYMBOLS AND QUADRUPLE SYSTEMS 

An arrangement of v symbols in an array with h rows and Av ~ columns 
is called an orthogonal array of strength 2 and index A if in any 2 rows all 
possible 2-tuples on v symbols occur ~ times each. We denote this arrange- 
ment by [Av 2, h, v, 2]. It is well known that the existence of h -- 2 mutually 
orthogonal Latin squares on v symbols is equivalent to the existence 
of a [v z, h, v, 2] [see 4]. It is also well known that, if v = pn, a prime power, 
then there is a complete set of v -- 1 mutually orthogonal Latin squares 
of order v and hence an orthogonal array [v 2, v -k 1, v, 2] exists [5]. 

Consider the following orthogonal array [9, 4, 3, 2] in its standard form 
constructed from a complete set of 2 mutually orthogonal Latin squares 
of order 3 in their standard form 
is (012) .  

[i ~176 Ao = 1 2 
1 2  
1 2  

where the first row in each Latin square 

1 1 1 2 2 2 " ]  
0 1 2 0 1 
1 2 0 2 0  " 
2 0 1 1 2 

The permutations (0 l) and 
respectively, where 

A 1 = 

(02) transform A o into the arrays A1 and A~, 

1000   ] 
0 2  1 0 2  1 0 
0 2 0 2  1 2 1 ' 
0 2 2  1 0 0 2  
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A2 ~- 

E 22111~176 
1 0 2  1 0 2  1 
1 0 I 0 2 0 2  " 
1 0 0  2 1 1 0 

A quadruple system on v symbols is a (v, 4, 1) configuration. Let S(v) 
be a set of cardinality v and let Q(v) be a quadruple system on S(v). Let 
S(3v + 1) be the set of 3v + 1 symbols (w0, wl, w2) and ( . )  where w runs 
through S(v). Let (w, x, y, z) be a block of Q(v). Then the nine blocks that 
we get after adjoining as suffixes the elements of the columns of A0 to 
w, x, y, z, respectively, are said to be obtained by developing the block 
(w, x, y, z) by using the orthogonal array A0. 

I f f  is a function on the blocks of Q(v) with values in the set (0, 1, 2) 
and if Q1(3v § 1) denotes the set of blocks obtained by developing each 
block o f f - l ( 0 )  by using the orthogonal array Ao, each block o f f - l ( 1 )  
by using the orthogonal array Ax, and each block o f f - l (2 )  by using the 
orthogonal array A2 together with the blocks of the form (Wo, wa, w2, *) 
for each w in S(v), then we have the following: 

THEOREM 2.1. Q1(3v + 1) is a quadruple system on S(3v + 1). 

PROOF: We have only to show that any pair of distinct elements from 
S(3v + 1) occurs exactly in one block of Q1(3v § 1). Let a, b ~ S(3v + 1), 
a~&b. 

CASE (i). If a = x i , b  = x j , i = / = j , O  <~i,j<~2, and x is in S(v), 
then (x0, Xl, x2, *) is the unique block of Q1(3v + 1) that contains x~ 
and xj .  

CASE (ii). Let a = xi , b = yi , 0 ~ i, j <~ 2, x, y ~ S(v), and x =/= y. 
Now there exists a unique block, say (x, y, w, z) ~ Q(v), that contains x 
and y. Let f((x,  y, w, z)) = m, 0 ~< m ~< 2. Since any two rows of each 
of the orthogonal arrays A0, A1, and A2 contain the ordered pair (i,j) 
as a column exactly once, it follows that there is a unique block in 
Q1(3v § 1) which contains x~ and yj .  

CASE (iii). Let a ---- x~, 0 ~< i ~ 2, and b : , .  Then (x 0 , x l ,  Xz, *) 
is the unique block of Qt(3v q- 1) that contains x~ and *. 

This theorem is a slight generalization of a theorem due to Bose and 
Shrikhande [3]. 

It is well known that a finite projective geometry offers a series of 
balanced incomplete block designs [2]. In particular, ifPG(t,  m), m ---- pn, 
a prime power, denotes the projective geometry of dimension t based on 
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the Galois field GF(pn), then by treating the points as symbols and lines 
as blocks we have a balanced incomplete block design with 

m t + l -  1 (m ~+1 -- 1)(m t -  1) 
v :  , b =  m -  1 (m z -  1 ) ( m -  1) 

m ~ -  1 
r = - -  k - - - -m-k  1, ~ = 1 .  

m - - l '  

For t ~ 2, PG(t, m) is known to be Desarguesian [6]. 

TI-tEORE~ 2.2. For every v ---- (3 q+l -- 1)/(3 -- 1), q ~> 3, there are at 
least two inequivalent quadruple systems on S(v). 

PROOF: Let v = ( 3  ~+1- 1) / (3- -1) ,  t ~ 2 .  Let Q(v) denote the 
quadruple system on S(v) obtained by taking the points of PG(t, 3) as 
symbols and the lines in it as blocks. Let Q(3v q- 1) be the quadruple 
system on S(3v q- 1) obtained by taking the points of  PG(t q- 1, 3) as 
symbols and the lines in it as blocks. Both Q(v) and Q(3v q-1) are 
Desarguesian. 

Let the triangles with vertices a, b, c and with vertices d, e, f be in 
perspective with the point p as the center of perspectivity in PG(t, 3). 
Then [p, a, d], [p, b, e] and [_p, c,f] are lines in PG(t, 3). Let the lines 
[a, b], [d, e] meet in x; [b, c], [e,f] meet in y and [a, c], [d,f] in z. Then 
[x, y, z] is a line in PG(t, 3). 

Let F be a function on the blocks of Q(v) with values in the set (0, 1, 2) 
which takes the value 0 on each of  the lines [a, b, x], [b, c, y], [a, c, z], 
[d, e, x], [e,f, y], [d, fi z], [p, a, d], [p, b, e], [p, c,f] and the value 1 on 
the line [x, y, z] and any value elsewhere. 

We speak of the blocks in the quadruple system QF(3v q- 1) as lines. 
Consider the lines [ao, bo, Xo], [do, eo, Xo], [Po, ao, do], and [Po, bo, eo] 
which are the developments of the corresponding lines [a, b, x], [d, e, x], 
[p, a, d], and [p, b, e] from the first column of the orthogonal array Ao and 
the lines [b 0 , e l ,  Yl], [ao, el ,  zl], [eo , f l ,  Yl], [do , f l ,  zl], [Po, el ,f l]  which 
are the developments of the corresponding lines [b, c, y], [a, c, z], [e,f, y], 
[d,f, z], and [p, c,f] from the second column of the orthogonal array A o . 
Clearly the lines [a o, bo, xo], [bo, cx, Yl], [ao, c~, zx] form a triangle 
through the vertices ao, bo, c~. Also the lines [do, eo, Xo], [eo ,f~ , Y l ] ,  

[do, fx ,  zl] form a triangle through the vertices do, e0 , f l  �9 These two 
triangles are in perspective from the point P0 and the corresponding lines 
meet in xo, y l ,  and zl ,  respectively. However the line through y~ and zx 
does not pass through Xo in Qe(3v q- 1). (Note that, in Ax, two l's occur 
only in the first column and so the line through y~ and zx passes through 
xl .) Therefore Qr(3v-k 1) is not Desarguesian. An equivalence clearly 
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preserves the Desarguesian property, hence Q(3v ~- 1) and QF(3V q- 1) are 
inequivalent quadruple systems on S(3v -~ 1). 

3. ON THE NUMBER OF INEQUIVALENT QUADRUPLE SYSTEMS 

LEMMA 3.1. Let Q(v) be a quadruple system on S(v) and let f and g 
be two functions on the blocks of Q(v) with values in the set (0, 1, 2). l f  f C= g, 
then Q1(3v § 1) and Qg(3v + 1) are distinct. 

PROOF: We say that two orthogonal arrays [v z, v + 1, v, 2] on the 
same set of symbols are distinct if each contains a column regarded as a 
(v § 1)-tuple which is not in the other. In fact, if two orthogonal arrays 
Iv z, v + 1, v, 2] on the same set of symbols are distinct then there exist ix 
and iz such that the columns which contain ix and i2 in the first two 
positions in these two arrays are distinct. The members of a non-empty 
family of orthogonal arrays Iv 2, v § 1, v, 2] on the same set of symbols 
are said to be distinct if every two of them are distinct. It is easy to see 
that Ao, Ax, and A 2 are distinct. 

Let (w, x, y, z) ~ Q(v) and let f((w, x, y, z)) = i, g((w, x, y, z)) = j, 
i :~ j, 0 ~< i, j ~ 2. Let ix and i2 be such that the columns which contain 
il and i2 in the first two places in At and Aj are distinct. Let these columns 
be (ix, i2, i3, i4) and (ix, l"2, i3, i4). Then (i3, i4) :~ (i3, [4). Now 

(Wq, Xi2 , yla , Zi, ) C Q1(3v § 1) and (wq, xi , ,  Yr3, zQ ~ Qg(3v + 1) 

and these are the unique blocks in Q1(3v -- 1) and Qg(3v + 1), respectively, 
which contain wq and x~=. These blocks are distinct and so Ql(3v + 1) and 
Q,(3v + 1) are distinct. 

LEMMA 3.2. Let Q(v) and Q(v) be two distinct quadruple systems on 
S(v). I f  f and g are functions defined on the blocks of Q(v) and Q(v), respec- 
tively, with values in the set (0, 1, 2) then Q1(3v + 1) and Qo(3v § 1) are 
distinct. 

PROOF: As Q(v) and ~)(v) are distinct and since there is a unique block 
containing w and x both in Q(v) and Q(v), let (w, x, y, z)~ Q(v) and 
(w, x, y, ~)e Q(v) where the set (y, z) and the set (y, ~) are not equal. 
We may assume that z :#: ~. 

Letf((w, x, y, z)) = i, g((w, x, y, ~)) = j, 0 ~ i , j  ~< 2. Let (0, 0, i3, i4) 
and (0, 0,ja,j4) be the unique columns in At and A~, respectively, 
containing (0, 0) in the first two places. Then 

(wo, Xo, Y~x' z~2) e Qy(3v + 1) and (wo, xo, Yy3, ~'a) ~ Qa( 3v + 1). 
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These are the unique Mocks in Q1(3v + 1) and ~)g(3v + 1) containing 
w0 and x0. As zq =/= zs~, it follows that  Ql(3v + 1) and L?g(3v + 1) are 
distinct. 

Let v(t) = (3 *+1 --  1)/(3 - -  1) and let O(t) and I(t) denote the number  
o f  distinct quadruple  systems and the number  o f  inequivalent quadruple  
systems, respectively, on v(t) symbols. Clearly, 

D(t) 
I(t) >1 (v(t))~" 

Now f rom Lemma 3.1 and Lemma 3.2 it follows that  

D(t) >~ 3b"- l )D( t -  1), 

where b ( t -  1) denotes the number  of  blocks in a quadruple  system on 
v(t -- 1) symbols. As D(1) = 1, we have 

3,,) 
I(t) >~ (v(t))----~ ' 

where r  t-1 = 2~=1 b(h). We have 

b(h) = 
(3 n + x -  1)(3 n --  1) 

(3 ~ -  1)(3 --  I) 

This gives 

t-x t-1 (3~+1 __ 1)(3 ~ __ 1) 
b(h)= 2 (3 z _ 1 ) ( 3 _  1) 

h=l h=l 

1 t--1 
= ]-6 h~__l (32h+1 --  3n+1 - -  3h + 1) 

3 s (3~) t-1 - -  1 32 3 t - l -  1 3 3 t - i -  1 t - -  1 

+ 16 16 3 ~ - - 1  16 3 - - 1  16 3 - - 1  

27 (9~_ 1 _  1 ) - - 3 ( 3 t -  x _  1 ) + t - -  1 
= 12---8 8 16 

We have (v(t))[ = F(v(t) + 1), where F(x) is the Euler 's gamma function. 
Using Stirling's approximat ion for  the gamma function, which is 

F(x) = x ' - l / 2 e - ' V ~  (1 + 0(1)). 

We obtain the following result. 
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THEOREM 3.1. D(t)  >1 3 '~ctl, where 

1~8 (3t-1 - -  1) + - -  
3 

~(t) = (9 '-1 - -  1) - -  g 

and hence limt_~ I(t)  = oe. 

t - - 1  
16 

4. I N E Q U I V A L E N T  D E S I G N S  W I T H  

m q + l -  1 
v - -  - -  pn, q . ~ 3  and k m +  1. m - - 1  ' m =  " = 

We know that  

1. PG(t ,  m), m = p~, gives a balanced incomplete block design with 

m t + l -  1 (m ' + 1 -  1)(m t -  1) 
v - - - - ,  b =  

m - - 1  (m 2 - 1 ) ( m - 1 )  ' 

m t -  1 
r - - - -  k = m + l ,  h =  1, 

m - - l '  

where we treat  points as symbols and lines as blocks. I f  Q(v) denotes this 
design then it is Desarguesian for  t ~> 2. 

2. An or thogonal  a r ray  [m 2, m + 1, m, 2] exists where m = p~. 

3. Let m = p~. Let Ao be the or thogonal  array [m 2, m q- l, m, 2] in its 
s tandard form. We have 

h 0 = 

i 0 "'" 0 Jl J2 1 . '- ( m - - l )  

~ B1 B2 

1 "" ( m - - l )  

""" J(m-1) 

�9 "" B ( m _ l )  

where Ji is a vector with m components  each equal to i and all the Bi's 
are Latin squares of  order m in their standard form. This means that  in 
each of  the columns of  Ao corresponding to those of  Bi the element i 
appears  exactly twice whereas each other element occurs only once, 
0 < i ~ m --  1. The element zero occurs only once in the 2nd, 3rd ..... m-th 
column of  Ao. Therefore the only column that  contains zero twice is the 
first column which has all its elements zero. 

Similar considerations hold for  every orthogonal  array Ai ,  where Ai 
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is obtained by the permutat ion (0 i) on the symbols o f  A 0 , 0  < i ~< m --  1. 
The or thogonal  arrays A~, 0 ~< i ~< m -  I, are distinct. Therefore if  
i :~ j then there exist i~ and is such that  the unique columns in Ai and A~ 
which contain il and is in the first two places are distinct. 

4. F rom  a (v, m § 1, I) configuration, m = p~, by using a function f 
defined on its blocks with values in the set (0, 1 ..... m -  1) and by 
developing each block in f - l ( i )  by using the orthogonal  array A~, 
0 ~< i ~< m --  1, we have a set of  blocks each containing m q- 1 symbols 
f rom the set (w0, Wl, w2 ..... win-0 II ( , )  of  v p ~ +  1 symbols where w 
runs through S(v). We denote this set of  blocks by (vp" q- 1, m -k 1, 1)t .  

F rom a careful examinat ion o f  the proofs of  the results in the previous 
sections we obtain the following results: 

THEOREM 4.1. (vp'* + 1, m + 1, I)/ is a balanced incomplete block 
design on vp ~ q- 1 symbols with m + 1 symbols in each block and any two 
symbols occurring together in exactly  one block. 

THEOREM 4.2. Let  v = (m q+l --  1)/(m --  1), m = p~, m > 2, q > /3 .  
Then there exist at least two inequivalent (v, m + 1, 1) configurations. 

LEMMA 4.1. Let  f and g be functions on the blocks o f  a (v, m + 1, 1) 
configuration, m = p'*, with values in the set (0, I .... , p " - - 1 ) .  I f  f :;& g 
then the configurations (vp ~ q- 1, m + I, 1)1 and (vp ~ + 1, m q- 1, 1)g 
are distinct. 

LEMMA 4.2. Let  (v, m q- 1, 1) and (v, m q- 1, 1) be two distinct con- 
figurations, m = pn, and let f and g be two functions defined on the blocks 
o f  (v, m -b 1, 1) and (v, m q- 1, 1), respectively, and with values in the set 
(0, I ..... p'~ - -  1). Then the configurations (vp n q- 1, m -k 1, 1)1 and 
(vp n -k 1, m + 1, 1)g are distinct. 

Let  v(t) = (m ~+1 --  1)/(m --  1), m = pn, and let D(t)  and I(t)  denote 
the number  of  distinct (v(t), m -k 1, 1) configurations and the number  
of  inequivalent (v(t), m -k 1, 1) configurations, respectively. Then  we have 
the following result: 

THEOREM 4.3. D(t)  ~ m *lt~ where 

q~(t) : c1((m2) *-1 - -  1) - -  cz(m *-x - -  1) + - -  
t - - 1  

ca 

and cx , c~ , ca are positive integers. Hence limt_,~o I ( t )  = oo. 

REMARK. It can be easily shown that, when p~ > 2, A : s  are not  the 
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only mutually distinct or thogonal  arrays. For  example, for pn = 3, each 
A~, 0 ~ i ~< 2, generates 3 other orthogonal arrays by changing the first 
row with each of  the other rows, giving a set o f  4 distinct orthogonal  
arrays. Hence instead o f  3 we could have used 12 distinct orthogonal 
arrays in the case of  quadruple systems. When p~ > 3, one can also 
change the second row with each of  the following rows. These facts may 
be utilized to improve upon the asymptotic behaviour of  D(t) and hence 
that o f  I(t). 

It is proposed to consider in a subsequent communicat ion similar results 
for designs with parameters corresponding to points and lines in a finite 
Euclidean geometry. 
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