
 Procedia Technology 12 (2014) 246 – 254

2212-0173 © 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of the Petru Maior University of Tirgu Mures.
doi: 10.1016/j.protcy.2013.12.482

The 7th International Conference Interdisciplinarity in Engineering (INTER-ENG 2013)

Clustering software components for program restructuring and
component reuse using hybrid XNOR similarity function

Chintakindi Srinivasa,Vangipuram Radhakrishnab,*, C.V. Guru Raoc
aAssociate Professor of CSE, Kakatiya Institute of Technology and Science, Warangal, INDIA

bDepartment of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, INDIA
cProfessor of Computer Science and Engineering, SR Engineering College,Warangal, INDIA

Abstract

Component based software development has gained a lot of practical importance in the field of software engineering from
academic researchers and also from industry perspective. Finding components for efficient software reuse is one of the important
problems aimed by researchers. Clustering reduces the search space of components by grouping similar entities together thus
ensuring reduced time complexity as it reduces the search time for component retrieval. In this research, we instigate a
generalized approach for clustering a given set of documents or software components by defining a similarity function called
hybrid XNOR function to find degree of similarity between two document sets or software components. A similarity matrix is
obtained for a given set of documents or components by applying hybrid XNOR function. We define and design the algorithm for
component or document clustering which has the input as similarity matrix and output being set of clusters. The output is a set of
highly cohesive pattern groups or components.

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Department of Electrical and Computer Engineering, Faculty of
Engineering, “Petru Maior” University of Tîrgu Mureș

Keywords : clustering; similarity; frequent item; mining; classification; component.

1. Introduction

The Universality and Ubiquitous nature of the internet made the possibility to access a huge amount of virtual
unlimited information in the digital text format by the humans. This gave a new definition for data mining creating
new possibilities for mining text information.

* Corresponding author. Tel.: +9700684242.
E-mail address: radhakrishna_v@vnrvjiet.in

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of the Petru Maior University of Tirgu Mures.

ScienceDirect

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82124411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

247 Chintakindi Srinivas et al. / Procedia Technology 12 (2014) 246 – 254

Fig. 1. abstract view of clustering process

Consequently the text oriented derivation of data mining called as text mining has been gaining a lot of practical
significance as the available data grows at higher rate than can be perceived or handled by the humans. In this
context the problem of clustering is one topic that gained more practical importance from the researchers and more
specifically from the perspective of the software industry. The abstract view of clustering process is shown in Fig. 1.
The requirement for clustering comes from the need for decision making such as software component classification
and component clustering, user behavior prediction, performing software component search and in component
retrieval from software library. Clustering is also widely used in many practical domains such as text classification,
bioinformatics, medicine, image processing to name a few. Clustering may be defined as the process of grouping
similar set of patterns together [1].

The input to clustering algorithm usually may be any set of entities or patterns or text files or images or software
components. The output of clustering algorithm will be a partition of cohesive groups. The descriptions or
representations of clusters may be used for decision making in selecting a software component or pattern of interest.

One interesting property of clustering is all the patterns within a cluster share common properties in some sense
and patterns in different clusters are dissimilar. From perspective of software engineering, all the components within
same cluster have high cohesion and low coupling.

Software component clusters can be treated as highly cohesive groups with low coupling which is the desired
feature. One disadvantage of existing data clustering methods is that they do not adequately address the problem of
processing large datasets with a limited amount of resources. Using these limitations as our motivation, so if we can
try to reduce the dataset for training process it can help in reducing the cost of training which in turn improves
efficiency of clustering. If done so, clustering takes less amount of space and hence forms a compact storage of
patterns. Clustering is not any one specific algorithm that we can stick firm to, but it must be viewed as the general
task to be solved.

Clustering algorithms may unsupervised or supervised [1]. In unsupervised clustering the partitions are viewed as
the unlabelled patterns or components. Supervised clustering algorithms label the patterns which can be used to
classify the components for decision making. Hence the partitions obtained by clustering process may be labeled or
unlabeled.

A new method called Maximum Capturing is proposed for document clustering [4].Maximum Capturing includes
two procedures:1.Constructing document clusters and 2. Assigning cluster topics. The search complexity can be
reduced by using the algorithm [11] where ever necessary as part of component retrieval.

2. Taxonomy

The problem of finding frequent itemsets is first initiated from [9] which uses frequent items to find association
rules in large transactional databases. In [2] clustering a given set of text documents from neighbour set is proposed.
In [3] the authors propose a method for discovering maximum length frequent item sets. In [7], the classification of
text files or documents is done by considering Gaussian membership function and making use of it to obtain clusters
by finding word patterns. Each cluster is identified by its word pattern calculated using fuzzy based Gaussian
membership function once clusters are formed.

In this paper the idea is to first obtain frequent item sets for each document using existing association rule mining
algorithms either by horizontal or vertical approach. Once we find frequent itemsets in each document then we form
a Boolean matrix with rows indicating documents and columns indicating unique frequent items from each
document. This is followed by the computation of a ternary feature vector for each document pair, represented as a
2D array or 2D matrix by redefining the XNOR function as hybrid XNOR logic with slight modification in the

Clustering Algorithm

Collections of patterns such as
software components or text
files or images

Partitions or
Clusters

248 Chintakindi Srinivas et al. / Procedia Technology 12 (2014) 246 – 254

function introducing high impedance variable as Z. The idea of maximum capturing is taken as the base framework
for clustering [4]. The authors perform clustering using XOR similarity function [15].

3. Proposed Work

To design a clustering algorithm we must first design the similarity function which is the heart of any clustering
algorithm. We define a generalized similarity function called Hybrid XNOR function which may be used to compute
similarity feature between any pair of entities which may be software components or software patterns or documents.
The documents may be text files to be classified or software product documents or code fragments. We define the
similarity function S as a function of any two entities A and B which is a tri state function as shown below in the
truth Table 1.

Table 1. Truth Table of hybrid XNOR Similarity Function

A B S(A,B)
0 0 Z
0 1 0
1 0 0
1 1 1

The algorithm for document clustering has its input as documents with frequent item sets and output as set of

clusters formed dynamically. The approach followed is a tabular approach. Similarly the algorithm for component
clustering has its input as software components with properties predefined and the output is a set of highly cohesive
components with low coupling feature.

3.1 Algorithm for Clustering

It may be used for software component clustering, document clustering or pattern clustering in general

Algorithm. Algorithm for Clustering.

Input: Document set, frequent items.

Output: set of clusters.

Begin of Algorithm

Step1:

 For each document D do

 Begin

 Step1.1 Remove stop words and stemming words from each document.

 Step1.2 Find unique words in each document and count of the same.

 Step1.3 Find frequent itemsets of each document

 End for

Step 2: Form a word set W consisting of each word in frequent item sets of each document.

Step 3: Form Dependency Boolean Matrix with each row and column corresponding to each Document and each

 word respectively

 For each document in document set do

 Begin

249 Chintakindi Srinivas et al. / Procedia Technology 12 (2014) 246 – 254

 For each word in word set do

 Begin

 If (word wk in Word set W is in document Di)

 Begin

 Set D[Di, wk] = 1

 Else

 Set D[Di, wk] = 0

 End if

End for

 End for

Step 4: Find the Feature vector similarity matrix by evaluating similarity value for each document pair applying

 Hybrid XNOR Function defined in table 1 to obtain the matrix with feature vectors for each document pair.

Step 5: Replace the corresponding cells of matrix by count of number of zeroes in tri state feature vector.

Step 6: At each step, find the cell with maximum value and document pairs containing this value in the matrix.

 Group such document pairs to form clusters. Also if document pair (X,Y) is in one cluster and document pair

 (Y, Z) is in another cluster, form a new cluster containing (X, Y, Z) as its elements.

Step 7: Repeat Step6 until no documents exist or we reach the stage of first minimum value leaving zero entry.

Step 8: Output the set of clusters obtained.

Step 9: Label the clusters by considering candidate entries.

End of algorithm

3.2 Case Study

Consider the document sets with the frequent item sets obtained after mining using any of the existing association
rule mining algorithms as shown below. Here we use can also use association rule mining algorithm with multiple
support and confidence thresholds. We consider a set of random set of 9 documents as the training set for the below
example.

 Table 2. Documents and Corresponding Frequent item sets

DOCUMENTS

 FREQUENT ITEMSETS

DOCUMENT 1 { TESTING, TRAINING, CLUSTER}
DOCUMENT 2

 {SVM , MINING, CLUSTER}

DOCUMENT 3
 { SVM, TRAINING, MINING, CLUSTER}

DOCUMENT 4 {TESTING, TRAINING, MINING, CLUSTER}
DOCUMENT 5

 {SVM , CLUSTER}

DOCUMENT 6
 {TESTING, TRAINING, MINING}

DOCUMENT 7
 {TESTING, SVM, TRAINING}

DOCUMENT 8
 {SVM, TRAINING}

DOCUMENT 9
 {TRAINING, MINING, CLUSTER}

We now construct a Boolean matrix with rows indicating each document and column corresponding to each

unique frequent item from set of frequent item sets of all documents sets respectively.

250 Chintakindi Srinivas et al. / Procedia Technology 12 (2014) 246 – 254

Table 3. Boolean matrix Representation of Table.2

 TESTING TRAINING CLUSTER SVM MINING
D1 1 1 1 0 0
D2 0 0 1 1 1
D3 0 1 1 1 1
D4 1 1 1 0 1
D5 0 0 1 1 0
D6 1 1 0 0 1
D7 1 1 0 1 0
D8 0 1 0 1 0
D9 0 1 1 0 1

We form a matrix D [n-1, n] for n documents and consider only the upper triangular region. The cells of the

matrix are filled by applying the similarity function S for which each document pair forms the input as shown below

Table 4. Feature Vector Representation of document set
 D1 D2 D3 D4 D5 D6 D7 D8 D9

D1 x {0,0,1,0,0} = 1 {0,1,1,0,0}=2 {1,1,1,Z,0}=3 {0,0,1,0,Z}=1 {1,1,0,Z,0}=2 {1,1,0,0,Z}=2 {0,1,0,0,Z}=1 {0,1,1,Z,0}=2

D2 x x {Z,0,1,1,1}=3 {0,0,1,0,1 }=2 {Z,Z,1,1,0}=2 {0,0,0,0,1}=1 {0,0,0,1,0}=1 {Z,0,0,1,0}=1 {Z,0,1,0,1}=2

D3 x x x {0,1,1,0,1}=3 {Z,0,1,1,0}=2 {0,1,0,0,1}=2 {0,1,0,1,0}=2 {Z,1,0,1,0}=2 {Z,1,1,0,1}=3

D4 x x x x {0,0,1,0,0}=1 {1,1,0,1,1,}=4 {1,1,0,0,0 }=2 { 0,1,0,0,0}=1 { 0,1,1,Z,1}=3

D5 x x x x x {0,0,0,0,0}=0 {0,0,0,1,Z}=1 {Z,0,0,1,Z}=1 {Z,0,1,0,0}=1

D6 x x x x x x {1,1,Z,0,0}=2 {0,1,Z,0,0}=1 {0,1,0,Z,1}=2

D7 x x x x x x x {0,1,Z,1,Z}=2 {0,1,0,0,0}=1

D8 x x x x x x x x {Z,1,0,0,0}=1

Once we obtain the above table with feature vectors for each document pair then we replace the corresponding
cells of matrix by count of number of zeroes in tri state feature vector. We call it tri-state because it can have 0 or 1
or z as the value. This is shown in the table below.

Table 5. Similarity Matrix with Feature Vector Replaced by Count of 0s.

 D1 D2 D3 D4 D5 D6 D7 D8 D9
D1 x 1 2 3 1 2 2 1 2
D2 x x 3 2 2 1 1 1 2
D3 x x x 3 2 2 2 2 3
D4 x x x x 1 4 2 1 3
D5 x x x x x 0 1 1 1
D6 x x x x x x 2 1 2
D7 x x x x x x x 2 1
D8 x x x x x x x x 1

Now consider only the element of the matrix with the highest value as shown in the table below. The step by step

procedure is shown below in the form of tables which is self explanatory.
Step1: find the first maximum value from the matrix and target only those cells having this value to form initial
cluster.

Table 6. Content of Similarity Matrix showing step1

 D1 D2 D3 D4 D5 D6 D7 D8 D9
Find max value from the above table which
is 4 here and target those cells as they form
the best candidate solutions and replace
those cell by x

Stage1: (4, 6) have val as 4. So form
cluster as (4, 6).

D1 x 1 2 3 1 2 2 1 2
D2 x x 3 2 2 1 1 1 2
D3 x x x 3 2 2 2 2 3
D4 x x x x 1 4 2 1 3
D5 x x x x x 0 1 1 1
D6 x x x x x x 2 1 2
D7 x x x x x x x 2 1
D8 x x x x x x x x 1

251 Chintakindi Srinivas et al. / Procedia Technology 12 (2014) 246 – 254

Step 2: Find the next max value from the above table which is 3 here and target those cells as they form the best
 candidate solutions. Now cluster {4, 6} is dynamically changed to {1, 2, 3, 4, 6, 9} and is no more a
 separate cluster as shown in table.2.

Table 7. Content of Similarity Matrix showing step2

 D1 D2 D3 D4 D5 D6 D7 D8 D9 Find the next max value from the above
table which is 3 here and target those cells as
they form the best candidate solutions.

Stage2: consider only un-clustered document
set {1, 2, 3, 5, 7, 8, 9} ad search for value 3 in
corresponding columns. (1,4)-(2,3)-(3,4)-(3,9)
: So form cluster {1,2,3,4,9} as new Cluster.
Set the values as zero or x.
Cluster 1: {1, 2, 3, 4, 6, 9} After Merging

D1 x 1 2 3 1 2 2 1 2
D2 x x 3 2 2 1 1 1 2
D3 x x x 3 2 2 2 2 3
D4 x x x x 1 X 2 1 3
D5 x x x x x 0 1 1 1
D6 x x x x x x 2 1 2
D7 x x x x x x x 2 1
D8 x x x x x x x x 1

Step 3: Find the next max value from the above table which is 2 here and target those cells as they form the best
candidate solutions.

Table 8. Content of Similarity Matrix showing step3

 D1 D2 D3 D4 D5 D6 D7 D8 D9 Find the next max value from the above
table which is 2 here and target those cells
as they form the best candidate solutions.

Stage3: consider only un-clustered
document set {5, 7, 8} ad search for value
2 in corresponding columns. Here (7, 8)
has 2. So form cluster {7, 8} as new
Cluster. Set the values as zero or x.
Cluster 2: {7, 8}

D1 x 1 2 X 1 2 2 1 2
D2 x x X 2 2 1 1 1 2
D3 x x x X 2 2 2 2 X
D4 x x x x 1 X 2 1 X
D5 x x x x x 0 1 1 1
D6 x x x x x x 2 1 2
D7 x x x x x x x X 1
D8 x x x x x x x x 1

Step 4: Find the next max value from the above table which is 1 here and target those cells as they form the best
candidate solutions.

Table 9. Content of Similarity Matrix showing step4

 D1 D2 D3 D4 D5 D6 D7 D8 D9 Stage4: consider only un-clustered
document set {5} and search for value
1 in corresponding columns. Here (5,
7), (5, 8), (5, 9) are all 1s. But this is
next minimum value after zero if we
consider initial table values before
clustering. Hence 5 can’t be similar to
any of those documents and we must
place it as a separate cluster {5}.

D1 x 1 2 X 1 2 2 1 2
D2 x x X 2 2 1 1 1 2
D3 x x x X 2 2 2 2 X
D4 x x x x 1 X 2 1 X
D5 x x x x x 0 1 1 1
D6 x x x x x x 2 1 2
D7 x x x x x x x X 1
D8 x x x x x x x x 1

The Set of clusters finally formed are as shown in Fig. 2.

Cluster-1: {1, 2, 3, 4, 6, 9}

Cluster-2 :{ 7, 8}

Cluster-3 :{ 5}

 Cluster-1 Cluster-2

252 Chintakindi Srinivas et al. / Procedia Technology 12 (2014) 246 – 254

 Cluster-3

Fig. 2. Set of Clusters formed after applying the algorithm

4. Case Study for Software Component Clustering or Program Partitioning

Consider the following program fragment:

Procedure Sum_and_Prod (n: integer; arr: int_array; var sum, prod: integer; var avg: float)

var i : integer;
begin

1. sum = 0;
2. prod = 1;
3. for i = 1 to n do begin
4. sum = sum + arr[i];
5. prod = prod * arr[i];
6. end;
7. avg = sum / n;

end;

The Table 10 below shows the matrix with rows denoting line numbers or statements, columns denoting variable
names.Si indicates ith line.

 Table 10. Boolean Matrix for program module

Line Numbers Sum Prod N Arr Avg
S1 1 0 0 0 0
S2 0 1 0 0 0
S4 1 0 0 1 0
S5 0 1 0 1 0
S7 1 0 1 0 1

The table below shows the similarity matrix formed using algorithm. The below list of tables show the step by

step process of forming clusters and final output of clusters and are self descriptive.

 Table 11. Trace of algorithm for stage 1

 S1 S2 S4 S5 S7 Group S1 and S4 as (S1, S4) =1 and Mark as X. Mark Row elements of S4 by X.
This is done to reduce overlapping of variables. So (S1, S4) forms one cluster. S1 X 0 1 0 1

S2 X 0 1 0
S4 X 1 1
 S5 X 0
 S7 X

Component-1

Component-4

Component-2

Component-9

Component-6

Component-3
Component-7

Component-8
Component-5

253 Chintakindi Srinivas et al. / Procedia Technology 12 (2014) 246 – 254

 Table 12. Trace of algorithm for stage 2

 Table 13. Trace of algorithm for stage 3

The program module may finally be separated into two individual cluster modules which may run independently

or in parallel.

 Cluster1 Cluster2

Fig. 3. Program partitioning to run two modules in parallel

5. Conclusion

In this paper we define a new similarity function to compute similarity between any two software components or
text files. An algorithm to cluster a set of given documents or text files or software components is designed which
uses the proposed similarity function called hybrid XNOR to find the degree of similarity among any two entities.
The input to algorithm is a similarity matrix and the output is the set of clusters. In future, the approach can be
extended to classify the components using classifiers by applying fuzzy logic. The concept of Support vector
machines may be used for classification once clusters are formed. The search complexity can be reduced by using
the algorithm [11] where ever necessary as part of component retrieval.

Acknowledgements

We are very much thankful to all the anonymous reviewers and mainly thankful to Sri Dr. C.V.GuruRao for his
valuable suggestions and support throughout the work.

References

[1] Devi SV, Murthy NM. Text Book on Pattern Recognition. An Introduction. University Press.
[2] Luo C, Li Y, Chung SM. Text document clustering based on neighbors , Data & Knowledge Engineering, 2009; 68: 1271–1288.
[3] Tianming Hu,Sam Yuan Sung, Hui Xiong, Qian Fu. Discovery of maximum length frequent itemsets, Information Sciences, 2008; 178: 69–

87.

 S1 S2 S4 S5 S7 Again we have (S1, S7) =1. So group S1 and S7 into one cluster and mark the
cell as X. As already S7 row is marked no need to do so.

Since (S1, S4) are similar and (S1, S7) are similar hence (S1, S4, S7) are all
similar and placed into one cluster.

i.e Cluster1 = {S1,S4,S7}

S1 X 0 X 0 1
S2 X 0 1 0
S4 X X X
S5 X 0
S7 X

 S1 S2 S4 S5 S7 Finally we have (S2, S5) =1. So group S2 and S5 into one cluster
and mark the corresponding cell as X. As already S5 row is marked
no need to do so.
i.e Cluster2 = {S2,S5}

S1 X 0 X 0 X
S2 X 0 1 0
S4 X X X
S5 X 0
S7 X

1. sum = 0;
4. sum = sum + arr[i];
7. avg = sum / n;

2. prod = 1;
5. prod= prod*arr[i];

254 Chintakindi Srinivas et al. / Procedia Technology 12 (2014) 246 – 254

[4] Wen Zhanga,, Taketoshi Yoshida, Xijin Tang, Qing Wang. Text clustering using frequent itemsets, Knowledge-Based Systems, 2010; 23:
379–388

[5] Wen Zhanga,Taketoshi Yoshida, Xijin Tang. A comparative study of TF*IDF, LSI and multi-words for text classification. Expert Systems
with Applications, 2011; 38: 2758–2765.

[6] Labatut V, Cherifi H. Accuracy Measures for the Comparison of Classifiers, ICIT 2011 The 5th International Conference on Information
Technology.

[7] Jung-Yi Jiang et.al A Fuzzy Self-Constructing Feature Clustering Algorithm for Text Classification. IEEE Transactions on Knowledge and
Data Engineering, 2011; 23(3).

[8] Hajdinjak M, Bauer A. Similarity Measures for Relational Databases, Informatica, 2009; 33: 143–149.
[9] Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in very large databases, Proceedings of the ACM

SIGMOD Conference on Management of data,1993: 207–216.
[10] Beil F, Ester M, Xu XW. Frequent term-based text clustering, in: Proceedings of the 8th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2002: 436–442.
[11] Radhakrishna V, Srinivas C, Guru Rao CV. High Performance Pattern Search algorithm using three sliding windows , International Journal

of Computer Engineering and Technology, 2012; 3: 543-552.
[12] Susheela Devi V, Narasimha Murthy M. Text Book on Pattern Recognition. An Introduction. University Press.
[13] Kebir S, Seriai AD, Chardigny S. Comparing and Combining Genetic and Cluster Algorithms for Software Component Identification, in the

Proceedings of the ACM Fifth International Conference on Computer Science and Software Engineering, 2012: 1-8.
[14] Veras RC, Meira SRL, Oliveira ALI, Melo BJM. Comparitive study of clustering techniques for the organisation of software repositories, in

the proceedings of 19th IEEE International Conference on Tools with Artificial Intelligence.
[15] Radhakrishna V, Srinivas C, Guru Rao CV. Document Clustering Using Hybrid XOR Similarity Function for Efficient Software Component

Reuse. Procedia Computer Science, 2013; (17): 121-128.

