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Abstract 

Component based software development has gained a lot of practical importance in the field of software engineering from 
academic researchers and also from industry perspective. Finding components for efficient software reuse is one of the important 
problems aimed by researchers. Clustering reduces the search space of components by grouping similar entities together thus 
ensuring reduced time complexity as it reduces the search time for component retrieval. In this research, we instigate a
generalized approach for clustering a given set of documents or software components by defining a similarity function called 
hybrid XNOR function to find degree of similarity between two document sets or software components. A similarity matrix  is 
obtained for a given set of documents or components by applying hybrid XNOR function. We define and design the algorithm for 
component or document clustering which has the input as similarity matrix and output being set of clusters. The output is a set of 
highly cohesive pattern groups or components.  
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1. Introduction 

The Universality and Ubiquitous nature of the internet made the possibility to access a huge amount of virtual 
unlimited information in the digital text format by the humans. This gave a new definition for data mining creating 
new possibilities for mining text information.  
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Fig. 1. abstract view of clustering process 

Consequently the text oriented derivation of data mining called as text mining has been gaining a lot of practical 
significance as the available data grows at higher rate than can be perceived or handled by the humans. In this 
context the problem of clustering is one topic that gained more practical importance from the researchers and more 
specifically from the perspective of the software industry. The abstract view of clustering process is shown in Fig. 1. 
The requirement for clustering comes from the need for decision making such as software component classification 
and component clustering, user behavior prediction, performing software component search and in component 
retrieval from software library. Clustering is also widely used in many practical domains such as text classification, 
bioinformatics, medicine, image processing to name a few. Clustering may be defined as the process of grouping 
similar set of patterns together [1].  

The input to clustering algorithm usually may be any set of entities or patterns or text files or images or software 
components. The output of clustering algorithm will be a partition of cohesive groups. The descriptions or 
representations of clusters may be used for decision making in selecting a software component or pattern of interest.  

One interesting property of clustering is all the patterns within a cluster share common properties in some sense 
and patterns in different clusters are dissimilar. From perspective of software engineering, all the components within 
same cluster have high cohesion and low coupling. 

Software component clusters can be treated as highly cohesive groups with low coupling which is the desired 
feature. One disadvantage of existing data clustering methods is that they do not adequately address the problem of 
processing large datasets with a limited amount of resources. Using these limitations as our motivation, so if we can 
try to reduce the dataset for training process it can help in reducing the cost of training which in turn improves 
efficiency of clustering. If done so, clustering takes less amount of space and hence forms a compact storage of 
patterns. Clustering is not any one specific algorithm that we can stick firm to, but it must be viewed as the general 
task to be solved. 

Clustering algorithms may unsupervised or supervised [1]. In unsupervised clustering the partitions are viewed as 
the unlabelled patterns or components. Supervised clustering algorithms label the patterns which can be used to 
classify the components for decision making.  Hence the partitions obtained by clustering process may be labeled or 
unlabeled.  

A new method called Maximum Capturing is proposed for document clustering [4].Maximum Capturing includes 
two procedures:1.Constructing document clusters and 2. Assigning cluster topics. The search complexity can be 
reduced by using the algorithm [11] where ever necessary as part of component retrieval.  

2. Taxonomy 

The problem of finding frequent itemsets is first initiated from [9] which uses frequent items to find association 
rules in large transactional databases. In [2] clustering a given set of text documents from neighbour set is proposed. 
In [3] the authors propose a method for discovering maximum length frequent item sets. In [7], the classification of 
text files or documents is done by considering Gaussian membership function and making use of it to obtain clusters 
by finding word patterns. Each cluster is identified by its word pattern calculated using fuzzy based Gaussian 
membership function once clusters are formed.  

In this paper the idea is to first obtain frequent item sets for each document using existing association rule mining 
algorithms either by horizontal or vertical approach. Once we find frequent itemsets in each document then we form 
a Boolean matrix with rows indicating documents and columns indicating unique frequent items from each 
document.  This is followed by the computation of a ternary feature vector for each document pair, represented as a 
2D array or 2D matrix by redefining the XNOR function as hybrid XNOR logic with slight modification in the 
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function introducing high impedance variable as Z. The idea of maximum capturing is taken as the base framework 
for clustering [4]. The authors perform clustering using XOR similarity function [15]. 

3. Proposed Work 

To design a clustering algorithm we must first design the similarity function which is the heart of any clustering 
algorithm. We define a generalized similarity function called Hybrid XNOR function which may be used to compute 
similarity feature between any pair of entities which may be software components or software patterns or documents. 
The documents may be text files to be classified or software product documents or code fragments. We define the 
similarity function S as a function of any two entities A and B which is a tri state function as shown below in the 
truth Table 1. 

Table 1.  Truth Table of hybrid XNOR Similarity Function 

A B S(A,B) 
0 0 Z  
0 1 0 
1 0 0 
1 1 1 

 
The algorithm for document clustering has its input as documents with frequent item sets and output as set of 

clusters formed dynamically. The approach followed is a tabular approach. Similarly the algorithm for component 
clustering has its input as software components with properties predefined and the output is a set of highly cohesive 
components with low coupling feature. 

3.1 Algorithm for Clustering  

It may be used for software component clustering, document clustering or pattern clustering in general 
 

Algorithm. Algorithm for Clustering. 

Input: Document set, frequent items. 

Output: set of clusters. 

Begin of Algorithm 

Step1: 

          For each document D do  

          Begin  

              Step1.1    Remove stop words and stemming words from each document. 

              Step1.2    Find unique words in each document and count of the same. 

              Step1.3    Find frequent itemsets of each document 

          End for  

Step 2:  Form a word set W consisting of each word in frequent item sets of each document. 

Step 3: Form Dependency Boolean Matrix with each row and column corresponding to each Document and each  

            word respectively 

           For each document in document set do  

           Begin  
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                 For each word in word set do 

                 Begin  

                   If (word wk in Word set W is in document Di) 

                      Begin  

                      Set D[Di, wk] = 1 

 Else  

                      Set D[Di, wk] = 0 

   End if  

End for  

            End for  

Step 4:   Find the Feature vector similarity matrix by evaluating similarity value for each document pair applying  

              Hybrid XNOR Function defined in table 1 to obtain the matrix with feature vectors for each document pair. 

Step 5:   Replace the corresponding cells of matrix by count of number of zeroes in tri state feature vector. 

Step 6:  At each step, find the cell with maximum value and document pairs containing this value in the matrix.  

             Group such document pairs to form clusters. Also if document pair (X,Y) is in one cluster and document pair  

             (Y, Z) is in another cluster, form a new cluster containing (X, Y, Z) as its elements.  

Step 7:  Repeat Step6 until no documents exist or we reach the stage of first minimum value leaving zero entry. 

Step 8:  Output the set of clusters obtained.  

Step 9:  Label the clusters by considering candidate entries. 

End of algorithm 

3.2 Case Study   

Consider the document sets with the frequent item sets obtained after mining using any of the existing association 
rule mining algorithms as shown below. Here we use can also use association rule mining algorithm with multiple 
support and confidence thresholds. We consider a set of random set of 9 documents as the training set for the below 
example.  

          Table 2.  Documents and Corresponding Frequent item sets 

 
DOCUMENTS  

 
 FREQUENT ITEMSETS 

DOCUMENT 1 { TESTING,   TRAINING,   CLUSTER} 
DOCUMENT 2 

 {SVM ,  MINING,    CLUSTER} 

DOCUMENT 3 
 { SVM, TRAINING,  MINING,    CLUSTER} 

DOCUMENT 4 {TESTING,   TRAINING,  MINING,    CLUSTER} 
DOCUMENT 5 

 {SVM ,  CLUSTER} 

DOCUMENT 6 
 {TESTING,      TRAINING,  MINING} 

DOCUMENT 7 
 {TESTING,  SVM, TRAINING} 

DOCUMENT 8 
 {SVM, TRAINING} 

DOCUMENT 9 
 {TRAINING,  MINING,     CLUSTER} 

 
We now construct a Boolean matrix with rows indicating each document and column corresponding to each 

unique frequent item from set of frequent item sets of all documents sets respectively. 
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Table 3.  Boolean matrix Representation of Table.2 

 TESTING TRAINING CLUSTER SVM MINING 
D1 1 1 1 0 0 
D2 0 0 1 1 1 
D3 0 1 1 1 1 
D4 1 1 1 0 1 
D5 0 0 1 1 0 
D6 1 1 0 0 1 
D7 1 1 0 1 0 
D8 0 1 0 1 0 
D9 0 1 1 0 1 

 
We form a matrix D [n-1, n] for n documents and consider only the upper triangular region. The cells of the 

matrix are filled by applying the similarity function S for which each document pair forms the input as shown below 

Table 4.  Feature Vector Representation of document set 
 D1 D2 D3 D4 D5 D6 D7 D8 D9 

D1 x {0,0,1,0,0} = 1 {0,1,1,0,0}=2 {1,1,1,Z,0}=3 {0,0,1,0,Z}=1 {1,1,0,Z,0}=2 {1,1,0,0,Z}=2 {0,1,0,0,Z}=1 {0,1,1,Z,0}=2 

D2 x x {Z,0,1,1,1}=3 {0,0,1,0,1 }=2 {Z,Z,1,1,0}=2 {0,0,0,0,1}=1 {0,0,0,1,0}=1 {Z,0,0,1,0}=1 {Z,0,1,0,1}=2 

D3 x x x {0,1,1,0,1}=3 {Z,0,1,1,0}=2 {0,1,0,0,1}=2 {0,1,0,1,0}=2 {Z,1,0,1,0}=2 {Z,1,1,0,1}=3 

D4 x x x x {0,0,1,0,0}=1 {1,1,0,1,1,}=4 {1,1,0,0,0 }=2 { 0,1,0,0,0}=1 { 0,1,1,Z,1}=3 

D5 x x x x x {0,0,0,0,0}=0 {0,0,0,1,Z}=1 {Z,0,0,1,Z}=1 {Z,0,1,0,0}=1 

D6 x x x x x x {1,1,Z,0,0}=2 {0,1,Z,0,0}=1 {0,1,0,Z,1}=2 

D7 x x x x x x x {0,1,Z,1,Z}=2 {0,1,0,0,0}=1 

D8 x x x x x x x x {Z,1,0,0,0}=1 

Once we obtain the above table with feature vectors for each document pair then we replace the corresponding 
cells of matrix by count of number of zeroes in tri state feature vector. We call it tri-state because it can have 0 or 1 
or z as the value. This is shown in the table below. 

Table 5.  Similarity Matrix with Feature Vector Replaced by Count of 0s. 

 D1 D2 D3 D4 D5 D6 D7 D8 D9 
D1 x 1 2 3 1 2 2 1 2 
D2 x x 3 2 2 1 1 1 2 
D3 x x x 3 2 2 2 2 3 
D4 x x x x 1 4 2 1 3 
D5 x x x x x 0 1 1 1 
D6 x x x x x x 2 1 2 
D7 x x x x x x x 2 1 
D8 x x x x x x x x 1 

 
Now consider only the element of the matrix with the highest value as shown in the table below. The step by step 

procedure is shown below in the form of tables which is self explanatory. 
Step1: find the first maximum value from the matrix and target only those cells having this value to form initial 
cluster. 

Table 6.  Content of Similarity Matrix showing step1  

 D1 D2 D3 D4 D5 D6 D7 D8 D9  
Find max value from the above table which 
is 4 here and target those cells as they form 
the best candidate solutions and replace 
those cell by x 
 
Stage1:  (4, 6) have val as 4. So form 
cluster as (4, 6).  

D1 x 1 2 3 1 2 2 1 2 
D2 x x 3 2 2 1 1 1 2 
D3 x x x 3 2 2 2 2 3 
D4 x x x x 1 4 2 1 3 
D5 x x x x x 0 1 1 1 
D6 x x x x x x 2 1 2 
D7 x x x x x x x 2 1 
D8 x x x x x x x x 1 
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Step 2: Find the next max value from the above table which is 3 here and target those cells as they form the best  
            candidate solutions. Now cluster {4, 6} is dynamically changed to {1, 2, 3, 4, 6, 9} and is no more a    
            separate cluster as shown in table.2.  

Table 7.  Content of Similarity Matrix showing step2  

 D1 D2 D3 D4 D5 D6 D7 D8 D9 Find the next max value from the above 
table which is 3 here and target those cells as 
they form the best candidate solutions.  
 
Stage2: consider only un-clustered document 
set {1, 2, 3, 5, 7, 8, 9} ad search for value 3 in 
corresponding columns. (1,4)-(2,3)-(3,4)-(3,9) 
: So form cluster {1,2,3,4,9} as new Cluster. 
Set the values as zero or x.  
Cluster 1: {1, 2, 3, 4, 6, 9} After Merging 

D1 x 1 2 3 1 2 2 1 2 
D2 x x 3 2 2 1 1 1 2 
D3 x x x 3 2 2 2 2 3 
D4 x x x x 1 X 2 1 3 
D5 x x x x x 0 1 1 1 
D6 x x x x x x 2 1 2 
D7 x x x x x x x 2 1 
D8 x x x x x x x x 1 

 
Step 3: Find the next max value from the above table which is 2 here and target those cells as they form the best 
candidate solutions. 

Table 8.  Content of Similarity Matrix showing step3  

 D1 D2 D3 D4 D5 D6 D7 D8 D9 Find the next max value from the above 
table which is 2 here and target those cells 
as they form the best candidate solutions. 
 
Stage3: consider only un-clustered 
document set {5, 7, 8} ad search for value 
2 in corresponding columns. Here (7, 8) 
has 2. So form cluster {7, 8} as new 
Cluster. Set the values as zero or x. 
Cluster 2: {7, 8} 

D1 x 1 2 X 1 2 2 1 2 
D2 x x X 2 2 1 1 1 2 
D3 x x x X 2 2 2 2 X 
D4 x x x x 1 X 2 1 X 
D5 x x x x x 0 1 1 1 
D6 x x x x x x 2 1 2 
D7 x x x x x x x X 1 
D8 x x x x x x x x 1 

 
Step 4: Find the next max value from the above table which is 1 here and target those cells as they form the best 
candidate solutions. 

Table 9.  Content of Similarity Matrix showing step4  

 D1 D2 D3 D4 D5 D6 D7 D8 D9 Stage4: consider only un-clustered 
document set {5} and search for value 
1 in corresponding columns. Here (5, 
7), (5, 8), (5, 9) are all 1s. But this is 
next minimum value after zero if we 
consider initial table values before 
clustering. Hence 5 can’t be similar to 
any of those documents and we must 
place it as a separate cluster {5}. 

D1 x 1 2 X 1 2 2 1 2 
D2 x x X 2 2 1 1 1 2 
D3 x x x X 2 2 2 2 X 
D4 x x x x 1 X 2 1 X 
D5 x x x x x 0 1 1 1 
D6 x x x x x x 2 1 2 
D7 x x x x x x x X 1 
D8 x x x x x x x x 1 

 
The Set of clusters finally formed are as shown in Fig. 2. 
 
Cluster-1: {1, 2, 3, 4, 6, 9} 
 
Cluster-2 :{ 7, 8} 
 
Cluster-3 :{ 5}  

 
 
 
 
 

                                    Cluster-1                                                               Cluster-2 
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                                                                                                                                                     Cluster-3 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Set of Clusters formed after applying the algorithm 

4. Case Study for Software Component Clustering or Program Partitioning  

Consider the following program fragment: 
 

Procedure Sum_and_Prod (n: integer; arr: int_array; var sum, prod: integer; var avg: float) 
 
var  i : integer; 
begin 

1. sum = 0; 
2. prod = 1; 
3. for i = 1 to n do begin 
4. sum = sum + arr[i]; 
5. prod = prod * arr[i]; 
6. end; 
7. avg = sum / n; 

end; 
 

The Table 10 below shows the matrix with rows denoting line numbers or statements, columns denoting variable 
names.Si indicates ith line. 

           Table 10.  Boolean Matrix for program module 

Line Numbers Sum Prod N Arr Avg 
S1 1 0 0 0 0 
S2 0 1 0 0 0 
S4 1 0 0 1 0 
S5 0 1 0 1 0 
S7 1 0 1 0 1 

 
The table below shows the similarity matrix formed using algorithm. The below list of tables show the step by 

step process of forming clusters and final output of clusters and are self descriptive. 

     Table 11. Trace of algorithm for stage 1  

 S1 S2 S4 S5 S7 Group S1 and S4 as (S1, S4) =1 and Mark as X. Mark Row elements of S4 by X.  
This is done to reduce overlapping of variables. So (S1, S4) forms one cluster. S1 X 0 1 0 1 

S2  X 0 1 0 
S4   X 1 1 
 S5    X 0 
 S7     X 

 

Component-1 

Component-4 

Component-2 

Component-9 

Component-6 

Component-3 
Component-7 

Component-8 
Component-5 
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       Table 12.  Trace of algorithm for stage 2  

          Table 13.  Trace of algorithm for stage 3 

 
 
 
 
 
 
 

 
The program module may finally be separated into two individual cluster modules which may run  independently 

or in parallel.     
 

                    Cluster1                                                                                      Cluster2 
 

 

 

Fig. 3. Program partitioning to run two modules in parallel 

5. Conclusion 

In this paper we define a new similarity function to compute similarity between any two software components or 
text files. An algorithm to cluster a set of given documents or text files or software components is designed which 
uses the proposed similarity function called hybrid XNOR to find the degree of similarity among any two entities. 
The input to algorithm is a similarity matrix and the output is the set of clusters. In future, the approach can be 
extended to classify the components using classifiers by applying fuzzy logic. The concept of Support vector 
machines may be used for classification once clusters are formed. The search complexity can be reduced by using 
the algorithm [11] where ever necessary as part of component retrieval.  
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