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1. Introduction

In [10] Platonov and -Doković described algebraic subgroups of GL(n2), the group of invertible

operators of the spaceMn(F) of all n×nmatrices over an algebraically closed field F with char(F) = 0,

that contain the group of all inner automorphisms of the algebra Mn(F). After that they showed that

this description can be effectively applied to various linear preserver problems.
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In the recent literature one can find numerous results characterizing derivations through condi-

tions analogous to those satisfied by automorphisms and previously studied in the context of linear

preserver problems. Therefore it seems natural to ask whether it is possible to describe subalgebras

of gl(n2), the Lie algebra of all operators ofMn(F), that contain the Lie algebra of all inner derivations,

and thereby enable one to use a more conceptual approach to such problems on derivations. A partial

description was in fact obtained already by Platonov and -Doković, but they were more interested in

corresponding Lie groups. In Section 2 we will complete their work and give a complete list of sub-

algebras of gl(n2) that contain inner derivations. Several corollaries will be derived in order to justify

the usefulness of this result.

In Section 3 we will consider only the associative algebra D generated by all inner derivations, but

on considerably more general algebras thanMn(F). A thorough discussion on D, in both algebraic and

analytic context, was given in the recent work by Shulman and Shulman [11]. They were primarily

interested in the form of operators inD. Our approach is somewhat different.Wewill show that under

suitable assumptions D acts densely on a Lie ideal of the algebra in question.

2. Lie algebras containing derivations

2.1. Notation

We begin by introducing the notation for this section. We write Mn for Mn(F). Let us fix two

assumptions that will be used throughout the section:

• F is algebraically closed and char(F) = 0,
• n ≥ 5.

Let us emphasize that these two assumptions will not be repeated in the statements of our results.

They both are connected with the Platonov—Doković paper [10]. Actually, [10] also deals with the

situation where n < 5; however, this requires some extra care. For simplicity we will avoid this.

By 1we denote the identitymatrix inMn, by eij the standardmatrix units inMn, and by a′ the trans-
poseofa ∈ Mn. TheLie algebragl(n2) canbe identifiedwithMn⊗M

opp
n ,where theLiebracket is givenby

[a ⊗ b, c ⊗ d] = (a ⊗ b)(c ⊗ d) − (c ⊗ d)(a ⊗ b) = ac ⊗ db − ca ⊗ bd.

In this sense

g = {a ⊗ 1 − 1 ⊗ a | a ∈ Mn}
is equal to the Lie algebra of all inner derivations ofMn (of course, all derivations onMn are inner). We

are interested in Lie subalgebras of gl(n2) that contain g.

We have a direct decomposition Mn = M0
n + F1, where

M0
n = {a ∈ Mn | tr(a) = 0}.

Clearly, every element in g can be uniquely written as a⊗ 1− 1⊗ awith a ∈ M0
n , and g is a simple

Lie algebra isomorphic to sl(n). We denote by gl(n2 − 1) the Lie subalgebra of gl(n2) consisting of

elements that preserve the decomposition and send 1 into 0. Next we set

sl(n2 − 1) = sl(n2) ∩ gl(n2 − 1),

so(n2) = {a ∈ gl(n2) | tr(a(x)y + xa(y)
) = 0 for all x, y ∈ Mn},

so(n2 − 1) = so(n2) ∩ gl(n2 − 1).

Note that any Lie subalgebra of gl(n2) containing g can be considered as a g-module. We now state

a list of simple g-submodules of sl(n2), as given in [10, p. 170]. By εi we denote the linear functional

on diagonal matrices determined by εi(ejj) = δij .
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Module Highest weight Dimension Highest weight vector

g ε1 − εn n2 − 1 e1n ⊗ 1 − 1 ⊗ e1n

V1 ε1 + ε2 − 2εn
1
4
(n2 − 1)(n2 − 4) e1n ⊗ e2n − e2n ⊗ e1n

V2 2ε1 − εn−1 − εn
1
4
(n2 − 1)(n2 − 4) e1,n−1 ⊗ e1n − e1n ⊗ e1,n−1

V3 ε1 − εn n2 − 1
∑

i(e1i ⊗ ein − ein ⊗ e1i)

V4 ε1 − εn n2 − 1 e1n ⊗ 1 + 1 ⊗ e1n

V5 2ε1 − 2εn
1
4
n2(n − 1)(n + 3) e1n ⊗ e1n

V6 ε1 + ε2 − εn−1 − εn
1
4
n2(n + 1)(n − 3) e2,n−1 ⊗ e1n + e1n ⊗ e2,n−1

−e1,n−1 ⊗ e2n − e2n ⊗ e1,n−1

V7 ε1 − εn n2 − 1
∑

i(e1i ⊗ ein + ein ⊗ e1i)

V8 0 1 1 ⊗ 1 − n
∑

i,j eij ⊗ eji

p ε1 − εn n2 − 1
∑

i e1i ⊗ ein

q ε1 − εn n2 − 1
∑

i ein ⊗ e1i

V ′
4 ε1 − εn n2 − 1 n(e1n ⊗ 1 + 1 ⊗ e1n)

−2
∑

i(e1i ⊗ ein + ein ⊗ e1i)

By T0 we denote the set of all diagonal matrices of the form⎛
⎝ α1n2−1 0

0 β

⎞
⎠ ,

where α, β ∈ F and 1n2−1 is the identity matrix in Mn2−1. Its subset consisting of all such matrices

with α, β ∈ F∗ will be denoted by T . Clearly, T is a group.

The notation introduced so far is taken from [10]. Let us introduce another g-module that will

appear in the course of the proof of Proposition 2.1 below. As we shall see, it is possible to describe it

in terms of V4, p, and q, but first we give a more explicit description. Take λ ∈ F , λ �= − 2
n
, and set

W(λ) =
{
x 	→ ax + xa + λtr(x)a − 2λ

nλ + 2
tr(xa)1 | a ∈ M0

n

}
.

One can verify that g + W(λ) is a Lie algebra, and implicitly we will in fact make this verification in

the proof of Proposition 2.1.

Let us point out that we will use both symbols ⊆ and ⊂. The latter will be of course used to denote

a proper subset.

2.2. Extracts from the Platonov—Doković paper

This section rests heavily on the work by Platonov and -Doković [10]. We will now record several

facts that are more or less explicitly stated in the proof of [10, Theorem A]. They will be used in the

next subsections.

In addition to the notation introduced above, we let ldenote a Lie subalgebra of sl(n2) that contains
g. Therefore l can be treated as a g-module.

(1) sl(n2), considered as a g-module, can be directly decomposed into simple g-modules as follows:

sl(n2) = g +
8∑

i=1

Vi.
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(2) The g-modules g, V3, V4, V7, p, q, V ′
4 are isomorphic, while the others from the above list are

pairwise nonisomorphic (cf. [8, Theorem 20.3A]).

(3) We have the following direct decompositions into simple g-modules:

so(n2 − 1) = g + V1 + V2,

so(n2) = so(n2 − 1) + V3,

sl(n2 − 1) = so(n2 − 1) + V
′
4 + V5 + V6,

sl(n2) = sl(n2 − 1) + p + q + V8.

(4) so(n2) is the Lie subalgebra of gl(n2) consisting of all skew-symmetric tensors.

(5) If l is properly contained in sl(n2 − 1) and properly contains g, then l = so(n2 − 1).
(6) If V5 ⊂ l or V6 ⊂ l, then sl(n2 − 1) ⊆ l.

(7) If p + q ⊂ l, then l = sl(n2).

(8) V
′
4, p, q are pairwise nonisomorphic as (g + V8)-modules.

(9) If V8 ⊂ l and p + q �⊂ l, then l ⊆ sl(n2 − 1) + p + V8 or l ⊆ sl(n2 − 1) + q + V8.

(10) If V1 ⊂ l or V2 ⊂ l, then so(n2 − 1) ⊆ l.

(11) As an so(n2 − 1)-module, sl(n2) is a direct sum of five simple modules, namely

so(n2 − 1), V
′
4 + V5 + V6, p, q, V8.

Among them only p and q are isomorphic.

(12) If W is a simple submodule of p + q, different from p and q, then there exists t ∈ T such that

W = tV3t
−1.

(13) If W is a g-submodule of p + q and W �= p, q, then g + W is not a Lie algebra. Next, if l ⊂
g + V4 + p + q, then l cannot be written as a sum of three simple g-modules.

The g-modules p, q, V4 and V8 will play particularly prominent roles. Therefore we will now give

some further comments about them, which will be used in the proof of Proposition 2.1 without refer-

ence.

With respect to the decomposition Mn = M0
n + K1 we can represent p and qwith matrices of the

form ⎛
⎝ 0 x

0 0

⎞
⎠ and

⎛
⎝ 0 0

x′ 0

⎞
⎠ , respectively,

where x ∈ Fn
2−1 is an arbitrary column vector. Thus, p consists of all maps of the form x 	→ tr(x)a

with a ∈ M0
n , and q consists of all maps of the form x 	→ tr(xa)1 with a ∈ M0

n . Next, V8 consists of

scalar multiples of the diagonal matrix⎛
⎝ 1n2−1 0

0 1 − n2

⎞
⎠ ,

and V4 = {a ⊗ 1 + 1 ⊗ a | a ∈ M0
n}.

As already mentioned, g, p, q, and V4 are isomorphic simple g-modules. Since F is algebraically

closed, up to scalar multiplication there is exactly one isomorphism from g into any of modules p, q,

and V4. One can check that these are

φ1 : g → p, φ1(a ⊗ 1 − 1 ⊗ a)(x) = tr(x)a,

φ2 : g → q, φ2(a ⊗ 1 − 1 ⊗ a)(x) = tr(xa),

φ3 : g → V4, φ3(a ⊗ 1 − 1 ⊗ a) = a ⊗ 1 + 1 ⊗ a.
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Finally, since the highest weight vector of V ′
4 is a linear combination of the highest weight vectors

of p, q and V4, it easily follows that p + q + V4 = p + q + V ′
4.

2.3. Main result

Besides the results from the previous subsection we also need the following well-known fact (see

e.g. [6, Exercise 17, p. 124]). Let h be a Lie algebra and let V be a finite dimensional h-module. Assume

that V is a direct sum of simple h-modules,

V = V1
1 + · · · + V1

n1
+ V2

1 + · · · + V2
n2

+ · · · + Vk
1 + · · · + Vk

nk
,

where V
j
i is isomorphic to V

j

i′ for all i, i
′, j and nonisomorphic to Vk

l for all l and k �= j. Then every

simple submodule U of V is contained in V
j
1 + · · · + V

j
nj for some j, and there exist λ1, . . . , λnj ∈ F ,

not all zero, such that U consists of all elements of the form

λ1v + λ2φ2(v) + . . . + λnjφnj(v), v ∈ V
j
1,

where φl : V
j
1 → V

j
l is an h-module isomorphism. We will use this fact frequently and without

reference.

Our goal is to give a list of all Lie subalgebras of gl(n2) that contain g. In the first and major step we

describe those of them that are contained in sl(n2).

Proposition 2.1. If l is a proper Lie subalgebra of sl(n2) that contains g, then l is one of the following Lie

algebras:

(i) sl(n2−1), sl(n2−1)+p, sl(n2−1)+q, sl(n2−1)+V8, sl(n2−1)+p+V8, sl(n2−1)+q+V8,
(ii) so(n2−1), so(n2−1)+p, so(n2−1)+q, so(n2−1)+V8, so(n2−1)+p+V8, so(n2−1)+q+V8,
(iii) g, g + p, g + q, g + V8, g + p + V8, g + q + V8,
(iv) tso(n2)t−1 for some t ∈ T,

(v) g + W(λ) for some λ ∈ F, λ �= − 2
n
.

Proof. Consider l as a g-module. Since g is simple, l is a direct sum of simple modules by Weyl’s

theorem. As l is a g-submodule of sl(n2) = g + ∑8
i=1 Vi (see (1)), it follows from (2) that l is equal

to a sum of g, some of the modules V1, V2, V5, V6, V8, and a submodule of V3 + V4 + V7. We have to

figure out when such a sum forms a Lie algebra and can be therefore equal to l. The proof is divided

into several steps. First we consider the case where l contains sl(n2 − 1), which leads to the list (i).

The case where sl(n2 − 1) �⊆ l is more complex. After finding the Lie algebras from (ii) and (iii) we

consider separately the situation where l contains so(n2 − 1) and the situation where it does not. This

yields (iv) and (v), respectively.

So first suppose that l contains sl(n2 − 1). From (3) we see that sl(n2) = sl(n2 − 1) + p+ q+ V8.

Therefore l = sl(n2 − 1) + Z , where Z is a g-module contained in p + q + V8. Since p and q are

isomorphic (2), the only possibilities for Z are

0, p, q, V8, p + V8, q + V8, p + q,W,W + V8,

whereW is a proper submodule of p+ qdifferent from 0, p, q. We have to find out for which of these

nine choices sl(n2 − 1) + Z is a Lie algebra. It is easy to check that this is true for the first six ones. On

the other hand, the last three choices must be ruled out in view of (7), (12), and (9), respectively. Thus,

(i) lists all proper Lie subalgebras of sl(n2) that contain sl(n2 − 1).
From now on we assume that l does not contain sl(n2 − 1). Note that V5 and V6 are not contained

in l due to (6). As

sl(n2) = so(n2 − 1) + V ′
4 + V5 + V6 + p + q + V8
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by (3), it follows that l ⊂ so(n2 − 1) + V ′
4 + p + q + V8 (the strict inclusion holds because of (7)).

Moreover, (10) and so(n2 − 1) = g + V1 + V2 (see (3)) imply that

l = g + W or l = so(n2 − 1) + W,

where W is a submodule of V ′
4 + p + q + V8. It is easy to check that 0, p, q, V8, p + V8, q + V8 are

appropriate choices for W; that is, so(n2 − 1) + W and g + W are indeed Lie algebras in each of

these cases. From now on we assume that W is different from these modules. In other words, we are

assuming that l is none of the Lie algebras listed in (ii) and (iii).

Assume that V8 ⊂ l. Thenwe haveW = V8+W ′, whereW ′ is a submodule of V ′
4+p+q. According

to (8) (and (7)),W ′ can be equal to one of p, q, V ′
4 or to a sum of two of them. IfW ′ ∈ {p, q}, then l can

be found in one of the lists (ii) or (iii). On account of (7), the only additional examples can be obtained

if V ′
4 ⊆ W ′. Thus, either so(n2 − 1) + V ′

4 ⊂ lor g+ V ′
4 ⊂ l. However, from (5) (and (3)) it follows that

in each of these two cases l contains sl(n2 − 1), contrary to our assumption. Therefore V8 �⊂ l.

Assume now that l contains so(n2 − 1), so that l = so(n2 − 1) +W . Since the Lie algebras from (ii)

and (iii) have already been excluded, we see from (11) that W is a submodule of p + q different from

0, p, q and isomorphic to p ∼= q. By (12),W = tV3t
−1 for some t ∈ T . Since so(n2) = so(n2 − 1) + V3

(see (3)), it follows that l = tso(n2)t−1. On the other hand, tso(n2)t−1 indeed is a Lie algebra for every

t ∈ T . We have thus arrived at the case (iv).

Finally we consider the case where l = g + W with W ⊂ V ′
4 + p + q. As mentioned above, this is

equivalent toW ⊂ V4 + p+ q. In view of (13) and (7) we may assume thatW is a simple module and

W �⊂ p + q. Accordingly, there exist λ, μ ∈ F such thatW consists of all maps of the form

wa : x 	→ ax + xa + λtr(x)a + μtr(xa)1, where a ∈ M0
n .

The fact that l is a Lie algebra gives rise to some restrictions on λ and μ. Indeed, we have

[wa,wb](x) = [[a, b], x] + (nλμ + 2λ + 2μ)
(
tr(xb)a − tr(xa)b

) ∈ l = g + W .

Since x 	→ [[a, b], x] lies in g ⊂ l, it follows that either nλμ+2λ+2μ = 0 or x 	→ tr(xb)a− tr(xa)b
lies in l for all a, b ∈ M0

n . The rank of this operator is at most 2. On the other hand, operators in l are of

the form

h : x 	→ [c, x] + dx + xd + λtr(x)d + μtr(xd)1 = ex + xf + λtr(x)d + μtr(xd)1,

where e = d + c and f = d − c. An elementary argument (see, e.g., [9]) shows that the rank of

x 	→ ex + xf is at least n, unless e = −f is a scalar matrix (and hence h = 0). Accordingly, nonzero

elements in lhave rank at least n − 2. Since n ≥ 5, l cannot contain operators x 	→ tr(xb)a − tr(xa)b.
Therefore nλμ + 2λ + 2μ = 0, showing that λ �= − 2

n
and W = W(λ). That is, l is of the form

described in (v). �

The main result of this section now follows easily.

Theorem 2.2. If h is a proper Lie subalgebra of gl(n2) that contains g, then either h = sl(n2) or h = l+ Ft,

where l is a Lie algebra from Proposition 2.1 and t ∈ T0. Moreover, if l is a Lie algebra from (iv) or (v), then

t = 0 or t = 1.

Proof. In view of Proposition 2.1 wemay assume that h is not contained in sl(n2). Thus, l = h∩ sl(n2)
is a proper Lie subalgebra of h. Since sl(n2) has codimension 1 in gl(n2), lhas codimension 1 in h. Also, l

is a g-module, and so h = l+U for some 1-dimensional g-submoduleU of gl(n2). In the decomposition

(1) there is only one 1-dimensional module, namely V8, so U is a submodule of V8 + F1. Therefore

U = Ft, where t is a matrix of the form

⎛
⎝ α1n2−1 0

0 β

⎞
⎠ ∈ T0 for some α, β ∈ F . It is easy to see that

for any choice of α and β , h = l + Ft is a Lie algebra if l is listed in (i), (ii), or (iii). On the other hand, a

brief examination shows that α must be equal to β if l is listed in (iv) or (v). �
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2.4. Applications

Theorem2.2makes it possible forus tofindvarious conditions that are characteristic for derivations.

Here is a sample result:

Corollary 2.3. If d : Mn → Mn is a linear map such that d(1) = 0 and

tr
(
d(x)yz + xd(y)z + xyd(z)

)
= 0 for all x, y, z ∈ Mn,

then d is a derivation.

Proof. It is easy to verify that the set hof all maps d that satisfy the conditions of the corollary is a Lie

algebra that contains g. Therefore h can be found among Lie algebras listed in Theorem 2.2. If we put

z = 1 in the above identity we get h ⊆ so(n2). Further, setting y = z = 1 we see that h preserves

the decomposition Mn = M0
n + F1. The only possible choices for h are therefore g and so(n2 − 1).

It remains to find an element of so(n2 − 1) that does not satisfy the condition of the corollary. An

example is e11 ⊗ e22 − e22 ⊗ e11 together with x = e12, y = e23, z = e31. �

Kernels of derivations are obviously associative subalgebras. This property is characteristic for

derivations in the following sense:

Corollary 2.4. If l is a Lie subalgebra of gl(n2) that contains g and has the property that ker(d) is an

associative subalgebra of Mn for every d ∈ l, then l = g.

Proof. We have to check that each of the Lie algebras listed in Theorem 2.2, except g, contains an

operator whose kernel is not a subalgebra. It is enough to show that so(n2 − 1), p, q,W(λ) and g+ Ft

with t ∈ T0 \ {0} contain such operators. Namely, all Lie algebras from the list, except g, contain at

least one of these sets.

• In so(n2 − 1) consider r = e12 ⊗ e34 − e34 ⊗ e12 (cf. (4)). Then e21, e13 ∈ ker(r), while

e21e13 = e23 �∈ ker(r).
• The kernel of every nonzero element of p is equal to M0

n , which is not a subalgebra of Mn .
• There is a variety of examples in q, say

∑n
i=1 ei1 ⊗ e2i.

• Observe that x = e11 − e22 + √−1(e33 − e44) lies in the kernel ofwe12 ∈ W(λ). However, this

does not hold for x2.
• Maps in g+ Ft are of the form ra : x 	→ [x, a] + αx + βtr(x)1, where a ∈ Mn, α, β ∈ F , α �= 0

or β �= 0. If α �= 0, take a = α(e11 − e33). Then e12, e23 are elements from ker(ra), while this

does not hold for their product e13. If α = 0, choose a = e12. Then e34, e43 lie in ker(ra), but
not their product e33. �

Let f = f (ξ1, . . . , ξl), l ≥ 2, be a multilinear polynomial in noncommuting variables, i.e.,

f = ∑
σ∈Sl

λσ ξσ(1) . . . ξσ(l),

where λσ ∈ F and Sl is a symmetric group. A linear map d from an algebra A into itself is said to be an

f -derivation if

d
(
f (x1, . . . , xl)

) =
l∑

i=1

f (x1, . . . , xi−1, d(xi), xi+1, . . . , xl) (∗)

for all x1, . . . , xl ∈ A. Derivations are obvious examples, and the question is whether they are basically

also the only possible examples. An affirmative answer has been obtained for rather general algebras

(see, e.g., [3, Section 6.5]), but, surprisingly, the case where A = Mn still has not been completely

settled. Under certain technical restrictions we are now in a position to handle it. To exclude some
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pathological cases we assume that d(1) = 0. We also assume that l < 2n since otherwise f could be a

polynomial identity ofMn, making (∗) meaningless. It should be mentioned that the arguments in the

next proof are similar to those from the recent paper [1], in which the Platonov—Doković theory was

applied.

Corollary 2.5. Let f be a multilinear polynomial of degree l < 2n. If d : Mn → Mn is an f -derivation such

that d(1) = 0, then d is a derivation.

Proof. Note that the set hof all f -derivations ofMn is a Lie subalgebra of gl(n2) that contains g. Hence

h is one of the Lie algebras listed in Theorem 2.2. As in the proof of Corollary 2.4 it suffices to show

that hdoes not contain so(n2 − 1), p, q,W(λ) and g+ Ft with t ∈ T0 \ {0}. The second and the fourth

possibility can be cancelled out due to the initial assumption d(1) = 0.

We claim that so(n2 − 1) �⊆ h. Without loss of generality wemay assume that x1 . . . xl is one of the
monomials of f . Choose e13⊗e22−e22⊗e13 ∈ so(n2−1) (cf. (4)). If l = 2k−2 (resp. l = 2k−1), take

(x1, . . . , xn) = (e11, e32, e22, e23, . . . , ek−1,k) (resp. (x1, . . . , xn) = (e11, e32, e22, e23, . . . , ek,k)).
Then observe that in this case the left-hand side of (∗) differs from its right-hand side. This proves our

claim.

The task now is to exclude the case q ⊂ h. Note that
∑n

i=1 ei1 ⊗ eki ∈ q with (x1, . . . , xn) =
(e11, e12, e22, e23, . . . , ek−1,k) (resp. (x1, . . . , xn) = (e11, e12, e22, e23, . . . , ek,k)), depending on the

parity of l, does the trick.

We are reduced to proving that t ∈ T0 \ {0} cannot belong to h. We can restrict ourselves to the

case where t acts as a scalar multiple of the identity on M0
n and sends 1 to 0. Now choose a maximal

subset S of Nl = {1, . . . , l} such that the polynomial f (y1, . . . , yl), where yi = 1 if i ∈ S and yi = xi if

i /∈ S, is not zero (the case where S = ∅ is not excluded). Since the degree of f (y1, . . . , yl) is less than
2n, this polynomial is not an identity of Mn. Therefore there exist a1, . . . , al ∈ Mn such that ai = 1 if

i ∈ S and f (a1, . . . , al) �= 0. Moreover, because of the maximality assumption we may assume that

ai ∈ M0
n whenever i /∈ S. Note that (∗) yields

f (a1, . . . , al) − 1

n
tr

(
f (a1, . . . , al)

)
1 = (l − s)f (a1, . . . , al),

where s = |S|. This is possible only when l − s = 0 or l − s = 1. Actually, from the definition of S it

is clear that the last possibility cannot occur. Therefore l = s. Considering f (a, . . . , a) for an arbitrary

a ∈ M0
n we easily derive a contradiction. �

Someof theLie algebras fromTheorem2.2 (andProposition2.1) are also closedunder theassociative

product, and are therefore associative algebras. In the next corollary we will list all of them. Although

the symbols such as gletc. are traditionally reserved for Lie algebras,wewill slightly abuse the notation

and consider them as associative algebras.

Corollary 2.6. If A is a proper associative subalgebra of gl(n2) that contains g, then A is either

gl(n2 − 1), gl(n2 − 1) + p, gl(n2 − 1) + q,

gl(n2 − 1) + Ft, gl(n2 − 1) + p + Ft, or gl(n2 − 1) + q + Ft

for some t ∈ T.

Proof. All we have to do is to find out which of the Lie algebras from Theorem 2.2 are closed under

the associative product. Take elements e12 ⊗ 1 − 1 ⊗ e12, e34 ⊗ 1 − 1 ⊗ e34 ∈ g. Their product

u = −e12 ⊗ e34 − e34 ⊗ e12 preserves the decomposition Mn = M0
n + K1 and has zero trace, thus it

lies in A∩gl(n2 −1)∩sl(n2). Note that l∩gl(n2 −1)∩sl(n2) = l∩sl(n2 −1) for l listed in Proposition

2.1 (i), (ii), (iii), (iv), (v) is equal to sl(n2 − 1), so(n2 − 1), g, so(n2 − 1), g, respectively. But u lies

neither in so(n2 − 1) nor in g. Hence sl(n2 − 1) ⊂ A. Therefore A also contains gl(n2 − 1), which is the

associative algebra generated by sl(n2 − 1). All Lie algebras from Theorem 2.2 that contain gl(n2 − 1)
are indeed associative algebras. These are the algebras listed in the statement of the corollary. �
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3. Associative algebras generated by derivations

3.1. Preliminaries

Throughout this section we assume that

• F is a field with char(F) �= 2.

Let A be an F-algebra. By Z(A) we denote its center. Recall that A is said to be prime if the product of

any two nonzero ideals of A is nonzero.

We begin with a simple lemma which can be found at different places in the literature. Anyway,

we give a proof as it is very short.

Lemma 3.1. If A is a prime algebra and m ∈ A is such that [m, A] ⊆ Z(A), then m ∈ Z(A).

Proof. Our assumption implies that [m, x]m = [m, xm] ∈ Z(A) for every x ∈ A. Since [m, x] also lies

in Z(A), it follows that [m, x]2 = [[m, x]m, x] = 0. As the center of a prime algebra cannot contain

nonzero nilpotent elements, this givesm ∈ Z(A). �

We will consider prime F-algebras A that contain a unique minimal ideal, i.e., a nonzero ideal M

that is contained in every nonzero ideal of A. This class of algebras includes two important subclasses:

simple algebras (in this case M = A) and primitive algebras with minimal one-sided ideals (in this

case M is the socle of A).

Recall that a subspace L of A is said to be a Lie ideal of A if [L, A] ⊆ L. Every subspace of Z(A) is

obviously a Lie ideal. However, we are interested in noncentral Lie ideals, i.e., such that are not subsets

of Z(A). The next result is basically due to Herstein.

Theorem 3.2. If M is the unique minimal ideal of a noncommutative prime algebra A, then [M, A] is the
unique minimal noncentral Lie ideal of A.

Proof. It is clear that [M, A] is a Lie ideal of A. Suppose that [M, A] ⊆ Z(A). Lemma 3.1 shows that

in this case M ⊆ Z(A). Hence m,mx ∈ Z(A) for all m ∈ M, x ∈ A, yielding m[x, y] = [mx, y] = 0

for every y ∈ A. Since A is prime and noncommutative, this readily implies M = 0, contrary to our

assumption. Therefore [M, A] is not central.
The fact that [M, A] is theuniqueminimalnoncentral Lie ideal follows fromthewell-knowntheorem

saying that every noncentral Lie ideal of a prime algebra (over a field of characteristic not 2) contains

a Lie ideal of the form [J, A], where J is a nonzero ideal of A. A possible reference is [4, Theorem

2.5]; however, the theorem should be attributed to Herstein [7] (although it is not explicitly stated

therein). �

Wewill additionally assume that our algebra is centrally closed, meaning that its extended centroid

is equal to F . We refer to the book [2] for a full account of this notion. Let us just say here that every

simple unital ring A can be viewed as a centrally closed algebra over Z(A), and that primitive algebras

withminimal one-sided ideals are centrally closed under natural assumptions (cf. [2, Theorem 4.3.7]).

The next result is a special case of the main theorem of [5]. We remark that [5] was one of the early

papers on functional identities. Using the advanced functional identities theory, as surveyed in [3], the

proof could now be somewhat shortened.

Theorem 3.3. Let A be a centrally closed prime F-algebra, let L be a noncentral Lie ideal of A, and let

f : L → L be an additive map such that [f (u), u] = 0 for all u ∈ L. Then there exist λ ∈ F and a map

μ : L → Z(A) ∩ L such that f (u) = λu + μ(u) for every u ∈ L.

Besides these three results, we will make use of the Jacobson Density Theorem.
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3.2. Density theorem for the algebra generated by inner derivations

Corollary 2.6 shows that the algebra generated by inner derivations ofMn can be identifiedwith the

algebra of all operators on the space M0
n = [Mn,Mn]. We will now generalize this result. Recall that

an algebra A of linear operators on a space X is said to act densely on X if for all linearly independent

x1, . . . , xn ∈ X and all y1, . . . , yn ∈ X there exists T ∈ A such that Txi = yi, i = 1, . . . , n.

Theorem 3.4. Let A be a centrally closed prime F-algebra. Suppose that A has a unique minimal ideal M. If

Z(A) ∩ [M, A] = 0, then the subalgebra D of EndF(A) generated by all inner derivations of A acts densely

on [M, A].
Proof. Pick a nonzero m ∈ [M, A]. By assumption, m /∈ Z(A). Note that Dm is a Lie ideal of A. Lemma

3.1 shows that it is noncentral. But then Dm = [M, A] by Theorem 3.2. This shows that [M, A] is a

simple D-module. Take δ ∈ EndD([M, A]). Then, in particular, (ad u)(δ(u)) = δ((ad u)(u)) = 0 for

all u ∈ [M, A]. That is, [δ(u), u] = 0. Theorem 3.3 shows that there is λ ∈ F such that δ(u) = λu.
Thus EndD([M, A]) ∼= F and the desired conclusion follows immediately from the Jacobson Density

Theorem. �

Weremark that thealgebraK(X)of all compactoperatorsonaBanachspaceX , just as any subalgebra

of B(X) that contains all finite rank operators, is covered by Theorem 3.4. We have mentioned this

because [11] devotes a special attention to D in the case where A = K(X).
Recall that an F-algebra A is said to be central if its center consists of scalar multiples of the identity

element 1. The Artin–Whaples Theorem states that the multiplication algebra (i.e., the subalgebra of

EndF(A) generated by all multiplication maps x 	→ ax and x 	→ xb with a, b ∈ A) of a central simple

algebra A acts densely on A. The following corollary to Theorem 3.4 can be viewed as an extension of

this classical theorem.

Corollary 3.5. Let A be a central simple F-algebra such that 1 /∈ [A, A]. Then the subalgebraD of EndF(A)
generated by all inner derivations of A acts densely on [A, A].

Given an arbitrary algebraA, it is easy to see that all operators from the algebraD generated by inner

derivations ofAhave the form Tx = ∑
k akxbk with

∑
k akbk = 0 and

∑
k bkak = 0. In [11] Shulman and

Shulman studied the questionwhether the converse is true, i.e., does every T of such a formnecessarily

lie inD? In particular, they obtained an affirmative answer in the casewhere A = Mn(C) [11, Theorem
1.11]. We can now generalize this result as follows.

Corollary 3.6. Assume that char(F) = 0. Let A be a finite dimensional central simple F-algebra, andD be

the subalgebra of EndF(A) generated by all inner derivations of A. The following statements are equivalent

for T ∈ EndF(A):

(i) T ∈ D.

(ii) There exist ak, bk ∈ A such that Tx = ∑
k akxbk,

∑
k akbk = 0 and

∑
k bkak = 0.

(iii) T(1) = 0 and T(A) ⊆ [A, A].
Proof. (i)�⇒(ii). Trivial.

(ii)�⇒(iii). From
∑

k akbk = 0 it follows that T(1) = 0, and from
∑

k bkak = 0 it follows that

Tx = ∑
k[akx, bk] ∈ [A, A].

(iii)�⇒(i). Let us show that there is a direct decomposition A = [A, A] + F1. Denote by K an

algebraic closure of F , and consider the scalar extension A⊗ K ∼= Mn(K). Since char(K) = 0, for every

a ∈ A the element a ⊗ 1 can be written as a sum of commutators and a scalar multiple of the identity

element:

a ⊗ 1 = ∑
i

[xi ⊗ αi, yi ⊗ βi] + 1 ⊗ γ = ∑
i

[xi, yi] ⊗ αiβi + 1 ⊗ γ.
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Accordingly, a is an F-linear combination of elements from [A, A] and 1. By passing from A to A ⊗ K it

is also easy to see that [A, A] ∩ F1 = {0}.
If T ∈ EndF(A) is such that T(A) ⊆ [A, A], then Corollary 3.5 tells us that there is S ∈ D such that S

and T coincide on [A, A]. If we also have T(1) = 0, then S = T . �
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