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Abstract

In this paper the effects catheterization and non-Newtonian nature of blood in small arteries of diameter less than
100 lm, on velocity, flow resistance and wall shear stress are analyzed mathematically by modeling blood as a Her-
schel–Bulkley fluid with parameters n and h and the artery and catheter by coaxial rigid circular cylinders. The influence
of the catheter radius and the yield stress of the fluid on the yield plane locations, velocity distributions, flow rate, wall
shear stress and frictional resistance are investigated assuming the flow to be steady. It is shown that the velocity decreases
as the yield stress increases for given values of other parameters. The frictional resistance as well as the wall shear stress
increases with increasing yield stress, whereas the frictional resistance increases and the wall shear stress decreases with
increasing catheter radius ratio k (catheter radius to vessel radius). For the range of catheter radius ratio 0.3–0.6, in smaller
arteries where blood is modeled by Herschel–Bulkley fluid with yield stress h = 0.1, the resistance increases by a factor
3.98–21.12 for n = 0.95 and by a factor 4.35–25.09 for n = 1.05. When h = 0.3, these factors are 7.47–124.6 when
n = 0.95 and 8.97–247.76 when n = 1.05.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent times with the evolution of coronary balloon angioplasty, there has been considerable increase in
the use of catheters of various sizes. These include the guiding catheter whose tip is positioned in the coronary
ostium through which the angioplasty catheter over the small guidewire is advanced, and also the doppler
catheter if used in the procedure with the tip positioned proximal to the coronary lesion. The insertion of a
catheter in an artery will increase the frictional resistance to flow through the artery and hence alter the
flow field and modify the pressure distribution. The mean pressure gradient is the mean pressure difference
between the coronary ostium and just distal to the stenosis and thus includes the proximal vessel or vessels
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Nomenclature

k dimensionless catheter radius
n Herschel–Bulkley fluid’s parameter
�p pressure
ps dimensionless steady state pressure gradient
�p0 absolute magnitude of a typical pressure gradient
Qs dimensionless steady flow rate
R radius of the artery
�r radial distance
r dimensionless radial distance
�u axial velocity
u dimensionless axial velocity
�z axial distance

Greek letters

K dimensionless frictional resistance to flow
bs width of the plug flow region in steady flow
k radial plane at which the shear stress is zero
k1 first yield plane location (dimensionless)
k2 second yield plane location (dimensionless)
�g Herschel–Bulkley fluid’s viscosity
�s shear stress
s dimensionless shear stress
�sy yield stress
h dimensionless yield stress

Subscripts

p plug flow value (used for u)
s steady flow value (used for p, Q and b)
w value at the wall (used for s)

Superscripts

+ the region k 6 r 6 k1 (used for u)
++ the region k2 6 r 6 1 (used for u)
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where bifurcations were present. This is often referred to as the translesional pressure gradient. Even smaller
coronary infusion catheters have been used to measure the mean pressure gradient [1]. Of particular interest,
the relatively large mean translesional pressure gradients that have been reported, of the order Dp = 50 mm
Hg for basal flow before coronary angioplasty [2]. This value is about 50% of the 100 mm Hg time averaged
overall pressure drop across the coronary arteries and veins. After increasing the minimal lesion cross-
sectional area by balloon angioplasty, the mean translesional pressure gradients were reduced to the range
10–15 mm Hg. The clinical investigators realize the limitations of the translesional pressure gradient measure-
ments because of the obstruction by the angioplasty catheter [2,3].

Therefore the pressure or pressure gradient recorded by a transducer attached to the catheter will differ
from that of an uncatheterized artery and it is essential to know the catheter induced error. Even very small
angioplasty guidewire leads to sizable increase in flow resistance. For an angioplasty guidewire, over the cath-
eter radius ratio (catheter radius to coronary vessel radius) from 0.3 to 0.7 (which is currently used clinically),
even for Newtonian fluid, the flow resistance increased by a large factor of 3–33 for concentric configurations



D.S. Sankar, K. Hemalatha / Applied Mathematical Modelling 31 (2007) 1847–1864 1849
[1]. For smaller infusion catheter, the flow resistance increase is less, although still appreciable. Therefore it is
meaningful to study the increase in flow resistance due to catheterization.

Back and Denton [4] obtained the estimates of wall shear stress and discussed its clinical importance in
coronary angioplasty. In routine clinical studies and animal experiments, the measurement of arterial blood
pressure/pressure gradient and flow velocity/flow rate is usually achieved by the use of an appropriate cath-
eter-tool device (such as catheter transducer system or a catheter tip flow meter) in the desired part of the arte-
rial network. Catheters are also being used in diagnostic techniques (e.g., X-ray angiography, intravascular
ultrasound) as well as in the treatment procedures (e.g. balloon angioplasty) of various arterial diseases.
The direct measurement of arterial pressure or pressure gradient is frequently achieved by the use of a small
strain gauge pressure transducer which is coupled to a flexible membrane – a sensing device – on the wall of the
catheter. Back [1] and Back et al. [5] studied the important hemodynamic characteristics like the wall shear
stress, pressure drop and frictional resistance in catheterized coronary arteries under normal as well as the
pathological situation of a stenosis present. In all the above investigations, blood has been treated as a New-
tonian fluid. But it is well known that, blood being suspension of cells, behaves like a non-Newtonian fluid at
low shear rates and during its flow through narrow blood vessels. Aroesty and Gross [6] have studied the pul-
satile flow of blood in small blood vessels and Chaturani and Ponnalagar Samy [7] extended this theory to
study pulsatile flow of blood in stenosed arteries, modeling blood by Casson fluid.

The effect of catheterization on various flow characteristics in a curved artery was studied by Karahalios [8]
and Jayaraman and Tiwari [9] treating blood as a Newtonian fluid. Dash et al. [10] studied the changed flow
pattern in narrow artery when a catheter is inserted into it and estimated the increase in the friction in the
artery due to catheterization using Casson fluid model for blood. Dash et al. [11] have studied the steady flow
of Newtonian fluid through a catheterized curved artery with stenosis using toroidal coordinate system. Dar-
ipa and Dash [12] have analyzed the numerical study of pulsatile blood flow in an eccentric catheterized artery
using a fast algorithm treating blood as a Newtonian fluid. Vajravelu et al. [13] have analyzed the peristaltic
transport of Herschel–Bulkley fluid in an inclined tube. Sankar and Hemalatha [14] have studied the pulsatile
flow of Herschel–Bulkley fluid through catheterized arteries using perturbation method. In this paper, we
study the steady flow of Herschel–Bulkley fluid through catheterized arteries.

Scot Blair and Spanner [15] reported that blood obeys Casson equation only in the limited range, except at
very high and very low shear rate and that there is no difference between the Casson plots and the Herschel–
Bulkley plots of experimental data over the range where the Casson plot is valid. It is observed that the Casson
fluid model can be used for moderate shear rates c < 10/s in smaller diameter tubes whereas the Herschel–
Bulkley fluid model can be used at still lower shear rate of flow in very narrow arteries where the yield stress
is high [15,16]. Since the Herschel–Bulkley equation contains one more parameter than the Casson equation
does, it would be expected that more detailed information about blood properties can be obtained by the use
of the Herschel–Bulkley equation. Furthermore, the Herschel–Bulkley equation is reduced to the mathemat-
ical models which describes the behaviour of Newtonian fluid, Bingham fluid and power law fluid by taking
appropriate values of the parameters.

It has been pointed out both by Iida [17] and Scott Blair [18] that Herschel–Bulkley fluid model is more
appropriate and more general for blood flow even though it is possible to model the same flow both by Casson
fluid as well as by Herschel–Bulkley fluid over the range where both models are valid. Scott Blair [18] has
pointed out that the residual variation which is the sum of the squares of the deviations of the observed values
of stress from the estimated values was lowest for Herschel–Bulkley fluid compared to Casson fluid model, but
the effort in calculations for Herschel–Bulkley fluid is more. Iida [17] reported that the velocity profile in the
arterioles having diameter less than 100 lm are generally explained fairly by the two models. However, veloc-
ity profiles in the arterioles whose diameters are less than 65 lm does not conform to the Casson model but
can still be explained by Herschel–Bulkley model.

Therefore in this paper we study the effect of catheterization on various physiologically important flow
characteristics (i.e. pressure drop, wall shear stress and impedance) for blood flow in a narrow artery of diam-
eter less than 100 lm, by modeling blood as a Herschel–Bulkley fluid and the artery and the catheter as coaxial
rigid tubes. Section 2 deals with the general mathematical formulation of the problem in which equations of
motion and the appropriate constitutive equations for Herschel–Bulkley fluid model are given. In Section 3,
the non-dimensionalisation procedure and the steady flow solution are given. Section 4 deals with the results
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analyzing the effect of catheterization on velocity, flow rate, wall shear stress and impedance for different val-
ues of the parameters for the Herschel–Bulkley fluid and the results for power law fluid, Newtonian fluid and
Bingham fluid are obtained as particular cases.

2. Formulation

Consider the flow of blood in an artery in which a catheter is introduced coaxially, where the artery is mod-
eled as a rigid circular tube of radius R. The catheter radius is taken to be kR ðk < 1Þ and the blood is modeled
as a Herschel–Bulkley fluid. The flow is assumed to be axially symmetric, laminar, steady and fully developed.
It has been observed from the angiographic data on coronary artery that the diameter of the vessel at the
upstream and downstream are about 100 lm and 20 lm, respectively [19]. We use the cylindrical polar coor-
dinates ð�r; �/;�zÞ, where �r and �z denote the radial and axial coordinates and �/ is the azimuthal angle. Fig. 1
shows the flow geometry.

It can be shown that the radial velocity is negligibly small in magnitude and may be neglected for low Rey-
nolds number flow and the pressure gradient is function of �z alone. The momentum equation in this case sim-
plifies to
d�p
d�z
¼ � 1

�r
d

d�r
ð�r�sÞ; kR 6 �r 6 R; ð1Þ
where �p denotes the pressure and �s denotes the shear stress. The general form of the constitutive equation for
Herschel–Bulkley fluid is taken to be
�g
o�u
o�r

����
���� ¼ �sj j � �sy

� �n
; for �sj jP �sy; ð2aÞ

o�u
o�r

¼ 0; for �sj j 6 �sy; ð2bÞ
where �sy is the yield stress, �u is the axial velocity, n is the power index and �g is the coefficient of viscosity for
Herschel–Bulkley fluid with dimension (M L�1 T�2)n T. The graph explaining the relationship between the
shear stress and shear rate is shown in Fig. 2.

The equivalent form of these relations when shear stress and strain rate have opposite signs when �sj jP �sy

can be written as
�g
o�u
o�r
¼ �sj j � �sy

� �n
; for

o�u
o�r
> 0 and �s < 0; ð3aÞ

¼ � �s� �sy

� �n
; for

o�u
o�r
< 0 and �s > 0: ð3bÞ
r

0,0 ><
∂
∂ τ

r

u

2λ=r R
                         Plug flow region

0,0 <>
∂
∂ τ

r

u 1λ=r

kR z

Fig. 1. Geometry of catheterized artery.
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For
�sy

�sj j � 1; the above constitutive equation by neglecting higher powers of
�sy

�sj j can be written as
�g
o�u
o�r
¼ �sj jn 1� n�sy

�sj j

� �
; if �sj jP �sy and

d�u
d�r
> 0; ð4aÞ

¼ � �sj jn 1� n�sy

�sj j

� �
; if �sj jP �sy and

d�u
d�r
< 0; ð4bÞ

¼ 0; if �sj j < �sy: ð4cÞ
Eqs. (1) and (4) can be solved subject to the no slip boundary conditions on the walls of the catheter and the
artery given by
�u �r ¼ kR
� �

¼ 0; ð5aÞ
�u �r ¼ R
� �

¼ 0: ð5bÞ
3. Method of solution

Let �p0 be the absolute magnitude of the typical pressure gradient. Let
�l ¼ �g
2

�p0R

� �n�1

: ð6Þ
We introduce the following non-dimensional variables:
u ¼ �u
�p0R2

2�l

; s ¼ �s
�p0R

2

; r ¼ �r

R
; z ¼ �z

R
: ð7Þ
In this case the pressure gradient can be written as
d�p
d�z
¼ ��p0ps; ð8Þ
where ps is the non-dimensional steady state pressure gradient. The momentum equation (1) in non-dimen-
sional form is given by
2ps ¼
1

r
d

dr
rsð Þ; k 6 r 6 1 ð9Þ
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and the constitutive equation (4) in the non-dimensional form is
ou
or
¼ sj jn 1� nh

sj j

� �
; for sj jP h and

ou
or
> 0; ð10aÞ

¼ � sj jn 1� nh
sj j

� �
; for sj jP h and

ou
or
< 0; ð10bÞ

¼ 0; for sj j < h; ð10cÞ
where
h ¼ 2�sy

�p0R
ð11Þ
is the non-dimensional yield stress. The boundary conditions (5) reduce to
u r ¼ kð Þ ¼ 0; ð12aÞ
uðr ¼ 1Þ ¼ 0: ð12bÞ
Integration of Eq. (9) yields
s ¼ psr þ
C
r
; ð13Þ
where C is the constant of integration. From Eq. (10), it is clear that the flow for k 6 r 6 1 is a three region
one, in which the central core region has a flat velocity profile and hence forms the plug flow region. In this
plug flow region, where the shear stress does not exceed the yield stress, the flow is not sheared in the sense that
the fluid streamlines are not moving at different velocities. For mathematical representation, let this plug flow
region be defined by k1 6 r 6 k2, where k 6 k1,k2 6 1. Here k1 and k2 are unknown constants to be deter-
mined. The three regions are depicted in Fig. 1. From the continuity of the shear stress along the boundary
of the plug flow region, we have
�sjr¼k1
¼ h ¼ sjr¼k2

: ð14Þ
Using the above conditions in Eq. (13), we get
C ¼ �psk
2; ð15Þ
where
k2 ¼ k1k2: ð16Þ

Substitution of Eq. (15) in Eq. (13) yields the shear stress as
s ¼ ps

r
r2 � k2
� �

: ð17Þ
Using Eq. (17) and condition (14), we have
k2 � k1 ¼
h
ps

¼ bs ðsayÞ; ð18Þ
where bs is the width of the plug core region. The expressions for the velocity in three regions can be obtained
from Eqs. (17) and (10) and the boundary conditions (12) (see Appendix A) and are given by
uþðrÞ ¼ pn
s

Z r

k

k2 � r2

r

� �n

dr � nbs

Z r

k

k2 � r2

r

� �n�1

dr

" #
; when k 6 r 6 k1; ð19Þ

up ¼ constant when k1 6 r 6 k2; ð20Þ

uþþðrÞ ¼ pn
s

Z 1

r

r2 � k2

r

� �n

dr � nbs

Z 1

r

r2 � k2

r

� �n�1

dr

" #
; when k2 6 r 6 1; ð21Þ
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where up denotes the plug flow velocity. When there is no yield stress (h = 0), we have bs = 0. In this case, Eqs.
(19) and (21) give the velocity field in a catheterized tube for power law fluid. This agrees with the result
quoted by Kapur [20]. Requirement of the continuity of the velocity distribution throughout the flow field
leads to the condition
uþðr ¼ k1Þ ¼ up ¼ uþþðr ¼ k2Þ: ð22Þ

This gives
Z k1

k

k2 � r2

r

� �n

dr �
Z 1

k2

r2 � k2

r

� �n

dr � nbs

Z k1

k

k2 � r2

r

� �n�1

dr �
Z 1

k2

r2 � k2

r

� �n�1

dr

" #
¼ 0: ð23Þ
Using k2 = k1k2 and Eq. (18), the above equation reduces to the integral equation in k1 given by
Z k1

k

k1ðk1 þ bsÞ � r2

r

� �n

dr �
Z 1

k1þbs

r2 � k1ðk1 þ bsÞ
r

� �n

dr

� nbs

Z k1

k

k1ðk1 þ bsÞ � r2

r

� �n�1

dr �
Z 1

k1þbs

r2 � k1ðk1 þ bsÞ
r

� �n�1

dr

" #
¼ 0: ð24Þ
The above equation is solved numerically for k1 using Regula–Falsi method, the integrals in Eq. (24) being
evaluated using Trapezoidal rule. Once k1 is known, k2 is determined using Eq. (18). The expressions for veloc-
ity can be obtained from Eqs. (19)–(21) and using Eq. (16). The steady flow rate Qs is given by
Qs ¼ 8

Z 1

k
rudr

¼ 4pn
s �

Z k1

k

k2 � r2

r

� �n

r2 dr þ
Z 1

k2

r2 � k2

r

� �n

r2 dr

"

þ nbs

Z k1

k

k2 � r2

r

� �n�1

r2 dr �
Z 1

k2

r2 � k2

r

� �n�1

r2 dr

( )#
: ð25Þ
The detail of Eq. (25) is given in Appendix B. The wall shear stress in the artery is obtained from Eq. (17)
with r = 1 and is given by
sw ¼ psð1� k2Þ: ð26Þ

For fixed values of ps, the wall shear stress depends on k which in turn depends on k and h. The frictional

resistance per unit length of the artery is given by
K ¼ ps

Qs

: ð27Þ
4. Results and discussions

The objective of the present investigation is to understand the fluid mechanics of blood flow in a catheter-
ized artery and to bring out the salient features of the changes in flow pattern and to estimates the increase in
flow resistance in a small artery due to the presence of a catheter by modeling blood as a Herschel–Bulkley
fluid and the flow is assumed to be steady. The present study also analyses the effects of catheterization
and non-Newtonian nature of the fluid on yield plane locations, velocity, flow rate, wall shear stress and resis-
tance to flow. The main advantage of this model is that it incorporates the power law fluid model and New-
tonian fluid model as particular cases, so that modeling of blood flow through larger arteries by fluids without
yield stress can also be obtained from present analysis. The insertion of a catheter in an artery will increase the
frictional resistance to flow through the artery and will modify the pressure distribution.

The yield stress for normal human blood is between 0.01 dyne/s2 and 0.06 dyne/s2, but it is much higher
(almost five times) in diseased state for example for a patient with myocardial infarction [21]. Since the value



Table 1
Variation of velocity with radial distance with ps = 1, h = 0.1 and k = 0.5 when n = 0.75 and n = 0.95

r n = 0.75 n = 0.95 Difference

0.5 0 0 0
0.52 0.01103 0.00923 0.0018
0.54 0.02094 0.01728 0.00369
0.56 0.02976 0.02419 0.00557
0.58 0.03749 0.03001 0.00748
0.6 0.04413 0.03477 0.00936
0.62 0.04968 0.03851 0.01117
0.64 0.0541 0.04126 0.01284
0.66 0.05736 0.04302 0.01434
0.68 0.05938 0.04382 0.01556
0.7 0.05976 0.04387 0.01589
0.72 0.05976 0.04387 0.01589
0.74 0.05976 0.04387 0.01589
0.76 0.05976 0.04387 0.01589
0.78 0.05976 0.04387 0.01589
0.8 0.05892 0.04353 0.01539
0.82 0.05672 0.04238 0.01434
0.84 0.05353 0.04047 0.01306
0.86 0.04944 0.0378 0.01164
0.88 0.04452 0.03442 0.0101
0.9 0.03882 0.03034 0.00848
0.92 0.03239 0.02557 0.00682
0.94 0.02526 0.02014 0.00512
0.96 0.01747 0.01406 0.00341
0.98 0.00904 0.00734 0.0017
1 0 0 0
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of �sy is 0.04 dyne/s2 for blood at haematocrit of 40 [22], the non-Newtonian effects are more pronounced as h
value increases and Eq. (11) suggests that it should be true for flow in narrow blood vessels where the pressure
gradient is also very small. In large vessels in which pressure gradient is large, h is negligible and blood behaves
more like a Newtonian fluid. As suggested by Dash et al. [10], we have taken the value of h to range from 0 to
0.3, as this range is more suitable for all vessels through which a catheter is inserted. Similarly, the values of
catheter radius ratio k have been taken to range from 0.1 to 0.7 to accommodate all types of catheter and also
to pronounce the difference in the flow quantities due to the increase of catheter radius ratio k.

It is generally observed that the typical value of the power index n for blood flow are taken to lie between
0.9 and 1.1 and we have taken a typical value of n to be 0.95 for n < 1 and 1.05 for n > 1. The data for var-
iation of velocity with radial distance ‘r’ for n = 0.75 and n = 0.95 and the difference between these values are
given in Table 1. The data for variation of flow rate with steady pressure gradient ps for n = 0.75 and n = 0.95
and the difference between these values are given in Table 2. We noticed that there is not much of difference in
the flow quantities given in Tables 1 and 2 when n = 0.75 and n = 0.95. A similar pattern is observed when
n = 1.05 and n = 1.25. So we are content with giving the typical values of power index n as 0.95 when
n < 1 and 1.05 when n > 1.

Steady flow experiments in vitro on the flow of blood through small tubes indicate that blood possess finite
yield stress, shear-dependent viscosity and relatively a cell-free layer (plasma layer) near a tube wall. This later
effect is related to a phase separation of red cell and plasma, due primarily to a volume exclusion at the bound-
ary and could be considered a departure from a single phase continuum, while a yield stress and shear-depen-
dent viscosity are interpreted as manifestations of non-Newtonian but still continuum behaviour [23]. The
effect of finite yield stress is that the fluid exhibits solid like behaviour or plug flow (where all velocity gradients
are negligible) in regions where the shear stress is less than the yield stress. The location of a point where the
yield stress is equal to the actual stress value is called a yield point and the locus of such points is called yield
surface or yield plane. In the case of a tube flow we have only one yield plane whereas for annular flow there
are two yield planes r = k1 and r = k2 and these two yield planes determine the plug flow region in the annular



Table 2
Variation of flow rate with steady pressure gradient with h = 0.1 and k = 0.5 when n = 0.75 and n = 0.95

ps n = 0.75 n = 0.95 Difference

1 0.125191 0.095145 0.030046
2 0.242249 0.21963 0.022619
3 0.342804 0.340664 0.00214
4 0.43436 0.459485 0.025125
5 0.519873 0.57671 0.056837
6 0.600928 0.692727 0.091799
7 0.67851 0.807708 0.129198
8 0.753229 0.921823 0.168594
9 0.825557 1.03522 0.209663
10 0.895837 1.147941 0.252104
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Fig. 3. Variation of yield plane location with yield stress h for different values of pressure gradient ps when n = 0.95 and k = 0.3.
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region. The values of k1 and k2 are determined by solving Eqs. (24) and (18). In steady flow the yield plane
locations k1 and k2 do not change during the course of motion. The locations of the yield planes k1 and k2

with yield stress h for different values of pressure gradient ps when n = 0.95 and k = 0.3 are shown in
Fig. 3. The value of k1 increases and the width of the plug core region decreases with increasing pressure gra-
dient for a given value of n, k and h. The width of the plug core increases with increasing value of the yield
stress h for a given value of a pressure gradient as can be seen from Eq. (18), although the value of k1 decreases
with increasing h.

The effect of non-Newtonian nature of the fluid on the velocity distribution for a given catheter radius ratio
for various values of yield stress h when k = 0.5 and ps = 1 for n = 0.95 and n = 1.05 is depicted in Fig. 4a and
b, respectively. It is observed that the velocity distribution for Newtonian fluid (h = 0 and n = 1), the maxi-
mum velocity is slightly skewed towards the inner wall of the annulus which is a well known result for New-
tonian fluid. As h increases the width of the plug core region increases and the velocity decreases considerably
and for h = 0.3 the plug core region is almost the entire annulus region, the velocity in the plug core region
being almost zero. The plug flow region is skewed slightly towards the inner wall of the annulus. Also as n
increases the velocity decreases for a given value of k and h when ps = 1. From Fig. 4a and b, it is obvious
that the power law fluid velocities are much higher compare to fluids with yield stress and the velocity for
power law fluid with n = 0.95 is greater than that of Newtonian fluid. For easy comparison the velocity pro-
files for different fluid are given in Fig. 5. It is noted that for each value of the yield stress the velocity distri-
bution for Casson fluid obtained by Dash et al. [10] are much lower than those of Herschel–Bulkley fluids.

The variation of plug flow velocity with catheter ratio k with n = 0.95 for different values of yield stress h is
shown in Fig. 6. The plug flow velocity decreases rapidly as k increases from 0 to 0.15 for each value of h and
the velocity decreases gradually as k increases from 0.15 to 0.7. For h = 0.25, the plug flow velocity becomes
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zero and when k is nearly 0.7, whereas for Casson fluid the plug core velocity is zero approximately at k = 0.55
[10]. In these cases the whole flow region is almost plugged for respective values of k although the actual width
of the plug flow region is 0.25.

The flow rate Qs is given by Eq. (25). Fig. 7 shows the variation of flow rate with yield stress for different
values of catheter radius ratio k under unit pressure gradient. When n = 0.95 the flow rate decreases almost
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linearly whereas for Casson fluid the variation is highly non-linear and steeply decreases as the yield stress
increases from 0 to 0.1 for a given catheter radius. This is mainly due to the increase in the width of the plug
core region. For a fixed yield stress, the flow rate decreases more rapidly as the catheter radius ratio increases
which is due to the reduction in the annular flow region. The flow is almost stopped when k = 0.7 at h = 0.13.
Thus Figs. 6 and 7 describe the simultaneous effects of non-Newtonian nature of the fluid and catheterization
for a given pressure gradient.

Fig. 8 shows the variation of steady flow rate with pressure gradient for different values of h with k = 0.4
when n = 0.95. It is seen that the variation is not much with variation in h.

A basic aim of problems related to physiological fluid dynamics is to predict wall shear stress in arteries
which significantly influences the rate of mass transport across the artery walls and the possible development
of atherogenesis. In steady flow the wall shear stress is calculated from Eq. (26). It is obvious that for a fixed ps,
the wall shear stress depends on k and in turn k depends on k and h.
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The variation of wall shear stress with catheter radius ratio k for different values of yield stress h when
n = 0.95 and ps = 1 is shown in Fig. 9. This figure again depicts the simultaneous effects of the non-Newtonian
nature of the fluid and catheterization. It is observed that for a given pressure gradient the walls shear stress
decreases as the catheter radius ratio k increases and in particular decreases very rapidly from k = 0 to k = 0.1.
For a fixed catheter radius ratio k, the wall shear stress increases marginally as the yield stress h increases.

The frictional resistance (K) per unit length of the artery is calculated using Eq. (27). It is clear that under a
given pressure gradient a greater resistance implies less flow of fluid. Thus the resistance gives the measure of
the volume of the fluid transported by the artery. Fig. 10a and b show the variation of frictional resistance
with catheter radius ratio k for different values of the yield stress h and for unit pressure gradient when
n = 0.95 and n = 1.25, respectively. The frictional resistance increases with increasing k and it also increases
with increasing h. Therefore the frictional resistance is more for Herschel–Bulkley fluid compared to power
law fluid for a given n. When ps = 1, the frictional resistance is more for Herschel–Bulkley fluid with
n = 1.05 compared to Herschel–Bulkley fluid with n = 0.95. The difference is not much for small values of
k (0.1–0.3) and for small values of h (0.1–0.2). When h = 0.3 and k = 0.6, the frictional resistance for
Herschel–Bulkley fluid with n = 1.05 is almost double to Herschel–Bulkley fluid with n = 0.95.
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Table 3
Frictional resistance increase for Casson fluid with ps = 1

k h

0.0 0.05 0.1 0.15 0.2 0.25 0.3

0.1 1.7414 3.3036 4.6153 6.2077 8.2519 10.9642 14.66815
0.2 2.3486 4.705 6.8107 9.4972 13.13 18.2309 25.65271
0.3 3.2885 7.0112 10.591 15.447 22.462 33.0806 49.96608
0.4 4.8938 11.271 17.999 27.906 43.592 70.0915 118.4054
0.5 7.9375 20.239 34.951 59.327 103.77 193.714 403.6217
0.6 14.586 42.965 83.797 165.73 357.98 918.887 3328.362
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We reproduce the table given by Dash et al. [10] for frictional resistance increase factor for Casson fluid in
Table 3. But we realized that what they have tabulated is actual frictional resistance and not the increase in
frictional resistance. If we define the frictional resistance increase factor as the ratio of frictional resistance for
Casson fluid in the catheterized artery to the frictional resistance of Newtonian fluid in the uncatheterized
artery, the values in Table 3 will represent this frictional resistance increase.

In this case the increase denotes the simultaneous effects of non-Newtonian nature of the fluid and the cath-
eterization. These values for Herschel–Bulkley fluid for n = 0.95 and n = 1.05 are tabulated in Tables 4 and 5.
It is noticed that depending on the catheter radius ratio k which varies from 0.3 to 0.6, the flow resistance
increases by a factor 3.29–14.58 for Newtonian fluid. In small blood vessels, where non-Newtonian nature
Table 4
Frictional resistance increase for Herschel–Bulkley fluid with effects on non-Newtonian nature when n = 0.95 and ps = 1

k h

Newtonian fluid Power law 0.05 0.1 0.15 0.2 0.25 0.3

0.1 1.7413 1.7091 1.8512 2.018 2.2155 2.45161 2.7374 3.08813
0.2 2.3485 2.2880 2.5082 2.7731 3.0955 3.49281 3.99067 4.62664
0.3 3.2883 3.1799 3.5378 3.9815 4.5401 5.25675 6.19752 7.46785
0.4 4.8935 4.6938 5.3251 6.1400 7.215 8.67354 10.72417 13.7421
0.5 7.9372 7.5417 8.7960 10.5100 12.935 16.5246 22.17703 31.8887
0.6 14.585 13.702 16.675 21.1200 28.175 40.4009 64.61481 124.63



Table 5
Frictional resistance increase for Herschel–Bulkley fluid with effects on non-Newtonian nature when n = 1.05 and ps = 1

k h

Newtonian fluid Power law 0.05 0.1 0.15 0.2 0.25 0.3

0.1 1.7413 1.7736 1.9349 2.1275 2.3598 2.64395 2.99668 3.44283
0.2 2.3485 2.41 2.6642 2.9759 3.3637 3.85461 4.48958 5.33164
0.3 3.2883 3.3995 3.8196 4.3522 5.0411 5.95416 7.20205 8.97418
0.4 4.8935 5.1005 5.8552 6.8562 8.2219 10.1553 13.02632 17.5723
0.5 7.9372 8.3507 9.883 12.05 15.254 20.2915 28.91379 45.6856
0.6 14.585 15.52 19.252 25.091 34.993 53.9087 97.86211 247.763
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of blood must be taken into account, the value of yield stress possessed by blood can cause even more increase
in flow resistance. For Herschel–Bulkley fluid with n = 0.95 and with the same range of catheter radius ratio
(i.e. k varies from 0.3 to 0.6), the frictional resistance increases by a factor of 3.98–21.12 when h = 0.1 and
7.47–124.6 when h = 0.3 whereas for Herschel–Bulkley fluid with n = 1.05, these factors are 4.35–25.09 when
h = 0.1 and 8.97–247.76 when h = 0.3. Dash et al. [10] have shown for the same range of catheter radius ratio
(k ranges from 0.3 to 0.6), the frictional resistance increases by a factor 10.59–83.79 when h = 0.1 and 49.97–
3328.36 when h = 0.3 for Casson fluid.

If we have to compare only the effect of catheterization alone for a particular fluid then we must define the
frictional resistance increase factor as the ratio of frictional resistance for catheterized artery to that in uncath-
eterized artery for the particular fluid. Therefore to find the increase in frictional resistance due to catheteri-
zation alone for Herschel–Bulkley fluid, we define the frictional resistance increase as the ratio of frictional
resistance for catheterized artery for given values of n and h to the frictional resistance of uncatheterized artery
for the same values of n and h. In this case the frictional resistance increase when k ranges from 0.3 to 0.6 are
3.52–18.67 for n = 0.95 and 3.7–21.33 for n = 1.05 when h = 0.1 and 4.7–78.35 for n = 0.95 and 5.18–143.1 for
n = 1.05 when h = 0.3 for unit pressure gradient. The corresponding increase in frictional resistance for Cas-
son fluid are 4.35–34.4 when h = 0.1 and 7.38–491.38 when h = 0.3 and for Newtonian fluid it is 3.29–14.59.
The detailed values are given in Tables 6 and 7. Therefore for relatively large values of k and h, the frictional
Table 6
Frictional resistance increase for Herschel–Bulkley fluid with effects on catheterization when n = 0.95 and ps = 1

k h

Newtonian fluid Power law 0.05 0.1 0.15 0.2 0.25 0.3

0.1 1.7413 0.7182 1.7556 1.7838 1.8159 1.85234 1.89379 1.94128
0.2 2.3485 2.3172 3.3787 2.4513 2.5372 2.63903 2.76083 2.90843
0.3 3.2883 3.2204 3.355 3.5195 3.7213 3.97179 4.28758 4.69449
0.4 4.8935 4.7536 5.05 5.4274 5.9138 6.55336 7.41921 8.63862
0.5 7.9372 7.6379 8.3416 9.2905 10.602 12.4861 14.65072 20.0461
0.6 14.585 13.877 15.814 18.669 23.093 30.5253 44.7019 78.3455

Table 7
Frictional resistance increase for Herschel–Bulkley fluid with effects on catheterization when n = 1.05 and ps = 1

k h

Newtonian fluid Power law 0.05 0.1 0.15 0.2 0.25 0.3

0.1 1.7413 1.7518 1.778 1.8085 1.8438 1.88481 1.93243 1.98841
0.2 2.3485 2.3805 2.4481 2.5297 2.6282 2.74786 2.89514 3.07929
0.3 3.2883 3.3579 3.5098 3.6996 3.9155 4.23562 4.6443 5.18304
0.4 4.8935 5.038 5.3804 5.8328 6.4241 7.23948 8.40012 10.1489
0.5 7.9372 8.2485 9.0813 10.243 11.919 14.4653 18.64528 26.3858
0.6 14.585 15.33 17.691 21.329 27.342 38.4302 63.10712 143.096



Table 8
Catheter types, sizes and measurements

Type Size (diameter) di (mm) Measurement Source

Angioplasty catheter guide wire 0.356 DP Pressure drop Wilson et al. [2]
Coronary angioplasty catheter 1.4 DP Pressure p distal to lesion Wilson et al. [2]
Guiding catheter 2.6 DP Pressure p at coronary ostium Wilson et al. [2]
Doppler catheter 1.0 Velocity u proximal to lesion Johnson et al. [24]
Coronary infusion catheter 0.66 DP Pressure drop across lesion Ganz et al. [25]

Table 9
Range of flow resistance increase for different types of catheter and for different fluids

Type Range of di/d0 Range of flow resistance increase

Newtonian fluid Herschel–Bulkley fluid Casson fluid h = 0.1

n = 0.95; h = 0.1 n = 1.05; h = 0.1

Guide wire 0.08–0.8 1.64–2.21 1.68–2.29 1.69–2.36 1.75–2.57
Infusion 0.14–0.33 1.96–3.68 2.02–3.97 2.06–4.2 2.2–5.03
Angioplasty catheter 0.3–0.6 3.29–14.58 3.52–18.67 3.7–21.33 4.34–34.4
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resistance increases several hundred times to obstruct the fluid movement considerably for non-Newtonian
fluids.

For comparisons of the results with different types of catheters used, we reproduce the table given by Back
[1] in Table 8. Table 9 gives the range of flow resistance increase for different catheter types for Newtonian
fluid given by Back [1] with results of Herschel–Bulkley and Casson fluid is incorporated and this is the effect
of catheterization alone on frictional resistance increase for unit pressure gradient. In Table 9, di denotes the
diameter of catheter and d0 denotes the diameter of artery.

5. Conclusion

In this paper the effect of catheterization on pressure distribution, wall shear stress and the resistance to
flow are discussed by modeling blood by Herschel–Bulkley fluid and the blood vessels and the catheter by
coaxial rigid tubes. The velocity decreases and the width of the plug core region increases as the yield stress
increases. The velocity for Herschel–Bulkley fluid is higher than that of Casson fluid and lower than that of
power law fluid for a given ps, h, k and n. The flow rate decreases with increasing yield stress and also with
increasing catheter radius ratio k, but increases with increasing pressure gradient ps. The wall shear stress
decreases as the catheter radius ratio k increases but it increases when the yield stress h increases for a given
value of ps and n.

The frictional resistance increases with increasing catheter radius ratio k and with increasing yield stress h
for a given values of n and ps as expected. The values of frictional resistance for Herschel–Bulkley fluid for a
given ps, h, k and n, are lower than those of Casson fluid but higher than that of power law fluid. It is to be
noted that frictional resistance increases with increasing catheter radius ratio and is much higher for Herschel–
Bulkley fluid with n = 1.05 compared to that of Herschel–Bulkley fluid with n = 0.95, for unit pressure gradi-
ent. The increase in flow resistance due to catheterization alone and also that due to the simultaneous effects of
non-Newtonian nature and catheterization are obtained for Herschel–Bulkley fluid and compared with
Casson and Newtonian fluids. We hope that this theoretical work will be of use for experimental work by
other researchers.
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Appendix 1

Using sj j ¼ �s in Eq. (10a) and making use of Eq. (17), we get
duþ

dr
¼ pn

s

k2 � r2

r

� �n

� nbs

k2 � r2

r

� �n�1
" #

: ðA:1Þ
Integration of Eq. (A.1) with respect to r from k to r with the help of boundary condition (12a), yields
uþðrÞ ¼ pn
s

Z r

k

k2 � r2

r

� �n
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Z r
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From Eqs. (17) and (10a) with sj j ¼ s, we get
duþþ

dr
¼ �pn

s

r2 � k2
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Integrating Eq. (A.3) with respect to r from r to 1 and using boundary condition (12b), we get
uþþðrÞ ¼ pn
s
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Appendix 2

The steady flow rate Qs is given by
Qs ¼ 8

Z 1

k
rudr ¼ 8

Z k1

k
ruþ dr þ

Z k2

k1

rup dr þ
Z 1

k2

ruþþ dr
� �

¼ 8ðQ1 þ Q2 þ Q3Þ: ðA:5Þ
Substituting Eq. (19) in Q1, we get
Q1 ¼ pn
s
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Change of order of integrals in Eq. (A.6) gives
Q1 ¼ pn
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Using the first part of condition (22) in Eq. (19), the plug flow velocity up is obtained as
up ¼ pn
s
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This gives value of Q2 as
Q2 ¼ pn
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Similarly we obtain
Q3 ¼ pn
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Change of order of integrals in Q3 gives
Q3 ¼ pn
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The value of Qs simplifies to
Qs ¼ 4pn
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The condition (22) gives
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Using the above in Eq. (A.12), we get Eq. (25).
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