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Let o be the topological space formed by the points (x, y) of R? such that either
x?+y?=1,0r0<x<2and y=1. A ¢ map f is a continuous self-map of ¢ having
the branching point (0, 1) as a fixed point. We denote by Per( () the set of periods
of all periodic points of f, and by N the set of positive integers. We prove that if
fis a 6 map and {2, 3,4, 5,7} < Per(f), then Per(f)=N. Conversely, if S&N is
a set such that for every ¢ map f, S<Per(f) implies Per(f)=N, then
{Z, 3, 4,5, 7} c S. € 1994 Academic Press, Inc.

1. INTRODUCTION

A connected finite regular graph (or graph for short) is a pair consisting
of a connected Hausdorff space G and a finite subspace V (points of V are
called vertices) such that the following conditions hold:

(1) G\V is the disjoint union of a finite number of open subsets
e, .., e, called edges. Each e; is homeomorphic to an open interval of the
real line.

(2) The boundary, cl(e;)\e,, of the edge e, consists of two distinct
vertices, and the pair (cl(e;), e;) is homeomorphic to the pair ([0, 1],
(0, 1)).

A vertex v which belongs to the boundary of at least three different edges
is called a branching point of G.
A G map fis a continuous self-map of G having all branching points of
G as fixed points. Note that all the continuous self-maps in a graph G
639

0022-247X/94 $6.00

Copyright ) 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



640 LLIBRE, PARANOS, AND RODRIGUEZ

considered in this paper are special in the sense that they have all the
branching points of G fixed.

A point x of G is called periodic with respect to f of period n if n i1s the
smallest positive integer such that f”(x)=x. The set {x, f(x), ..,/" '(x)}
is called the periodic orbit of x. We denote by Per(f) the set of periods of
all periodic points of f and by N the set of positive integers.

A G map [ has full periodicity if Per(f)=N. The set KN is a full
periodicity kernel of G if it satisfies the following two conditions:

(1) If fis a G map and K < Per(f), then Per(f)=N.

(2) If SN is a set such that for every G map f, S < Per(f) implies
Per(f)=N, then K< S.

Note that for a given G if there is a full periodicity kernel, then it is
unique.

The full periodicity kernel has been computed for the closed interval, the
circle, and the Y; more precisely,

(I) Let I be the closed interval [0, 1]. Then the set {3} is the full
periodicity kernel of [ (see [11] and [9]}.

(S) Let S' be the circle. Then the set {1, 2,3} is the full periodicity
kernel of S' (see [5] and [8]).

(Y) Set Y={zeC:z*¢[0,1]}. The set {2,3,4,5 7} is the full
periodicity kernel of Y (see [10] and [1]).

In this paper we characterize the full periodicity kernel of ¢, where o is
the topological space formed by the points (x, y) of R? such that either
x?+ y?=1, or < x<2 and y=1. Then our main result is the following.

THEOREM 1.1. The set {2,3,4,5,7} is the full periodicity kernel of o.

The rest of this paper is dedicated to the proof of Theorem 1.1.

The n-star is the subspace of the plane which is most easily described as
the set of all complex numbers z such that z" is in the unit interval [0, 1].
Recently, the full periodicity kernel of the n-star has been studied in [3]
and [4]. Also, in [7] the full periodicity kernel of the “circle with two
whiskers” and of the “figure eight” have been computed.

The reader is advised to draw figures when reading most of the proofs,
especially in Sections 6 and 7.

We thank to Department of Analysis of the University of Santiago de
Compostela for the invitation to the first author which made this paper
possible and the referees for their comments which helped us to improve a
preliminary version of this paper. Also, the authors are partially supported
by a DGICYT grant.
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2. FirsTt REDUCTION: PERIODS FORCED BY PERIODS 5 AND 7

Since the Y is homeomorphic to {(x, y)eo: y =0}, in this section we
consider Y= {(x, y)eo: y=20}<a. Let f be an Y map ; we extend fto a
o map f as follows. We define f(p)=f(p) if pe Y, and f|,, as any
homeomorphism between cl(o\Y) and the unique closed arc in Y having
f(1,0) and f(—1,0) as endpoints such that f(1,0)=f(1,0) and
f(—1,0)=f(—1, 0). Of course, Per(f)= Per(f).

From (Y) of Section 1 we know that if SS N is a set such that for every
Y map f, ScPer(f) implies Per(f)=N, then {2,3,4,5 7} <8 So, the
same is true for the ¢ maps f which are an extension of some Y map f.
Hence, from the definition of a full periodicity kernel, to prove Theorem 1.1
it is sufficient to show the following.

THEOREM 2.1. If fis a ¢ map and {2,3,4,5, 7} = Per(f), then Per(f)
=N.

In fact, Theorem 2.1 is a corollary of the following two propositions:

ProposiTiON 2.2. If f is a 6 map and S5ePer(f), then Per(f)=
N\{2,3,4,7 10}

ProposiTiON 2.3. If fis a 0 map and 7 € Per(f), then 10 e Per(f).
Propositions 2.2 and 2.3 are proved in the remaining sections of this
paper.

3. SEcoND REDUCTION: P’-LINEAR MAPS

Let py be the unique branching point of ¢. The closures of the two
components of o\ {p,} are called the circle (of ) and the whiskers (of o)
according to whether they are homeomorphic to a circle or to a closed
interval, respectively.

Let f be a ¢ map (Fig. 1a), and suppose that P={p,, .., p,} is a peri-
odic orbit of period k> 1. Set P' = {p,, p,, ..., P }. A basic interval [ p;, p;]
is the closure of the component (p,, p;) of ¢\P' such that p,# p, and
{p., p;} is the boundary of (p;, p,). If P is contained in the whiskers of o
then there are exactly k basic intervals. Otherwise there are exactly £+ 1
basic intervals. Let B be the set of all basic intervals. The f~graph relation
— on B is defined as follows. If 7 and J are basic intervals, then we say /
f-covers J or I—J if there exists a closed subinterval K of I such that
Sf(K)=J. A path of length m is any sequence Jo,—»J,— --- = J,, _—>J,,
where J,, J,, ..., J,, are all basic intervals. Furthermore, if J,, = J, then this

409°183:3-12
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FiG. 1. (a) The graph of /. (b) The graph of g.

path is called a loop of length m. Such a loop is called non-repetitive if it
cannot be written as a single smaller loop repeated an integer number of
times.

The following three results are well known basic tools for obtaining
periodic points of f from the f-graph, and minor variations of them have
appeared on many previous occasions in the study of one-dimensional
topological spaces different from o (see, e.g.,, [12,6, 1,2, 4, .. 7).

LEmma 3.1. Let Jo—J,— --- = J,_—J, be a non-repetitive loop of
length m in the f-graph such that at least one J; does not contain p,. Then
f has a periodic point of period m.

The proof of Lemma 3.1 is the usual one.

If Iis a basic interval of o, we denote by o, , the maximal subgraph
formed by the union of the basic intervals contained in f(/)<o. Then f|,
is linear if f(IY=0,,, 0, ;is a tree, and f|, is linear with respect to the
taxicab metric of I and o, ,. The taxicab metric d on a tree satisfies the
property that if z is in the interval [x, y], then d(x, y)=d(x, z) + d(z, y);
of course, the closed interval [x, y] in a tree is defined to be the unique
minimal connected closed subset of the tree containing {x, y}.

For the remainder of this section, let g be a ¢ map defined by g|, =f1p,
g!, linear for each basic interval 7, and g constant on each component of
the complement of the union of all basic intervals. Such a map will be
called a P’-linear ¢ map (Fig. 1b).

Note that in general g|; is not homotopic to f],; roughly speaking, this
is due to the fact that g|, cancels out the circles in the image of f|,, so that
every basic interval g-covers any basic interval at most once. Of course, it
follows immediately that the g-graph on B is a subgraph of the f-graph
on B.
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In what follows, when we work with P'-linear ¢ maps we consider
without loss of generality that the union of all basic intervals is .

LEMMA 3.2. If g has a periodic point of period m, where m is neither 1
nor k, then there is a non-repetitive loop of length m through the g-graph
such that at least one basic interval of the loop does not contain the point p,,.

Proof. Let x be a such a point. Then the orbit of x misses P’, so for
each i, 0<i<m, there is a unique basic interval J; containing g'(x), and
since g is P'-linear, Jo—»J,— --- = J,,_, = J, . =J, forms a loop in the
g-graph. First, we need to show that the loop is non-repetitive. Since g is
linear on each J;, we can define (by backwards induction on i) subintervals
K, of J; such that g: K, — K, , is one-to-one and onto and K, =J,,=J,.

Suppose the loop is repetitive. Then there exists 0 < s <m, m divisible by
s, such that J,;=J,, for 0 <i<m—s. Then it is easy to see (again by back-
wards induction on i and piecewise linearity) that f 0 <i<m —s then K,
contains K,. Thus g* has a fixed point y in K. Then since m is divisible by
s, g”(y) = y. Note that x and y must be different, since x has period m and
v has period s <m. Thus the map g”: K, — K,, is linear and has at least
two fixed points. Therefore g™ |4, must be the identity map, so K,=K, =
K, =Jo. If py is an endpoint of J,, then k=me {2,3}, and this is a
contradiction because k#m. If p; i1s not an endpoint of J,, then p,
is not an endpoint of K, for i=0,1,..,m—1. So k=m and m=2s,
again a contradiction. Thus, the loop Jo—»J,— --- > J,,_—=J,=Jq is
non-repetitive.

Suppose that all the basic intervals of the non-repetitive loop of length
m contain the point p,. Let z be a point of the orbit of x such that the
interval [z, po] or [py, z] satisfies (z, pg) NP = or (py, z2) " P =,
respectively. Then g™ [, ,7 OF 7 |(p,, -7 is the identity map because g™ has
two fixed points, p, and z, and is linear. Then m=ke {2, 3}, in contra-
diction to m # k. Hence, the lemma is proved. {

THEOREM 3.3. If g has a periodic point of period m, then so does f.

Proof. Both fand g have points of period 1 and k. If m is neither 1 nor
k and g has a periodic point of period m, then by Lemma 3.2 there is a
non-repetitive loop in the g-graph on B of length m such that at least one
of its basic intervals does not contain p,. Therefore, by Lemma 3.1, f has
a periodic point of period m. |

Remark 34. From this theorem it follows immediately that it is
sufficient to prove Propositions 2.2 and 2.3 for P’-linear ¢ maps with &
equal to 7 and 5, respectively.
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4. THIRD REDUCTION: EACH BASIC INTERVAL IS f~COVERED
BY SOME BASIC INTERVAL DIFFERENT FROM ITSELF

We need the next two lemmas. The first one follows immediately from
the Sharkovskii Theorem [11], Theorem A of [5], and the Main Theorem
of [1].

LEMMA 4.1. Let f be either an I map, an S' map having a fixed point, or
a Y map. Then the following statements hold.

(1Y If 7ePer(f), then 10 € Per(f).
(2) If 5ePer(f), then Per(f)2N\{2,3,4,7,10}.

In what follows we use the notation introduced in Section 3.

Lemma 4.2. Let f be a P'-linear ¢ map with k equal to 5 or 7. If the
periodic orbit P is contained in the circle or the whiskers of o, then either
Proposition 2.2 or Proposition 2.3 holds according to whether k=5 or k=1,
respectively.

Proof. 1f P is contained in the whiskers of ¢, then fis an / map. If P
is contained in the circle of o, then fis a S' map having p, as a fixed point.
Hence, from Lemma 4.1 we are done. §

Remark 4.3. From Remark 3.4 and Lemma 4.2, it is sufficient to prove
Propositions 2.2 and 2.3 for a P’-linear ¢ map f with k equal to S or 7 and
such that the periodic orbit P is contained neither in the circle of ¢ nor in
the whiskers of . So, in what follows we only consider such P’-linear o
maps.

ProrosITION 4.4. Let [ be a P'-linear ¢ map as in Remark 4.3. Then at
least one of the following statements hold.

(1) Each basic interval is f-covered by some basic interval different
Jrom itself.

(2) k=35 and [ satisfies Proposition 2.2.
(3) k=7 and f satisfies Proposition 2.3.

Proof. Let p; be the endpoint of the whiskers of ¢ different from p,.
Since p, belongs to the periodic orbit P, p, is a fixed point, [ is P’-linear
and f(a) is connected, if follows that each basic interval J contained in the
whiskers of ¢ is f-covered by some basic interval 7. We claim that 7 can be
chosen so that 7#J.

To prove the claim suppose that J—J and J=[p,, p,] with
P < p; < pi < po (since the interval [p;, po] is the whiskers of & we can
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consider on it a total ordering < such that p, is the largest element and
p, the smallest one). Now, since fis a P’-linear ¢ map we can consider two
cases.

Case 1. Either p,< f(p;) < p;< pu <f(pi), or p;<f(p;)<p;<p, and
f(pe) ¢ pi, po] If there is no basic interval I# J such that I— J, then
(P pi, p,)EPN[p;, p] with Pn[p,, p;]1# . This is a contradic-
tion because P is a periodic orbit not contained in the whiskers of ¢.

Case 2. Either p, < f(p)< p;<pe<f(p)), or p;<f(py)< p;<pi and
S(p;))¢ [pi» ol Then p, < p,, and clearly f([pi, Po]) 2 Lf(Pi) flpo)]2
Lf(pc) o2 [ p;s Po]l=J. Therefore there is a basic interval I< [ p,, py]
which f-covers J, and of course 7+ J. Thus, the claim is proved.

Now let J denote a basic interval contained in the circle of o, and sup-
pose that there is no basic interval /#J which f-covers J. Since f is
P'-linear, f1, q ) 0\Int(J) — o\Int(J) is either a ¥ map or an I map such
that Per(f) = Per(f,, ). Then, from Lemma 4.1 it follows that either (2)
or (3) holds. Otherwise, there is a basic interval I# J such that 7 — J. Since
we can repeat this argument for each basic interval J contained in the circle
g, the proposition is proved. ||

Remark 4.5. From Remark 4.3 and Proposition 4.4, it is sufficient to
prove Propositions 2.2 and 2.3 for a P'-linear ¢ map f with &k equal to §
and 7, respectively, such that the periodic orbit P is contained neither in
the circle of ¢ nor in the whiskers of o, and each basic interval is f-covered
by some basic interval different from itself. Hence, in the rest of the paper
we only consider such P’-linear ¢ maps.

5. FOURTH REDUCTION: ANY BASIC INTERVAL DOES NOT f~COVER ITSELF

Since the periodic orbit P has points on the circle of ¢ and on the
whiskers of ¢, thére are exactly three different basic intervals which have p,
as endpoint. These basic intervals will be denoted by A4, B, and C. We
assume that A is contained in the whiskers of a.

The goal of this section is to show the following resuit.

ProrosiTiON 5.1, Let f be a P'-linear ¢ map as in Remark 4.5. Suppose
that there is some basic interval which f-covers itself. Then Per(f)2
{neN:nzk}.

Proof. Let I be a basic interval such that / — I. Since f is P'-linear, the
connected set f(I) is formed by some union of basic intervals and
e fi*'U) for i=1,2, ... Since P<f (), it follows that there is at
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most one basic interval not contained in f*(/), but if there is one, it is
f-covered by some other basic interval, so f**!(/) = o. Let r be the smallest
integer such that f"(I)=o.

Thus we have ISf(I)sf()s - Sf(I)=0c with r<k+1, and each
basic interval L of f/(I)\f/~'(I) is f-covered by a basic interval M of
S NI\’ 2(I). From Remark 4.5 there is a basic interval J # I such that
J— I Let s be the smallest positive integer such that J< f*(/), clearly
1 <s<r. Then we have a non-repetitive loop I=1, »I,— --- > [ =J -1
First, suppose that some of the basic intervals of the loop do not contain
po- Therefore, by using Lemma 3.1 and the loop 7/— 1/, it follows that
Per(f)2{neN:n2s}. Since s<r<k+1, we have that Per(f)2
{neN:n=k+1}. Since ke Per(f), the proposition is proved.

Now, we can assume that all the basic intervals of all the loops
containing / have py as an endpoint. Such loops have length 2 or 3, and
all their basic intervals must be A, B, or C. Suppose that /= A. Then, since
I—1I and f is P'-linear, f(A4) is contained in the whiskers of 4, and A4
cannot f-cover B and C. This is in contradiction with the fact that we have
a non-repetitive loop of length 2 or 3 such that all its basic intervals are in
{4, B, C}. Now, without loss of generality, we can assume that /=B.
Then, since /— I, fis P'-linear, and I must f-cover 4 or C, it follows that
f(B) contains the circle of o, in contradiction with the definition of
P'-linear. Thus the proposition is proved. ||

In fact, since the proof of Proposition 5.1 works for arbitrary k > 3, it is
not necessary that k=5 or k=7.

REMARK 5.2.  Proposition 5.1 shows that if there is some basic interval
which f-covers itself, then Propositions 2.2 and 2.3 hold. So from now on we
add the following assumption to the hypotheses from Remark 4.5: any basic
interval does not f-cover itself.

6. FirtH REDUCTION: UNDIRECTED ASSUMPTION

When the f-graph contains the loop 4 +B—~>C—>AorA-C—>B— A4
we say [ satisfies the directed assumption; otherwise, f satisfies the undirected
assumption.

The goal of this section is to prove Propositions 2.2 and 2.3, for ¢ maps
satisfying the hypotheses from Remarks 4.5 and 5.2, and the undirected
assumption.

ProposITION 6.1. Let f be a P'-linear ¢ map satisfying the hypotheses
from Remarks 4.5 and 5.2, and the undirected assumption. Then Per(f)2
{neN:nzk}.
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Proof. Since fis P’-linear and any basic interval does not f~cover itself,
po is the unique fixed point of £ On the other hand, since the intervals
A, B, and C have the fixed point p, as endpoint and any basic interval does
not f-cover itself, each element of the set {4, B, C} f-covers one and only
one of the other two elements. Therefore, from the undirected assumption
and interchanging the names of the intervals B and C on the circle of o (if
necessary), it follows that A2 B« C, A-B2C,or C—» A B.

Case 1. A2 B« C. From the continuity of f, the existence of the
periodic orbit P, the fact that the unique fixed point of fis p,, and Fig. 2a
it follows immediately that there is a basic interval J contained in the circle
of o such that J¢ {B, C} and either A —~J— Bor C«—J—B.

Since f is P'-linear, A = B, and A U B is connected, the connected set
/(40U B) is formed by some union of basic intervals and f{(4u B)c
fi*Y AuB)fori=1,2,.. Since P< f*'(4u B), it follows that there is
at most one basic interval not contained in f* ~!(4 U B), but if there is one,
it is f-covered by some other basic interval, so f%(4 w B)=o0. Let r be the
smallest integer such that (4 U B)=o0.

Thus we have AUBS f(AUB)SfH(AUB)S --- Sf (AU B)=0 with
r<k, and each basic interval L of f/(4u B)\f/~ (4 U B) is f-covered by
a basic interval M of f/~Y(A4u B)\f/~%(4u B). Then there is a path
IL-I,— --- >[I _,—J with I, equal to either 4 or B. Therefore, this
path of length r—1, together with the subgraphs 42 B+ C and either
A+« J—- B or C+«J— B, implies that Per(f)2{r+1,r+2,..}. Hence,
since ke Per(f) and r<k, we have that Per(f)=2{neN:n=k}. So, the
proposition is proved in Case 1.

Case 2. A— B C. From the continuity of f, the existence of the
periodic orbit P, the fact that the unique fixed point of f'is p,, and Fig. 2b
it follows immediately that three is a basic interval J contained in the circle
of ¢ such that J¢ {B, C} and either A« J— B or C«J— B. Now, the
proof of the proposition in this case uses the same arguments found in
Case 1.
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Case 3. C— A2 B. Since k is odd, the periodic orbit P has more
points either in the circle or in the whiskers of . Therefore there is a basic
interval J contained in the circle of ¢ if Card(Pn {(x, y)e R*:x?+
yr=1})>Card(Pn {(x, y)eR*:0<x<2 and y=1}), or contained in
the whiskers of ¢ otherwise, such that J¢ {4, B, C} and either 4 « J— B
or A« J— C (see Fig. 2c). Again, by repeating the same arguments found
in Case 1, the proposition follows. ||

In fact, Proposition 6.1 is true for arbitrary k>3 odd; ie., it is not
necessary that k=5 or k=7.

7. SIXTH REDUCTION: DIRECTED ASSUMPTION

The goal of this section is to prove Propositions 2.2 and 2.3 for ¢ maps
satisfying the hypotheses from Remarks 4.5 and 5.2, and the directed
assumption. Without loss of generality we can assume that A - B— C — A.
Take in account that since f is P'-linear and any basic interval does not
J-cover itself, p, is the unique fixed point of f.

The basic intervals [, ..., [, _, different from 4, B, C and the position of
the periodic points p,, ..., p, of P in ¢ are defined in Fig. 3a.

From the reductions of the previous sections and the folowing result we
obtain Proposition 2.2.

PROPOSITION 7.1. Let f be a P'-linear ¢ map satisfying the hypotheses
Sfrom Remarks 4.5 and 5.2. If k=5 and [ satisfies the directed assumption,
then Per(f)2 {neN:n>5}.

Proof. We separate the proof into four cases.

Case 1. Card(Pn {(x, y)eR*:0<x<2 and y=1})=1. Then, from
Fig. 3a with k=5 and r =4, it follows that f(p,) = ps.

Suppose f(p,)# ps. Then f(p,)e{p,, ps}. So B—1,—>A. We may
assume that f(p;)= p,; otherwise, I;— B; and from the three loops
A—-B—-C—-A, B—I;—B, and A-»B—I;~»A4 and Lemma 3.1 we obtain
Per(f)={neN:n>5}, and the proposition is proved. Also f(ps)e { p2, p3 };
otherwise, f(ps) = p,; and the basic interval I, would not be f-covered by
any basic interval in contradiction with the hypotheses. Therefore
f(p,)=p,. Consequently f(p,)=p; and f(ps)= p,. Now, drawing the
P'-linear graph of Fig. 3b we see that the interval I, is not f-covered, a
contradiction to Remark 4.5.

Assume f(p,) = p,. We have f(ps) = p,; otherwise, either f(ps)= p, and
{ps, p1, P4} Would be a periodic orbit of period 3, or f(ps)= p, and the
basic interval 7, would not be f-covered by any basic interval. But now the
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FiG. 3. Definition of the basic intervals /,, .., I, _, and of the points p,, ..., p, of P.

basic interval I; is not f-covered by any basic interval. This completes the
proof of the proposition in Case 1.

Case 2. Card(Pn {(x, y)eR*:0<x<2 and y=1})=2. Since f is
P'-linear, f(p,)= p,; otherwise, f(p,) = p,, and the basic interval /, would
not be f-covered by any basic interval. We have either f(p,)=p; or
f(ps)= p;; otherwise, the basic interval 7, would not be f-covered by any
basic interval. Since f(p;)# p, (see Fig.3a with k=5 and r=3),
f(p2)# p, (otherwise, {p,;, p,} would be a periodic orbit of period 2),
cither f(py)=p, or f(ps)=p,. Therefore f({ps, ps})=1{p;, s}, and
consequently f({pz, p3})= { P4, Ps}-

Suppose f(ps)=p,. Then, from the three loops 4 —+B—-C— A,
A—1, -4, and A—1,—-C— A and Lemma 3.1, we obtain Per(f)=
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{neN:n>=5}. Hence, we can assume f(p,)= p,. Therefore, f(ps)= p;,
f(ps)= ps, and f(p,) = ps. Consequently, from the three loops I, -1, —
I, L-I,-1,-1, I,-1,—>1; and Lemma 3.1, we obtain Per(f)=2
fneN:n>=5}. This completes the proof of the proposition in Case 2.

Case 3. Card(Pn {(x, y)eR*:0<x<2and y=1})=3. From Fig. 3a
with k =5 and r =2 it follows that f(p,)= p, and f{p;) = p,. Furthermore,
f(p,)= ps; otherwise, f would have a fixed point different from p,. Now
the images under f of p, and ps must be in {p;, p,}. So f(ps)= p; and
flps)=ps. Then the graph of f is completely determined except on the
interval /,. Since each basic interval is f-covered by some different basic
interval, we have that [, f-covers 4, C, and [,. Then from the three loops
Co>A—-B~->C, C>I1,-1,-C, and I, —~ 1> 1, of the f-graph and
Lemma 3.1, we obtain Per(f)2{neN:n=5}. So the proposition is
proved in Case 3.

Case 4. Card(Pn {(x, y)eR?:0<x<2 and y=1})=4. This case is
incompatible with the existence of the loop 4 - B— C— A (see Fig. 3a
with k=5 and r=1). So the proposition is proved. ||

LemMa 7.2. Let f be a P'-linear a map and let J, be a basic interval
contained in the whiskers of o. Then there is a loop of the f-graph of length
k containing J,.

Proof. Let Jo=1[x, y]. For each i, 0 <i<k, we define J, recursively as
an interval or arc with endpoints f*(x) and f'(y) and such that J,_, — J,.
(Note that, in general, the intervals J; are not basic. So, here we say that
J. | f-covers J; or J,_, — J, if there exists a closed subinterval L of J,_,
such that f(L)Y=J,.) Then J, = J,. Define the basic interval K, for 0 <i<k
by backwards induction on i as follows. Let K, =J,, and if K, , has been
defined and is a basic interval of J,, ,, then let K, be a basic interval of J,
such that K, ~» K,,,. Then J,=K,-» K, — --- - K, =J, is the required
loop. 1

Note that the loop of Lemma 7.2 can be repetitive or non-repetitive.
From the reductions of the previous sections and the following result we
obtain Proposition 2.3.

PrOPOSITION 7.3. Let f be a P'-linear ¢ map satisfying the hypotheses
from Remarks 4.5 and 5.2. If k=1 and f satisfies the directed assumption,
then 10 € Per(f).

Proof. Since A is a basic interval contained in the whiskers of g, by
Lemma 7.2 there is a loop of length 7 containing A. Since 7 is prime and
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A does not f-cover A, this loop is non-repetitive. Then, this loop together
with the loop A — B—- C— A4 gives a loop of length 10. If this loop of
length 10 is non-repetitive by Lemma 3.1 we are done. If it is repetitive,
then it must be repetition of a loop of length 5 (it cannot be repetition of
a loop of length 2 because it contains the loop 4 —+B— C— A4). Then,
since the loop of length 10 ends with 4 - B — C — A, the unique possibility
for the loop of length Sis 4 - J— A — B— C— A. Hence, we can consider
the following new loop of length 10

A->J—2A4->]J>4A->B->C—>4->B-C— A,

which clearly is non-repetitive, and again we are done. |
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