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Abstract

The goal of this work is to prove that for almost all possible triples (cy, ¢5, c3) € Z* the moduli
scheme M(2;c¢y,c,,c3), which parametrizes isomorphism classes of rank 2 stable reflexive
sheaves on P2 with Chern classes ¢, ¢, and c;, has a generically smooth component. In order to
obtain these results we construct a wide range of non-obstructed, m-normal curves with suitable
degree and genus. We conclude this paper by adding some examples and remarks.

0. Introduction

It is well known that the set of isomorphism classes of rank 2 stable reflexive
sheaves & with Chern classes ¢4, c,,c5 is parametrized by a coarse moduli scheme
M(2; ¢y,¢3,¢3) which is a separated k-scheme of finite type [10,11]. This moduli
scheme has turned out to be an extremely complicated object; the most natural
questions concerning the number of components, irreducibility, smoothness, ..., are
far from being answered. In [12], the second author determined the set of triples
{(¢4,¢2,¢3) € Z? such that the moduli scheme M = M(2; ¢y, ¢,,¢3) is non-empty. To be
more precise, let us recall the following:

0.1. Theorem. A triple of integers (c,, ¢, c3) are the Chern classes of a normalized rank
2 stable reflexive sheaf & on P* if and only if the following conditions hold:

M1) ¢y =00r —1.

(M2) ¢, > 0 [6, Propositions 3.3 and 9.7].
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(M3) ¢,c, = c3(mod?2) [6, Corollary 2.4].
(M4) We have

2 .
C2 lf €y =— 19
0<e3 < 6, 2].
<< {c%—-c2+2 if ¢, =0, [6, Theorem 8.2]
MS) If ¢, =—1, then c;€[0,c3I\NUIS Y (c5 — 2rc, + 2v(r + 1),¢5 — 2(r

— 1)c,), where b(—1,¢,) = E[4(~1 + /4¢c, — 7)].
If ¢;=0, then cze[0,c3—co+21\%? (c2—(2r—1)c, + 203 2 —(2r

— 3)c,), where b(0,¢;) = E[\/c2 — 2] [12, Theorems A and B].

The goal of this work is to prove that for almost all possible triples (c;, c,, c3) € Z3
the moduli scheme M(2; ¢y, 3, ¢3) has a generically smooth component. More pre-
cisely, if for each pair of integers (¢, c,) we consider the following sets:

Ae(c2):= {c3 € ZI| M(2; c1,¢2,¢3) # 0},
B.,(c2):= {c3 € A, (c2)| M(2; ¢1,¢3,¢3) has a generically smooth component},
then our results can be summarized in the following theorem (see Section 7):

Theorem. For every integer ¢, € Z, we have

. ¥B,(c,)
1 2 =1
le‘I’I:O #An (C2)

The above theorem is a consequence of the existence of generically smooth compo-
nents of M = M(2; ¢4, ¢,, ¢3). The existence of such components is proved in Section 6.
As a main tool we use Serre’s correspondence between rank 2 stable reflexive sheaves
on P? and space curves, together with Kleppe’s results [8, Section 2] which give
conditions in order to assure that the local ring @ . of the moduli scheme M at the
point [£] is regular, provided that the local ring Og y of the Hilbert scheme
H = Hilb(P?) at the point [Y ] € H, where Y is the curve associated to &, is regular.

In order to apply Kleppe’s results we need to construct non-obstructed, m-normal
curves of appropriate degree and genus. This is done in Sections 2-5.

As a general reference on reflexive sheaves the reader may consult [6].

We conclude this paper by adding some examples and remarks.

Conventions. Throughout this paper we work over an algebraically closed field k of
characteristic 0, S = k[x, y,z,t], and P? = Proj(S). For a coherent sheaf & on P* we
will often write H'& (resp. h'¢) for H'(P3, &) (resp. dim;, H (P3,£)). The dual of £ is
written &V = Hom(&, Ops). A coherent sheaf & on P? is reflexive if the natural map
& — &YV is an isomorphism.,

By a curve we mean a closed, locally Cohen—Macaulay, one-dimensional sub-
scheme of P® which is generically locally complete intersection. Given two subschemes
Y, Y, c P? defined by the sheaves of ideals .#y, and fy,, respectively, we denote by



P. Gurrola, R.M. Miro-Roig [ Journal of Pure and Applied Algebra 102 (1995) 313-345 315

YUY, the subscheme of P? defined by .#y,n.#y,, and by Y, Y, the subscheme of P?
defined by £y, + Fy,.

The cardinality of a set S will be denoted #S, and given any real number x we define
E[x]:=max{ne Nin < x}.

We will write Hilb%4(P3) (or simply Hilb(P?) when there is no risk of confusion) to
denote the Hilbert scheme of curves Y in P? of degree d and arithmetic genus

g =pa(Y)

1. Preliminaries

In this section we begin recalling some basic facts which will be used later and we
prove two results (Proposition 1.4 and Corollary 1.7) which will be our basic tools to
show, in Section 6, the existence of smooth components of M(2; ¢, ¢, ¢3).

1.1. Definition. Let X < P® be a curve. We will say that X is non-obstructed if and
only if the corresponding point [ X ] of Hilb(P?) is non-singular. Otherwise, we will say
that X is obstructed.

1.2. Definition. Let [ &] € M(2; ¢y, c2,¢c3) denote the closed point parametrizing the
sheaf &. We say that a stable rank 2 reflexive sheaf & on P? is non-obstructed (resp.
obstructed) if [£] is a non-singular (resp. singular) point of M(2; ¢,, c,,¢3).

One knows from deformation theory that the Zariski tangent space to the moduli
scheme M(2; ¢y, c,, ¢3) at the point corresponding to a stable sheaf & is Ext! (%, %),
and that the obstructions to extending an infinitesimal deformation lie in Ext?*(#, %)
[10]. However, necessary and sufficient conditions for a rank 2 stable reflexive sheaf
on P? to be non-obstructed are not known. Partial results can be found, for instance,
in [1,2,6,13,14], where examples of non-singular moduli spaces M(2; c{,c,,c3) are
described. Examples of rank 2 stable obstructed reflexive sheaves on P* can be found
in [3,8].

1.3. Recall that, for every integer c,, there is a one-to-one correspondence between
pairs (£, s), where & is a rank 2 reflexive sheaf on P® with ¢,(¥) =c¢;,and s e H°%
a global section whose zero set has codimension 2, and pairs (Y,&) where Y is
a Cohen-Macaulay curve in P53 generically complete intersection and
0 # £ € H%wy(4 — ¢,) is a global section which generates the sheaf wy(4 — c,) except
at finitely many points (see [6, Theorem 4.1]). Furthermore, there is an exact sequence

0——’(9p3—>F—’Iy(C1)—‘>O,

¢, F =dand ¢3F = 2p, — 2 + d(4 — ¢,), where d and p, are the degree and arithmetic
genus of Y.
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The following result will be one of our main tools for the construction of non-
obstructed reflexive sheaves.

1.4. Proposition. Let & be a stable rank 2 reflexive sheaf on P* corresponding to a curve
Y < P3 and with Chern classes ¢y, ¢, and c5. Assume that

(A1) H'0y = 0,

(A2) H'Oy(c;) =0,

(A2) H' Ay = 0.
Then Ext*(€,&) = 0. Thus & is non-obstructed and the irreducible component of the
moduli scheme M (2; ¢y, c,,c3) containing the point [£] has dimension dimExt(&,&).

Proof. From the local-global Ext-sequence,

0 -» H'(End(&)) — Ext!(&, &) - H°(Ext'(&, £)) - H*(End(¢€)) - Ext?(£,8) - 0,

we see that it is enough to show that h2(End(£)) = 0. Since the sheaf & corresponds to
the curve Y, we have an exact sequence

0—O(—c))— &(—c1)) — Fy—0, (*)

but &Y =&(—cy) and £'® & = End(&), so tensoring with & yields the following
exact sequence:

Tor(€(—cy)), &) —» Tor(Fy,E) = E(—cy) = End(8) - Fy @ & - 0,

which splits in short exact sequences
0—> A, —> End(§)— Fy ® §—0, (1)
O—>s My—E(—cy)— M, —0. (2)

We will proceed in two steps.
Step 1: We show that H2(.#,) = 0. In order to do this, consider the long exact
cohomology sequence obtained from (2):

o —— H?> M, — H?6(—c})— H* M — H3 My —> -

Since .#, is supported on a set of points, we have h3.#, = 0. On the other hand,
H?&(—c,) fits in the exact sequence

0— H?&(—c))— H?>Sy—— H3O(~c)—> H3&(—c;)—0

obtained from sequence (*). But H?.#y >~ H'(®y, which is zero by hypothesis (A1).
Hence H2£(—c;) = 0 and thus H2.#, = 0.
Step 2: We show that h*(#y ® &) = 0. First, when we tensor by & the sequence

0—_’fy__) @—*@Y——*O,
we obtain the exact sequence

0—Tor(Oy,8)— Fy ®E—E— Oy ® £§—0,
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which splits into two short exact sequences
00— Tor(Oy,8)— Fy @ & — P —0, 3)
0—P—E— 0y E—0. )
But Oy ® & = Ay, because tensoring sequence (*) with Oy gives an isomorphism
E(—c1)) @ Oy — Iy ® Oy = Iy/Iy?
and thus H(& ® @y) = H* Ay, which is zero by hypothesis (A3). This, together with
the fact that
H%*¢ = H?Iy(cy) = H'Oy(c,y)
and h'Oy(c,) = 0 (A2), implies that, in the long exact sequence
w—HY & ® Oy)— H*P?—H*€—> -
obtained from sequence (4), we must have k22 = 0. Hence, if we consider the sequence
.« — H*(Tor(0y, &) — H*(Fy ® §)—> H*P—> ---

we see that h?(Fy ® &) = 0 (since Tor(Oy, &) is supported on a zero-dimensional
scheme and thus A*Tor(Oy, &) = 0).

Thus, putting all together we have H*(#) = H*(Fy ® &) = 0, so from the long
exact cohomology sequence obtained from (1) we must have h*(End(&)) = 0, hence
the result. O

1.5. In [8], Kleppe studies how deformations of a curve Y < P* correspond to
deformations of the associated sheaf # and, as an application, he finds a relationship
between the local ring Oy y of the Hilbert scheme H = Hilb*¢(P%) at [Y], and the
local ring Oy, of M = M(2; ¢, F, c,F,c5F) at the point [# ]. In particular, he proves
the following:

1.6. Lemma. There exists a quasi-projective scheme D parametrizing equivalent pairs
(C, &), where

(1) C is an equidimensional Cohen—Macaulay curve and where

(2) the extension £:0 — Ops » F — Fc(cy) — 0 is such that F is a rank 2 stable
reflexive sheaf on P
Moreover, there are projective morphisms

D —— Hilb*9(P?)
p
M(2; c1,¢2,C3)

defined by p(F,s¢) = F; and q(Cy, &) = C,, for a geometric k-point (Cy, &) corres-
ponding to (Fi,s:), such that the fibers of p and q are smooth connected schemes.
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Furthermore, p is smooth at (#,s,) provided H'%, =0 and q is smooth at (Cy, &)
provided H'I¢ (c; —4) = 0.

We must remark that although the above conditions are sufficient they are not
necessary in general. In fact, let & be a stable rank 2 vector bundle on P? defined as an
extension

E0— O0— E(1)—> Fy—0, 0 # ¢ e Hwy(2),

where Y is the disjoint union of r skew lines (r > 2). Then & is non-obstructed, with
Chern classes ¢; =0 and ¢, =r—1 (see [5, Example 4.3.1]) but h'&(1) =
h.#y(2) # 0.

The following result shows that we can replace the vanishing of H' #¢(c; — 4) under
certain additional hypothesis:

1.7. Corollary. Let F be a stable rank 2 reflexive sheaf on P® constructed as an
extension

E:0— Ops —> F—I(c;)—>0,

where S is the ideal sheaf of an equidimensional, locally Cohen—Macaulay curve C in
P3. Assume that H'¥ =0 and that C is the general curve of a generically smooth
component of Hilb*?(P?). If C is non-obstructed then & is non-obstructed.

Proof. Let V be a generically smooth component of Hilb®¢(P*) with general curve C.
Consider the restriction g|w:

D— & L Hilb(P?)
U |9}
Wi=q '(V) 2 v

Since H (w(4 — c,)) contains a section which generates the sheaf w¢(4 — ¢,) except
at a finite number of points, the map g|w is dominating. Thus, by generic flatness, there
exists an open set U < Hilb**(P%), 0 # U <V, q~}(U) #0, such that the map
k=gl wy:q” "(U) - U is flat.

Since the fibers of g are smooth, the morphism « is also smooth (sec for example [15,
p.2.10]). But the fact that the map x is smooth implies that whenever C is non-
obstructed, (C, £) must be non-obstructed, hence the result. []

2. Construction of non-obstructed nodal curves in P3
The purpose of this section is to construct nodal curves ¥ < P® which are non-

obstructed. In order to do this we will need to generalize some of the smoothing
results of [7].
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2.1. Let X be a curve in P® and consider the natural map ¢:9,: ® Oy — A%, where
Jps is the tangent sheaf and A% is the normal sheaf of X. The cokernel of ¢ is
a coherent sheaf T § which is supported at the set S = Sing(X ) of singular points of X,
and which parametrizes the local deformations of those points.

A curve X is nodal if it is reduced with only ordinary double points (nodes) as
singularities. For nodal curves, T} is isomorphic with its restriction T4 to S. In
particular, at each node P the local deformation space T'5 is a one-dimensional vector
space with smooth total space, and a non-zero element of T} corresponds to
a deformation which smooths the double point.

Two curves X, Y are said to intersect quasi-transversally if their intersection XnY
is a finite set of nodes of X UY. We also say that X UY is the nodal union of X and Y.

2.2. Remark. We fix the following notation: if X is the nodal union of r smooth
connected curves X4, ... ,X,, then we will write S;; and S; to denote the following sets
of points:

Sij:= Xir\Xj (l#]),
Sii=8i1V - US; i-1US; 141V - US,.
The corresponding cardinalities will be denoted by s;;:= #S;; and s;:= 4§;.

In [7], the connection between the normal sheaf of a nodal curve and the normal
sheaf of its normalization is given in terms of the elementary transformations,
elm} A’y and elmj A, of Ay over a finite set of points A. The next two propositions
are generalizations of Corollaries 3.2 and 3.3 of [7]. They show the relation between

the restriction Ay, | x, of the normal sheaf A4 x, to a smooth irreducible component X,
and the normal sheaf A%, of this component.

2.3. Proposition. Let X be the nodal union of r smooth connected curves X, ... ,X,.
Let A be the subset of P(Nx,)s, defined by S,. Then Nx|x, is isomorphic with
elm; Ny,, and there is a natural exact sequence

0_"/V‘X1__"/V‘X|X1__-) Té’l—’o
Proof. Let X' be the normalization of X (i.e., X’ is the disjoint union of the irreducible
components X,,...,X,). Let v:X’—>P*> be the associated morphism, and

S = i »;S;; the singular locus of X. Then there is an exact sequence [7, Proposition
3.1]

0—s Ny — ¥ Ny —v* T L —0,
which restricted to X; becomes

0—_"/VX1—_"/V‘X|X1——-)T§1_—"0'



320 P. Gurrola, R M. Miré-Roig | Journal of Pure and Applied Algebra 102 (1995) 313-345

In order to apply [7, Proposition 2.3(b)] we only have to check that the subset H of
P (A%,) defined by the map u: A%, — imu is A. To this end, let P be a point in S;. In
particular P € X;nX;for somej,2 < j < r. Lett be alocal section of the tangent sheaf
Tx, such that ¢ (P) is tangent to X ;. Then ¢ (P) vanishes on .#y and thus p(t) = 0. Hence
A < H. But then equality must hold, since they are in bijective correspondence with
S;. O

2.4. Proposition. In the situation of Proposition 2.3, suppose F is a non-singular surface
containing X y and transversal to X, --- UX,. Then, for any subset A’ of A with image
S’ in S, there is an exact sequence

0_>'/VX|/F—’elmz.]+‘"/‘/X1—)'/V.F|X1(S,1)_—’O'

Proof. We have an exact sequence

0_”‘A/X1/F"_’-/1/X1 — NFlx.(81)—0,
which, by [7, Proposition 2.2], yields the result. [J

The next proposition together with Theorem 2.10 will be our main criteria for
constructing non-obstructed nodal curves.

2.5. Proposition. Let Z be the nodal union of two curves X and Y meeting in a set of
point S. Assume

(a) X and Y are non-obstructed,

(b) the map H° Ay — HO A% |x is bijective,

(c) the sequence H° Ay — HOAy|s - HO T } is exact,
then there exists an exact sequence

0— H° N3 — H° /4 ®@ H° /3y —> H°R > 0.

where R := ker (A3z|s — T }). Moreover, Z is non-obstructed and non-smoothable.
Proof. It is implicitly contained in [7, Proposition 5.1 and Corollary 5.2]. [

2.6. Definition. (1) We will say that a pair of curves (X, Y) satisfies the HH conditions
if it satisfies conditions (a)—(c) of Proposition 2.5.

(2) We will say that a pair of curves (X, Y) satisfies the NN conditions, if it satisfies
the HH conditions and the sequence

Ho./VX —’HONzls —’HOTé is exact.
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In particular, we have the following situations where the NN conditions hold:

2.7. Corollary. Let C be a non-singular plane curve of degree ¢ > 1, and let L4, ... ,L,
be n skew lines in P2, each meeting C in one point. Set

Z =CuL,u-- UL,

(1) If n > 3(c — 2)(c — 3), then Z is non-obstructed and smoothable.

(2) If n <4(c — 2)(c — 3) and if the points P; = CnL, are in general position in the
plane containing C, then the pair (C, L)) satisfies the NN conditions and hence, Z is
non-obstructed and non-smoothable.

Proof. Except for the explicit statement of the non-obstructedness, it follows from
Proposition 5.3 of [7]. But for the case (1), applying [7, Theorem 4.1] we get
H' A7 = 0, and thus Z is non-obstructed. On the other hand, if we are in case (2), then
ifX=Cand Y =L;v--- UL, the pair (X, Y) satisfies the NN conditions. []

2.8. Definition. Let C and D be two non-singular plane curves in P? lying in distinct
planes H and H', respectively. We will say that C and D meet transversally at s points if
(1) they intersect quasi-transversally at s points, and
(2) C is transversal to H' and D is transversal to H.

2.9. Corollary. Let D and C be two non-singular plane curves of degrees d and ¢ (d > ¢)
meeting transversally in s points, 1 < s < c. Ifd = s + 3 then the pair (D, C) satisfies the
NN conditions and thus Z = CuD is non-obstructed and non-smoothable.

Proof. Except for the case s = ¢ = 1 the result follows from [7, Proposition 5.5] and
Proposition 2.5 above. If c =s =1, Z is a plane curve of degree d > 4 with a line
attached at one point, therefore it is non-obstructed (Corollary 2.7). [J

The following theorem generalizes Proposition 2.5 and will be our main criterion
for constructing non-obstructed nodal curves.

2.10. Theorem. Let Z be the nodal union of three curves X 1, X, and X ;. Assume that:
(81) The pairs (X1, X 5) and (X 3, X 3) satisfy the HH conditions, and the pair (X1, X 3)
satisfies the NN conditions,
(S2) The map H° Ay, » H® A\, is bijective.
Then there exists an exact sequence

0— HO N3 — HO Ny, ® H Ay, ® HNy,—> H'R—0,

where R:=ker(Ay|s —» T3§), S = §,,US,3US,3. Moreover, Z is non-obstructed and
non-smoothable.



322 P. Gurrola, R M. Miro-Roig [ Journal of Pure and Applied Algebra 102 (1995) 313-345

Proof. First of all, remark that hypothesis (S1) implies that the sequences
HOJVxl - HOJVXWXJSH ‘—’HOTém
HNy, » H Ny 0x 1512 —"HOTém
HO Ny, = H Nx,ox5l50s — HO T &,

are exact. Furthermore, from Proposition 2.5, we deduce that the curve X,UX; is
non-obstructed and that there exists an exact sequence

0—> HNx,ux, —> H N, ® H°/y,— H°R,3—0, (5)

where R,3:= ker(Ax,ox,ls,, = Ts,,).

Let W (resp. W’) be the generically smooth component of the Hilbert scheme
containing the point associated with X, (resp. with X,UX ;). We define T to be the
locally closed subvariety in W x W’ of couples (X, Y) of curves meeting quasi-
transversally at s, points (s;:= #S; = #(S;,US;3)). As in [7, Corollary 5.2], we see
that T is at most s;-codimensional in W x W'. Hence Z belongs to an irreducible
family of distinct singular curves of dimension h°Ay, + h° 4%, x, — 5. Hence, to see
that Z is non-obstructed and non-smoothable, it is enough to show that

oAz =N %, + BN x,0x: — S1
[7, Proposition 5.1]. From sequence (5), this is equivalent to showing that
WONy = KO N%, + RON, + BON %, — s, (6)
where s:= #8S. In order to prove (6), consider the exact sequence
0—N7— NZ|x, @ N2|x, ® Nzlx;— Nz]|s— 0
and let R = ker(A%|s — T3). Since the sets S;,, S13 and S,; are disjoint, we have
Nzls = Azlsi, @ Azls,s @ Azlsys Ts =Ts,®Ts,® T,

and thus R = R, ® R’; ® R}, where Rj;:=ker(A3|s, = T3,), 1 <i<j<3.
On the other hand, from the exact sequences:

0— Ny,— N 2lx,— T5,,® Ts,,—0
and

00— Ny, — N gl x,— T3, ® Ts5,,—0
(see Proposition 2.3) we obtain the sequence

HO-/VXZ ®H0'/VX3_'HO~/VZ|X2 @ HOJVles—’HOTSllz @ HOT51'23 @Hngls' (7)
Claim. Sequence (7) is exact.

Proof of the claim. We consider the diagram shown in Fig. 1, where the columns and
the top and bottom rows are exact. Thus, in order to prove the claim, it only remains
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0 0
0 > H'/szux3 I H‘/Vzlxzux3 > H° Tsllz ® H’ Tlsn

v o
0—> HW,, @ HW,, —> HMp @ HWy, —— > H'T
n 6
v 0 .
0—— H0R23 — H'/Vz;’zUX:&lst — H® T;'n
0 0
Fig. 1.

to show that ker(w,) is contained in the image of v;. But, if x € ker(w,), then
7,% € ker (w,) = im(v,), and thus there exists an element t € HOA4y, @ H°A%, such
that vit =x. [

Proof of Theorem 2.10 (continued). We now consider the commutative diagram as
shown in Fig. 2. By the exactness of (7) and the hypothesis (S2), we have
im(p) = ker(y). Hence

im(n) = ker(B) < ker(p) = ker(y) = im(p),
so the map 7 factors through H° 4y, ® H° Ay, ® H°A%,. That is, H°47 = ker(o).
By hypothesis, ¢ is surjective and so, we have an exact sequence

0— HONy—— HO Ny, @ HON %, ® HONx,—> H°R—0,

hence the resuit. [

Applying Theorem 2.10, we will now proceed to construct non-obstructed nodal
curves.

2.11. Proposition. Let C and D be two non-singular plane curves of respective degrees
¢ and d (1 < ¢ < d) meeting transversally in s points, 1 <s <c, and let L,, ... ,L, be
n skew lines each meeting C in one point and D in another point. Assume that the points
{a}1 <i<n =D L] (resp. {pi}1 <i<n = Cn[UI=, L;]) are in general position
in the plane containing D (resp. C). If d > s+ 3 and 1 <n <3(c — 2)(c — 3) then the
curve

Z=DuCuLu:- UL,

is non-obstructed and non-smoothable.
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0

HO ]?12 @ Ho T}S‘ZS @ HO T;‘ll = Ho 73‘1

14 é

0— HW —1—s HYW @ H My, ® HNygy, —2— B
p

0

HN, @ HA; @HW, ———HR

0 0
Fig. 2.

Proof. In order to apply Theorem 2.10, set X; = D, X, = C and X3 = (JI_,L;. By
Corollaries 2.7(2) and 2.9, condition (S1) is fulfilled. So it remains to prove that the
map HOAy, - H° 7|y, is bijective. In order to do this, let H; be the plane containing
the curve X, (i = 1,2). Since H, is transversal to X,uX, we have an exact sequence
(see Propositions 2.3 and 2.4)

0— Ox,(dH,)—> Nz|x,— Ox,(H; + S)—>0, ®)
where d = deg(X;), S = §;,US;3 (see Remark 2.2 for the notation). But
H°Ay, = H°Ox, (dH,) ® H0x, (H;)

(X, being a plane curve), and H'0x,(dH,) = 0, so from the exact sequence (8), it is
enough to show that

H00X1(H1 + S) = HO@XI(Hl)

or equivalently, that H, + S ~ H, (they belong to the same linear system). In order to
do this, let

2 =(X1nL)— Si2,
where L:= H;nH,. By hypothesis, 82 =d — s > 3, hence
H +8,~2H, -2 ~H,
(any conic containing three collinear points contains the line joining them). Hence

H1+S~H1+Sl3. (9)



P. Gurrola, RM. Mir6-Roig | Journal of Pure and Applied Aigebra 102 (1995) 313-345 325

On the other hand, by Riemann—Roch,
h°0x,(H, + S13) ~ h'Ox,(H; + S;3)=d+n+1—g
(g being the arithmetic genus of X ;) and so, by Serre duality,
h°0x,(Hy + S13)=d +n+1—g+h°0y ((d ~ 4 H, — Sy3)

but h°0y,(d — 4) = 3(d — 2)(d — 3) and the points in S, ; are in general position in H,
(more precisely, they define independent linear forms on H°@y (d — 4)). Since the
natural restriction map H°0y,(d — 4) — H°COy,{(d — 4) is an isomorphism, we see that
§13 also imposes independent conditions on H°Oy, (d — 4). Thus

ROx,(d — 4 Hy + S13) = h°0x,(d — 4 —n
and then,
h°0y,(H, + S13) = h°0x,(H,) = 3,

thatis, H; + S;3 ~ H,, which together with (9) yields H, + S ~ H,, which is what we
needed. [

2.12. Proposition. Let Z = XU X UX, be the nodal union of three non-singular plane
curves of respective degrees dy, d, and d, (1 < dy < d, < d,) and such that

(1) X, and X, meet transversally at s,, points, 1 < s, < d;,

(2) X meets transversally the curve X,0X, in so points (So = Sg1 + So2), With
1<sg; <dgand 1 <sp; <d,.

Assume that d, = 12 + 3,d; > 502 + 3 and dy > s, + 3. Then the curve Z is non-
obstructed and non-smoothable.

Proof. The case do = 1 follows from Proposition 2.11. Assume d, > 2. By Corollary
2.9, the pairs (X, X4), (X5, X ) and (X ,, X ) satisfy the NN conditions, so in order to
apply Theorem 2.10, it remains to show that the map H% 4%, — H® 43|y, is bijective.
Let H; denote the plane containing the curve X;. Since the plane H, is transversal to
XoUX, we have an exact sequence (see Propositions 2.3 and 2.4)

0— 0y, (d2H,)— Azl x,— O, (H, + S)—0. (10)

where d = deg(X;), S = So,US1,. But H° Ay, = H°0x,(d,H,) ® H°0x,(H,) and
H'0y,(d2H,) = 0, so from the exact sequence (10), it is enough to show that

H%0y,(H, + S) = H Oy, (H)).

Let Zo = (X,NnLo) — So3, where Lo:= HonH,. By hypothesis, $Z, = d, — 54, > 3,
hence

H2+Soz~2H2—20~H2.
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In a similar way, if we consider X, = (X,;nL,) — S;, where L, := H;nH, then, by
hypothesis, #X; = d» — 515, > 3, hence

H 2 + S 12 H 2.

But this implies that H, + S ~ H,, which is what we needed. []
For the next construction we will need the following easy lemma.

2.13.Lemma. Let C be a non-singular plane conic and let S = {P,, ... ,P;} be a general
set of points in C. If s < 2d + 1, then S imposes independent conditions on H°Og(d).

2.14. Proposition. Let X be a smooth plane curve of degree d >3 and let Y be
a non-singular curve of type (a,b), 2 < a < b, on a non-singular quadric Q. Assume that
X and Y meet quasi-transversally in 1 < s < 2d — 7 points and that X is transversal to
Q. Then the pair (Y, X)) satisfies the conditions HH and thus the curve Z = XUY is
non-obstructed and non-smoothable.

Proof. We want to apply Proposition 2.5. Condition (a) is fulfilled for any plane curve
as well as for curves on smooth quadric surfaces. Let us prove that condition (b) holds.
Since the plane H containing X is transversal to Y, we have an exact sequence

where S = XnY. But HO4y = H°Oyx (dH) ® H°Ox(H) and H'Ox(dH) = 0, so from
the exact sequence (11) we see it is enough to check that

H°0Ox(H + S) = H°Ox(H).

By Riemann—Roch and Serre duality,
WOx(H+S)=d+5s+1—g+ h°0x(d —4)H - S)

(where g stands for the arithmetic genus of X). Since the natural restriction map
H°0Oy(d — 49— H°0Ox((d — 9 H)

is an isomorphism and the points in S impose independent conditions on
H°0Oy(d — 4) (see Lemma 2.13), we get

hO(Ox(d — 4)H — S) = h°(Ox(d — HH) — §

and thus h°Ox(H + S) = h°Ox(H) = 3.

We now turn to condition (c) of Proposition 2.5. Set R:= ker(Ay|s — Ts). It is
enough to see that the map H°4% — HOR = H%0s is surjective. We consider the
exact sequence

00— ANy|g = Oy(a,b)— Ny— Nly = Oy (2,2)— 0.
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Since h'0y(a,b) = 0, we have H° Ay = H°Oy(a,b) ® H°Oy(2,2), and the result fol-
lows from the following claim:

Claim. The map H°Oy(a,b) - H®0s is surjective.

Proof of the claim. It is enough to see that the map ¢:H°0y(a,b) —
H°0s is surjective. Since the points of S lie in the conic C = HNQ we can factorize ¢:

H°0g(a,b)—— H0s
‘3 P2
H®0¢(a,b)

Since H%Oc(a,b) =~ H°0p'(2(a + b)) is generated by 2(a + b) + 1 homogeneous forms
of degree 2(a + b) and s < a + b = #(YnH), we get that ¢, is surjective. From the
exact sequence

0—0p(a—1,b — 1)— Og(a,b)— Oc(a,b)—0
(C is a curve of type (1,1) on Q) we get
H°0y(a,b)—— H°Oc(a,b)——H'0Oy(a — 1,b — 1).

By Serre duality, H'Op(a — 1,b — 1) @ H'Op(—a—1, —-b—1)=0 [4, Ch. III,
Example 5.6] and thus ¢, is surjective. []

3. Construction of m-normal, nodal curves in P* (m = 1,2)

Having in mind the construction of nodal non-obstructed curves given in the
preceding section, we now turn to the problem of showing that, under certain
additional conditions, these constructions yield curves Z with H(#z(m)) =0 for
m = 1,2. As before, all curves are assumed to be in P3.

3.1. Definition. A curve Y is called m-normal if H!#y(m) = 0, where £y is the ideal
sheaf of the curve. In particular, 1-normal (resp. 2-normal) curves are usually called
linearly normal (resp. quadratically normal).

3.2. Proposition. Let m = 1 or 2. Let X, and X, be two plane curves of degrees d, and
d, (d, < d,) which meet quasi-transversally at s different points,m + 1 < s < d,. Then
Z = X,uX, is m-normal.

Proof. Consider the exact sequence

0—> H#;(m)— H°0p:(m)— H°Oz(m)—> H'.$,(m)— 0. 12)
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Since Z is not contained in any plane but it is contained in one quadric then, for
m = 1,2, we have h°#,(m) = m — 1. Hence, it is enough to show that, for m = 1,2,

E°0z(m) < h°Ops(m) — (m — 1)
ie.,

vems<ly {023
To this end, consider the exact sequence
00— Ox,(—D)—> O —> Ox,—0
with D = X,nX,. We thus get
h°Oz(m) < h°Ox,(m) + h°0x,(m — D),

but
4 ifm=1, s>2,

0 0 —_
h @Xz(m)-i-h (9X|(m D)S {9 lf m =2, S_>_ 3a

hence the result. [J

3.3. Proposition. Fix an integer m e {1,2}. Let X be a reduced curve such that
h°#x(m) = 0, and let L be a k-secant line, k > m + 1. If X is m-normal, then X UL is
also m-normal.

Proof. Analogous to the proof of Proposition 3.2. [
Consider the following particular case:

3.4. Corollary. Let X be a plane curve and let L be a line meeting X at one point. Then
X UL is linearly normal.

Proof. Arguing as in Proposition 3.2, we get h°0x,. < h°04(1) + h°0O. (1) —
1=4. O

3.5. Proposition. Let Z = X0 X,UX, be the nodal union of three non-singular plane
curves Xo, X1, X, of degrees dy, dy and d, (1 < dy < dy < d5), such that no two of them
are contained in the same plane and

(1) X, and X, meet quasi-transversally at s points, 3 < s < d,,

(2) X, meets the curve X,UX, quasi-transversally at t points, where

2 l.fd0=1,
t2{4 ifdy=2,
5 if dy>3.

Then Z is quadratically normal.



P. Gurrola, R.M. Miro-Roig [ Journal of Pure and Applied Algebra 102 (1995) 313-345 329

Proof. As before, consider the exact sequence
0—> H®#;(2)— H%0ps(2)—> H®0, (2)—> H' #,(2)—>0. (13)

Since Z is not contained in any quadric h°.#;(2) = 0 and so it is enough to show that
h°0,(2) < 10. To this end, consider the exact sequence

0—>Ox,(—D)—> 07— Ox, x,—0
with D = Xon(X,0X,). We thus get
h°0;(2) < B°0x, x,(2) + h°0x, (2 ~ D),
but by hypothesis h°0x, x,(2) <9 (Corollary 3.2) and

3 ifdo=1,
h0x,(2) ={5 if dy=2,
6 if do > 3.

hence h°0;(2) < 10. O

Let C be a smooth curve of type (a,b), a < b, on a smooth quadric surface Q. It is
well known that h'.#:(m) # 0 if and only if a <m < b — 2. Thus, the curve C is
linearly normal if and only if either a > 2 or (a,b) € {(1,1),(1,2),(0,1),(0,2)}. In
a similar way, the curve C will be quadratically normal if and only if either a > 3 or
(a,b) € {(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,3)}.

3.6. Corollary. Fix aninteger m € {1,2}. Let X be a smooth plane curve of degree d and
let C be a smooth curve of type (a,b), m + 1 < a < b, lying on a smooth quadric surface
and meeting X in a set of points S. If S > 2m + 1 then Z = CUX is m-normal.

Proof. Since the proof is analogous to that of Proposition 3.2, it is left to the
reader. [J

4. Non-obstructed linearly normal nodal curves

We will now apply the results of the two preceding sections in order to construct
nodal curves which are both non-obstructed and linearly normal.

4.1. Theorem. Fix an integer d > 7 and let r be any integer such that 2 <r < 3(d — 3).
Let Y be the nodal curve defined as the union

Y =DuCuLyu--- UL,,

where

(1) C and D are non-singular plane curves of degrees r — t and d — r, respectively,
meeting transversally in s points,2 < s <r —t.
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(2) Ly, ... L, are t skew lines, witht =0 if r = 2,4 and

1 ifr=6,
0<t< —;-r—l if v is even, r > 8,
-1 =1 ifris odd,
and such that each line meets C at one point and D is one (different) point.
Assume that the points {q}i<i<i=Dn[{Ji- L]l (resp. {piti<i<i=
Cn[U§= (L:]) are in general position in the plane containing D (resp. C). Then Y is
a non-obstructed, linearly normal curve of degree d and arithmetic genus

g=git,s):=5@d* —Q2r+3)d+2r* + 12 + 5t — 2rt + 25 + 2).

Proof. Since 2 < s <r —t, then by Proposition 3.2 we know that CuD is linearly
normal (reduced and non-degenerated). Here, applying Proposition 3.3 we have
Y linearly normal. On the other hand, since r < 3(d — 3) and r > s, we then have
s <deg(D) — 3, while from the hypothesis on ¢t we deduce that t<3(r—t
— 2){r — t — 3). Thus, by Proposition 2.11, Y is non-obstructed. Moreover, g(Y) =
g(CuD) + g({Ji=; L;} + 2t — 1 (see for example [12, Proposition 4]), which yields
the result. [

4.1.1. Remark. For each fixed pair of integers (4,7) such thatd > 7,2 <r <1(d — 3),
we easily see that for every ¢, the function g(t, s) satisfies

g(t - 19 2) = g(t’r - t}a

hence, for r ¢ {2,4,6}, when t ranges from 0 to E[r/2] — 1 and s ranges from 2 tor — 1,
the function g(t,s) yields all the values of g(Y ) such that

g(3r —1,2) if r is even, r = 8§,

90,1 >g(Y) > {g(.;.(r —1)—1,2) if r is odd.

More precisely, we have
-+ +22+2r+2)

T —=@r+3)d+r*+32+7r+2) ifr even, r>8,
-—>-g(Y)—>— 1,452 2 1.2 3 .
(@ —Qr+3)d+r*+zr°+4r+3) if r odd

On the other hand, g(Y) = g(0,2) = 4(d* — 7d + 14) if r = 2, while
3d? —11d + 42) = g(0,4) 2 g(Y) = g(0,2) = 3(d*> — 11d + 38) ifr=4,
1(d* — 15d + 86) = g(0,6) > g(Y) = g(1,2) = $(d* — 15d + 72) if r =6,

4.2. Proposition. Fix an integer d>10 and let r be an integer such that
4<r<id—2). Let D be a smooth plane curve of degree d —r and let C be a
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non-singular curve of type

r r o
<§—t,§+t) if r is even,
r—1 r+1 . .
( 7 b +t> if ris odd

(0 <t < E[r/2] — 2), on a non-singular quadric Q. Assume that C and D meet quasi-
transversally at 3 < s < r points and that the plane containing D is transversal to Q.
Then the nodal curve Y = CuD is a non-obstructed, linearly normal curve of degree
d and arithmetic genus

P —Qr+DNd+3r +r—22 +2 4 2) if r is even,
g =h(t,s):=141 ., 32 2 3 P
(@ —Qr+3)d+3r*+r—2t2 -2t +5+2s) ifris odd

Proof. Since t < 3r — 2, then 3 — t > 2 and thus, by Corollary 3.6, CUD is linearly
normal (s > 3). On the other hand, from the inequalities r < 3(d —2) and s < r it
follows that s < 2deg(D) — 7 = 2(d —r) — 7. Hence Y is non-obstructed by Proposi-
tion 2.14. The arithmetic genus of g is obtained as usual. [

4.2.1. Remark. For each pair of integers (d,7) such that d > 10, 3(d — 2) > r > 4, we
easily see that for every ¢, the function h(t,s) satisfies, for r even,

h(t —1,3)=3@d?* —Qr+3)d +3r> +r — 21> + 4t + 6),

h(t,r) = 3(d*> — (2r + 3)d + 3r2 + 3r — 21> + 2).

But ¢ < 3r — 1 implies that 2 + 2r > 4¢ + 6 and thus h(t,r) > h(t — 1, 3). Similarly, for
r odd, we get

hit—1,3)=3(@ —Qr+3)d + 32 +1—20 + 2 + ),
h(tr) =3 — Q@+ 3)d+ 3 +r— 22— 2t +3 + 2n),

but ¢t < 3(r — 3) implies that h(t,r) > h(t — 1, 3). Hence, in both cases, when t ranges
from 0 to E[r/2] — 2 and s ranges from 3 to r, the function h(t, s) yields all values of
g(Y) such that

h(0,r) > g(Y) = h(E[r/2] — 2,3),
ie.,

1
E(dz—(2r+3)d+%r2+3r+2>
>g(Y)= %(d2 —Q2r+3)d +r? +5r) ifris even,
1/, 3, 3
2(d (2r+3)d+2r +3r+§>

>g(Y)> %(dz —@r+3)d+r*+57) ifrisodd.
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In particular, for the cases r = 4 and r = 6, we obtain the following maximal values:

h(0,4) =g(Y)=3(d?* —11d + 38) and h(0,6) = g(Y) = 3(d*> — 15d + 74).

4.2.2 Remark. Observe that for each pair (d, r) satisfying the conditions of Theorem
4.1 and Proposition 4.2, we have

h(Oa r) = g(f;—l - 1,2)’

which means that, for each fixed pair (d,r), there is no gap between the values g(Y')
obtained in Theorem 4.1 and those of Proposition 4.2.

5. Non-obstructed, quadratically normal, nodal curves

We now turn to the case of nodal curves which are 2-normal. Although some of the
following constructions resemble those of the preceding section, we treat them
separately for the sake of clarity. There are also some subtleties which need a different
approach. For example, the construction given in Proposition 4.1 cannot be generaliz-
ed to obtain 2-normal curves (see Proposition 3.2), except for the following two easy
cases:

5.1. Proposition. Fix an integer d>9 and let r be any integer such that
3<r<i(d—3). Let Y = DUC be the nodal union of two non-singular plane curves
D and C of degrees d — r and r, respectively, meeting transversally in s points,3 < s < r.
Then Y is a non-obstructed, quadratically normal curve of degree d and arithmetic genus

g=3(@*—Qr+3)d+2r* +2s+2).
Proof. It is an immediate consequence of Proposition 3.2 and Corollary 2.9. [

5.1.1. Remark. The result still holds if we replace the condition r < $(d — 3) by the
weaker r < 3d, as long as we assume that s <d —r — 3.

On the other hand, s ranges from 3 to r, the above construction yields, for each fixed
pair (d,7) € Z? such thatd > 9, 3 < r < 1(d — 3), all possible values of g(Y) such that

Hd? —(2r +3)d +2r* + 2r + 2) 2 g(Y) 2 3(d* — (2r + 3)d + 2r* + 8).

5.2. Proposition. Fix an integer d > 12 and let r be any integer such that
5<r<%(d—2). Let Y be the nodal curve defined as the union

Y =DuCulL,
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where D and C are non-singular plane curves of degrees d —r and r — 1, respectively,
meeting transversally in s points, 3 < s <r — 1, and L is a 2-secant meeting each of the
curves C and D in one point. Then Y is a non-obstructed, quadratically normal curve of
degree d and arithmetic genus

g=35d*—(Q2r+3)d+2r* —2r+2s+38)

Proof. It follows from Proposition 3.5 (with X, = L, X, = C and X, = D), together
with Proposition 2.11 and the usual genus formula. [

5.2.1. Remark. As s ranges from 3 to r — 1, the above construction yields, for each
fixed pair (d,r) € Z? such that d > 12, 5 < r <1(d — 2), all possible values of g(Y)
such that

12— Qr+3)d+2r* +6) 2 g(Y) > 5(d* — 2r + 3)d + 2r* — 2r + 14).

Since we cannot extend to the quadratically normal case the construction given in
Proposition 4.1 (we should require to adjoin 3-secants), we have the following
alternative constructions:

5.3. Proposition. Fix an integer d > 15 and let r be any integer such that
7<r<i(d—1). Let Y be the nodal curve defined as the union.

Y = DuCuUK,

where

(1) D and C are non-singular plane curves of degrees d — r and r — 2, respectively,
meeting transversally in s points, 3 <s<r—2, and

(2) K is a conic meeting C (resp. D) transversally in two points.

Then Y is a non-obstructed, quadratically normal curve of degree d and arithmetic
genus

g=3(d>—Qr+3)d+2r* —4r + 25 + 18).

Proof. Sincer —2<d —r,3 <s <r—2and K meets CuD at four points, then, by
Proposition 3.5, we know that Y is 2-normal. On the other hand, since
7<r<3(d—1)wehaver —2>5and s <d —r — 3 (because s < r — 2), s0 we can
apply Proposition 2.12, and we deduce that Y is non-obstructed and non-smooth-
able. [

5.3.1. Remark. As s ranges from 3 to r — 2, the above construction yields, for each
fixed pair (d,r) € Z2 such that d > 15, 7 <r <3(d — 1), all possible values of g(Y)
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such that

P —2r+3)d+2r2 =2r+ 14) > g(Y) > 3(d? — (2r + 3)d + 2r* — 4r + 24).

5.4. Proposition. Fix an integer d > 16 and let r be any integer such that 8 <r < 3d.
Let Y be the nodal union.

Y =DuCuX

of three non-singular plane curves D, C and X of degrees d — r,r — n and n, respectively,
such that
(1) We have

n${3 ifr=38,

3L
- %r ifr>9,

(2) C and D meet transversally in s points, 3 <s <r —n, and
(3) X meets C (resp. D) transversally in 2 (resp. 3) points.
Then Y is a non-obstructed, quadratically normal curve of degree d and arithmetic genus

g(Y) = k(n,s):=1(d* — 2r + 3)d + 2r* — 2rn + 20 + 25 + 12).

Proof. Sincer —n<d —r,3 <s <r—nand X meets CuD at five points, then, by
Proposition 3.5, we know that Y is 2-normal. On the other hand, the hypothesis on d,
rand nimpliesthatr —n > 5,d —r>6ands <d —r — 3(since s < r — n), so wecan
apply Proposition 2.12, and we deduce that Y is non-obstructed and non-smooth-
able. [

5.4.1. Remark. For each pair of integers (d, ) satisfying the hypothesis of Proposition
4.4, and for every n > 4, the function k(n, s) satisfies
k(n — 1,3) < k(n,r — n).

Hence, when n ranges from 3 to 17 and s ranges from 3 to r — n, the function k(n, s)
yields all the values of g(Y) such that

k(3r,3) if r is even,
k(3,r —3) =z g(Y) = {k(%(r ~1),3) if r is odd,
ie.,
3@ —(2r +3)d + 2 —4r + 24)

1d? —@2r+3)d+3r? + 18) if  even, r> 8,

Y
= g( )Z{%(dz—(2r+3)d+%r2+ 18 +%) if r is odd,
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while, for r = 8 we get
1(d® — 19d + 120) > g(Y) = 4(d* — 19d + 116).
We now turn to the analogue of Proposition 4.2.
5.5. Proposition. Fix an integer d > 13 and let r be an integer such that

6 <r <3(d—1). Let D be a smooth plane curve of degree d —r and let C be a non-
singular curve of type

r r o
<§——t,§+t) if v is even,
r—1 r+1 . .
_f —
( 3 ) +t) if ris odd

(0 <t < E[r/2] — 3), on a non-singular quadric Q. Assume that C and D meet quasi-
transversally in 5 < s < r points and that the plane containing D is transversal to Q.
Then the nodal curve Y = CuD is a non-obstructed, quadratically normal curve of
degree d and arithmetic genus

M —Qr+Dd+3r2 +r -2+ 2+ 2) if r is even,
g=h(t,s):=<1 3
L@ —Q@r+3)d+3r2+r—22 -2t +3+25) if ris odd.

Proof. It is left to the reader. [

5.5.1. Remark. For each pair of integers (d,7) such that d > 13,3(d — 1) > r > 6, we
easily see that for every ¢, the function h(t, s) satisfies, for r even,

h(t —1,5) =3(d? — 2r + 3)d +3r* +r — 2t* + 4t + 10),
h(t,r)=3d?> —Q2r+3)d+ 22 +r—212 42 4 21).

But ¢ < 1r — 3 implies that 2 + 2r > 4t + 10 and thus h(t,r) > h(t — 1,5). Similarly,
for r odd, we get

ht —1,5) =3(d*>—Qr+3)d+ 32 +r~2t* + 2t + &),

hit,r)=3(d* —Qr+3)d+3r2 +r—22 =2t + 5 +2n),
but t < E[r/2] — 2 implies that h(t,r) = h(t — 1,5). Hence, in both cases, when
t ranges from 0 to E[r/2] — 2 and s ranges from 5 to r, the function h(t, s) yields all

values of g(Y') such that

h(0,r) > g(Y) = K(E[r/2] — 2,5),
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ie.,

%(d2 —(2r + 3)d +—§-r2 +3r+ 2)

1
>g(Y)> E(d2 —Q@r+3)d+r*+5r+4) ifriseven,

1/, 3, 3
5<d —(2r+3)d+2r +3r+2>

1
>g(Y)2 5@ — Q2 +3)d+7° +5r+4) ifris odd.

5.5.2. Remark. We easily verify that, for each fixed pair (d,r), there is no gap
between the values of g obtained from Proposition 5.4 and those obtained from
Proposition 5.5.

6. Smooth components of M = M(2;c;,c;,¢3)

In this section we will show the existence of generically smooth components of the
moduli scheme M = M (2;¢,, c3, c3) which parametrizes isomorphism classes of rank
2 stable reflexive sheaves on P? with Chern classes ¢y, ¢, and c;.

On one hand, the non-obstructed, m-normal curves constructed in Sections 4 and
5 will yield, via Serre’s correspondence, rank 2 stable reflexive sheaves & on P* which,
by Corollary 1.7, will also be non-obstructed. On the other hand, we will apply
Proposition 1.4 to obtain non-obstructed sheaves even in the case when the corres-
ponding curve is not linearly (or quadratically normal).

First of all, recall that Theorem 0.1 determines precisely for which triples (c,, 3, ¢3)
the set

A (c2) = {Cs € Z|M(2;cy,c2,03) # @}

is non-empty. On the other hand, for each fixed ¢, > 1, let B, (c;) = A, {(c,) be the
subset defined by

B, (c;) = {cs € A, (c2)|M(2;cy,¢2,¢3) has a generically smooth component}.

Since every rank 2 reflexive sheaf can be normalized it is enough to consider the cases
c; = 0and ¢c; = — 1. Since both cases are analogous, we will first consider in detail the
case ¢; = —1 and we will then sketch the proofs for the case ¢; = 0.

Applying Proposition 1.4, we obtain the following result:

6.1. Proposition. For every pair of integers (c,,c3) such that ¢c; € A_(c3), c; > 1 and
0 < ¢3 < 3¢, — 2, the moduli scheme M (2; —1, ¢4, ¢3) has a generically smooth compon-
ent of dimension 8c, — 5.
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Proof. Given ¢, > 1, we will construct a non-obstructed rank 2, stable, reflexive sheaf
& on P? with Chern classes ¢;& = —1, ¢, = ¢, and ¢3& = c5, as an extension

EQ—s O0—&(1)— Fy(1)—>0, 0 # ¢ € H0y(3),
where Y is a curve of degree ¢, which is the union of m mutually disjoint rational
curves, 1 <m < c,.
By construction, &€ is a rank 2 stable reflexive sheaf on P® with Chern classes
16 = —1,¢,8 = c; and ¢3 = 2g(Y) — 2 + 3c,. Since the curve Y satisfies the condi-
tions of Proposition 1.4, we know that & is non-obstructed. On the other hand,

g(Y)= —(m — 1) and thus ¢3& = 3¢, — 2m, so for each fixed c,, when m varies from
1 to ¢,, we obtain all ¢; € A_;(c,) such that

C2SC3S3C2—2.

To obtain the values of ¢; in the range 0 < ¢3 < ¢, (¢, = 2), we consider again the
curve Y but we construct & as an extension

E0— 00— 81— F1v(3)—0, 0# ¢ e Hwy(3).

In this case we have deg(Y) = ¢, + 2 and we apply the same arguments as before to
show that & is a rank 2 stable reflexive sheaf which is non-obstructed. But in this case
26 =c,+2 and ¢3f = ¢y —-2(m —1). Thus, we obtain all possible values of
¢y € A_y(c,) such that 0 < ¢35 < ¢, hence the result. [

The next two results deal with the upper range of values of ¢c3 € A (c3).

6.2. Theorem. For every pair of integers (c;,c3) such that c; > 5, c3 € A_(c,) and
3 —2rc, +2rr+ 1) >c3>c5—2rc,+r* +5r—2

for some integer r, 1 <r <3(c, — 3), there exists a non-obstructed rank 2, stable,
reflexive sheaf & on P> with Chern classes ¢c,E = —1, ¢c,E = ¢, and ¢3E = c;.

Proof. The cases r = 1,2 follow from [13, Theorem 3.2]. Assume r > 3. We will
consider two different constructions:

Construction 1: We take a curve Y = Cu DuUL,u - UL, where C and D are
non-singular plane curves of degrees r — t and ¢, — r, respectively, meeting transver-
sally in a set of s points, 2 < s <r —t,and L, L,, ... ,L, are t skew lines with ¢t = 0 if
r=4 and

1, r==6,
0<t<{(r/2)—1, r=0(mod?2), r > 8,
(r—1/2)—1, r=1(mod2),

each line meeting C in one point and D in another point. Assume also that the points
Dn[{Ji= L] are in general position in the plane containing D, and that the points
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Cn[Ji<, L] are in general position in the plane containing C. By Theorem 4.1, we
know that Y is a non-obstructed, linearly normal curve of degree d = ¢, and arithme-
tic genus

g(¥) =32 —Qr+3)c,+ 2 + 12 + 5t — 2t + 25 + 2).

It is immediate to see that, for ¢; — r > 0, r — t > 0, there exists a non-zero global
section ¢ € H wy(3) generating the sheaf wy(3) except at a finite number of points. We
thus have an extension

E0— O— &(1)—> Fy(1)— 0,

where & is a rank 2 reflexive sheaf with Chern classes ¢, = —1, ¢, =
c;(E(1)) =d = ¢, and c38 = 2g(Y) — 2 + 3d (see 1.3). We thus have

C3E =c2—2rcs +2r + 12 + 5t — 2rt + 2s

so for each fixed pair (c,, 7), when ¢ ranges from 0 to E[r/2] — 1, and s ranges from 2 to
r — t, we obtain all the possible values of ¢; within the range

¢35 —2rc, + 2rr + 1)

5

e [t 437+ r=0(mod2), r28,
=TS — e, 4+ 5P 44— 3 r=1(mod2),

while for the cases r = 4 and r = 6 we have
¢2—8c, +40>c3>c3— 8¢y +36 ifr=4,

3 —12c, +84>c3>c3—12¢, +70 ifr=6

(see Remark 4.1.1). Moreover, Y is not contained in any plane, hence & is stable.
Finally, since Y is non-obstructed and linearly normal then & is non-obstructed by
Corollary 1.7.

Construction2: Assume r > 4 (and thus ¢, > 11). We take a curve Y = CuD where
D is a smooth plane curve of degree ¢, — r and C is a non-singular curve of type

d tr+t if i n
5~ b3 if r is even,
—1 1

(’—2——t,’—1;—+t) if r is odd

(0 <t < E[r/2] — 2), on a non-singular quadric Q, such that C and D meet quasi-
transversally at s points, 3 < s < r, and the plane containing D is transversal to Q.
Then, by Proposition 4.2, Y is a non-obstructed linearly normal curve of degree d = ¢,
and genus

_[3ei—Q@r+3)c,+ 3 +r—22+2+2s) if r=0(mod2),
Tl —@r+3)e, + 2+ r =202+ 3 4+ 25) if r=1(mod2).
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Forc, —r > 0and r —t > 0 we know there is a non-zero global section ¢ € H° wy(3)
generating the sheaf wy(3) except at a finite number of points. We thus have an
extension

£:0— O0— 8(1)—> Fy(1)—> 0,

where & is a rank 2 reflexive sheaf with Chern classes ¢;& = —1, ¢, =
(1)) =d =c, and ¢36 =2¢g(Y) — 2 + 3d (see 1.3). We thus have

ol = 2 —2re, + 3 +r— 212+ 2s if r =0(mod?2),
¥l e+ 3+ =22~ 2+ 25— 1 if r=1(mod2)

so for each fixed pair (c,, r), when ¢ ranges from 0 to E[r/2] — 2, and s ranges from 3 to
r, we obtain all the possible values of c; within the range

c% — e, 32+ 3r >y > c§ —2rc, + 12 +5r—2, r=0(mod?2),

S—2re, +3 +3r—1>cy>c;—2rc, +r* +5r—2, r=1(mod2)
(see Remark 4.2.1). Moreover, since Y is not contained in any plane, & is stable and the
result follows from Corollary 1.7. [

In [9], Kleppe has shown that, for every pair of integers (d, g) such that the Hilbert
scheme H(d, g) of smooth connected curves in P* is non-empty, there exists a generi-
cally smooth component of H(d, g). As a consequence, we obtain the following result:
6.3. Proposition. For every pair of integers (c,,c3) such that ¢, = 6, c3 € A_,(c,) and

%c% +2¢, > c¢3 = 5¢;, — 6,
there exists a non-obstructed rank 2, stable, reflexive sheaf & on P* with Chern classes

ciE = —1, ¢c,E = ¢, and c3E = c;.

Proof. Consider a linearly normal, smooth, non-obstructed curve Y of degree d > 6
and arithmetic genus g,

d—zsgs1+ﬂd—;—Q

(for the existence of such curve see [9]). We have an extension
00— 00— 8(1)— Fy(1)— 0,

where & is a rank 2, stable, reflexive sheaf on P* which is non-obstructed (Corollary
1.7) and has Chern classes ¢,& = —1, ¢,& = ¢, and ¢3& = 2g — 2 + 3c,, hence the
result. [

We now turn to the case ¢; = 0.
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6.4. Proposition. For every pair of integers (c,,¢3) such that c; € Ao(cs), ¢2 = 1 and
0 < Cy < 2C2,

the moduli scheme M (2

802 -3

Proof. Given ¢, > 1, we construct a non-obstructed rank 2, stable, reflexive sheaf

& on P? with Chern classes ¢, E = 0, c,E = ¢, and ¢3E = c3, as an extension
E— O0— E(1)—> Fy(2)—0, 0# ¢ e Hwy(2),

where Y is a curve of degree ¢, + 1 which is the union of m mutually disjoint smooth

rational curves, 1 < m < ¢, + 1. By construction, & is a rank 2 stable reflexive sheaf

on P2 with Chern classes ¢;& = 0, ¢,& = ¢, and ¢; = 2¢, — 2(m — 1). The result then

follows from Proposition 1.4. []

6.5. Proposition. For every pair of integers (c,, c3) such that ¢, > 8, c3 € Ag(c;) and
3= Qr—De;+ 2 2c3zes—Qr—De, + 2 —2r+ 6

for some integer r, 3<r s%(cz — 2), there exists a non-obstructed rank 2, stable,

reflexive sheaf & on P® with Chern classes c\E = 0, ¢,E = ¢, and c3E = c5.

Proof. It is left to the reader. [

6.6. Proposition. For every pair of integers (c,,c3) such that ¢, > 11, c3 € Ay(c,) and
3—Qr—1De, +2r* —2r+4>c3=>c2—Q2r—1)cy +2r* —4r + 12
Jfor some integer r, 5<r< %(cz — 1), there exists a non-obstructed rank 2, stable,

reflexive sheaf & on P* with Chern classes ¢c,E = 0, ¢,E = ¢, and c;E = c3.

Proof. We take a curve Y = DUCUL which is the nodal union of two non-singular
plane curves D and C of degrees ¢, + 1 — r and r — 1, respectively, meeting transver-
sally at s points, 3 < s < r — 1, and a 2-secant line L meeting each of the curves D and
C in one point. We consider an extension

00— 00— &) — Fv(2)— 0,
where & is a rank 2, stable, reflexive sheaf on P? with Chern classes ¢;& =0,
28 =c3(6(1)) —1=d —1=c; and c38 = 2g(Y) — 2 + 2d. The result then follows
from Proposition 5.2, Remark 5.2.1 and Corollary 1.7. [

6.7. Proposition. For every pair of integers (c,,C3) such that c; > 14, c3 € Ay(c,) and

3= Qr—Dey +2r —4r+12>c32c3—@Qr— e, + 2,2 — 6r + 22
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for some integer r, T < r < 4c,, there exists a non-obstructed rank 2, stable, reflexive
sheaf & on P*® with Chern classes c,E = 0, ¢,E = ¢, and ¢3E = c;.

Proof. We take a nodal curve Y = DUC UK where D and C are two non-singular
plane curves of degrees ¢c; + 1 —r and r — 2, respectively, meeting transversally at
s points, 3 < s < r — 2, and K is a conic meeting the curves D (resp. C) transversally in
two points. We consider an extension

E0— O0—>&(1)— £ (2)— 0,
where & is a rank 2, stable, reflexive sheaf on P* with Chern classes ¢,& =0,
28 =c((1) — 1 =d —1=1c, and ¢3& = 2g(Y) — 2 + 2d. The result then follows
from Proposition 5.3, Remark 5.3.1 and Corollary 1.7. [J
6.8. Theorem. For every pair of integers (c;,c3) such that ¢, > 15, ¢3 € Ay(c,) and
—Qr—De, +2 —6r+2>c3>cs—2r— e +r2+3r+2
for some integer r, 8 <r < %(cz + 1), there exists a non-obstructed rank 2, stable,
reflexive sheaf & on P* with Chern classes ¢,E = 0, ¢;E = ¢, and ¢;E = c5.

Proof. We will use two different constructions:

Construction 1: We take a curve Y = DuCuX which is the nodal union of three
non-singular plane curves D, C and X of degrees ¢, + 1 — r,r — n and n, respectively,
and such that

(1) We have
3, r=38,
<n<
3_n_{§r, r=9,

(2) C and D meet transversally in s points, 3 <s<r-—n,
(3) X meets C (resp. D) transversally in 2 (resp. 3) points.
We consider an extension

£:0— O—s &(1)— F4(2)—> 0,

where & is a rank 2, stable, reflexive sheaf on P3® with Chern classes ¢;& =0,
28 =c(6(1) —1=d—1=c, and ¢36 =2g(Y) — 2 + 2d. Applying Proposition
5.4 and Remark 5.4.1 we obtain all values of ¢ € Ay(c;) such that

c3—15¢, +102>c3 > ¢ —15¢c, + 98 ifr=38
and
c3—Q2r—1)c, +2r* —6r+22

e c5—@r—1c, +2r* —2r+16 if r is even, r > 8,
==l -@r—De, + 32+ 16 +3  if ris odd.
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Construction 2: We take a curve Y = CuD where D is a smooth plane curve of
degree ¢, — r and C is a non-singular curve of type

r tr+t if r is even
2752 d ’

r—1 r+1 .
(——Z——t,—2—+t> if r is odd

(0 <t < E[r/2] — 3), on a non-singular quadric Q, such that C and D meet quasi-
transversally at s points, 5 < s < r, and the plane containing D is transversal to Q. We
thus have an extension

00— 00— &(1)— Fy(1)—> 0,
where & is a rank 2 reflexive sheaf on P*® with Chern classes ¢;& =0,

(1)) =d =c, + 1 and ¢38 = 29(Y) — 2 + 2d. The result then follows from Prop-
ositions 5.4 and 5.5, together with Remark 5.5.1 and Corollary 1.7. [

6.9. Proposition. For every pair of integers (c;,c3) such that cy € Ag{ca), ¢, = 12 and
6c; — 4 <c3 <3(ch + 5¢x +4),

there exists a non-obstructed rank 2, stable, reflexive sheaf & on P® with Chern classes
CIE = 0, CzE =C, and C3E = C3.

Proof. Analogous to that of Proposition 6.3. O

7. Conclusions and examples
The results of the preceding section show that for “almost all” the values of c3, the
moduli scheme M (2;cy,c,,c3) has a generically smooth component. The purpose of

the next theorem is to summarize the results obtained in order to make precise what
we mean by “almost all”.

7.1. Theorem. Fix an integer ¢, and consider the sets
A (c2) = {c3 € ZIM(2;¢y,¢2,¢3) # 0},

B, (c2) = {c3 € A, (c2)IM(2; ¢4, ¢a,¢3) has a generically smooth component}.
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W e then have

. 1;Bcn (CZ) _
e

Proof. Since every rank 2 stable reflexive sheaf & in M(2;¢y,c;,¢3) can be nor-
malized, it is enough to consider the cases ¢; = 0 and ¢; = —1. Assume that¢; = —~1.
We must show that

lim #A_l(C2) - #B-l(cl)

=0.
20 #4_1(c2)

From Theorem 0.1 it follows that

2+ 1 =20 D —rr+ 1) - 1) if ¢, 1s even,

- +1 =301, —r@r+1)—1) if ¢, is odd, (14

1.

A_4(c) = {i

2

where b = b(—1,¢,) = E[3(—1 + /4c, — T)]. A simple calculation yields

b(—1,c2) 1 5
Y (a—rr+1)-1)= —§b3—b2+<c2—§)b.

r=1

We now look at the size of the set A_,(c,)\B_(c,). Since, for ¢, = 18, the construc-
tions given in Theorem 6.2 and Proposition 6.3 overlap, then for these values we have

d(—l,CZ)l
#A_l(Cz)—#B_l(Cz)S Z 5(72+5r—'2)+202—2,

r=1

where d = d(—1,¢,) = E[3(—1 + /8¢, — 31)] is the maximum value of r for which
the inequality

=2+ D +2r + D+ +2>e5—22rc, +12 + 57 =2

holds. A simple calculation yields

d(—l,cz)l 1
Y 5(r2 +5r—-2)= gd(d2 +9d + 2).

r=1
Hence,
BA_(c)) —#B_i(c)) <id(d® +9d+2) + 2¢c, - 2. (15)

A comparison of (14) and (15) yields the result. The proof for the case ¢; =0 is
completely analogous (it follows from Propositions 6.4—6.7, 6.9 and Theorem 6.8), so
it is left to the reader. []

7.2. Remark. In general, for each fixed pair (c;, ¢,), there are values of ¢, for which we
still do not know if there exists a generically smooth component of the moduli scheme.
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However, if we let C. (c;):= A, (c2)\B,,(c2) be the set of integers c; € 4,,(c,) for
which the moduli scheme M (2;¢;, ¢3, ¢3) has no generically smooth component, then
from the above theorem it follows that, while the sets 4,,(c;) and B, (c,) are of order
o(4c3), the set C,,(c,) is at most of order o(%c3/?).

As an example, in the following corollary we compare #A4., (c;) with the maximal

size of the sets C,, (c,), for ¢; = —1 and ¢, < 10.

7.3. Corollary. (a) C_(c,) = 0 for all ¢, < 4.
(b) We have:

$4_,(5) =11, C_,(5 < {1517},

84_,(6)=16, C_,(6) < {18,20,22,26},

$4_,() =21, C_,(7) = {21,23,25,27,31,35,37},

$4_,(8) =27,  C_,(8) < {24,26,28,30,32, 38,40,42,48, 50},

#4_,09)=33, C_,09) < {27,29,31,33,35,37,47,53,55,63,65),

$4_,(100 =41,  C-(10) = {30,32,34,36,38,40,42, 54, 56, 58, 60, 66, 68, 70, 80, 82}

Proof. Part (a) follows from [2, Theorem 2.5; 6, Theorem 9.2; 13, Theorem 3.2],
together with Proposition 6.1, while (b) follows from Propositions 6.1, 6.3 and
Theorem 6.2. []

We wonder if Cy(c,) = C—(cz) = @ for all ¢, > 1. To be more precise, we suggest
the following conjecture:

7.4. Conjecture. Fix an integer c¢;. Then A, (c,;) = B, (c,) for every ¢, € Z.

7.5. Remark. An affirmative answer to Conjecture 7.4 will not imply that
M(2;cy,ca,c3) is generically smooth. In fact, there exist integers (c;,c,,¢3) € Z2 for
which M (2;¢,,¢,,¢3) has a generically smooth component and a non-reduced com-
ponent. For example, by Proposition 1.4, M(2; —1, 14, 88) has a generically smooth
component while, by [8; Example 3.2], it also has a non-reduced component.
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