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I .  [ N T R O D U C T I O N  

By' "graph"  we mean a finite undirected graph; its elements are called 

"edges" and "vertices." We permit "multiple edges" (two or more 

edges joining the same pair of  vertices) but forbid loops (edges associated 

with only one vertex). When we say' "delete an edge" we do not delete 

the associated vertices. A circuit is a set of  edges forming a simple closed 

curve; a cocircuit is a minimal separating set of  edges. A graph is trit,alent 
if each vertex has precisely three edges incident on it. The edges are 

n-colored if they are partioned into n sets so that any two edges incident 

on the same vertex are in different sets. 
In a digraph, the edges of  each circuit are partitioned by the orienta- 

tion into two sets; letting m and n be the cardinalities of  these sets, the 

flow ratio of the circuit is the ratio m/n (with m > n); it may be + co. 

It is shown in [5] that the vertices of  a graph are n-colorable if and only 

if there exists an orientation of  the graph such that the flow ratio of  

each circuit does not exceed (n -- 1). The flow ratio of  a cocircuit is 
defined in an obvious analogous way, the partitioning into two subsets 
being equivalent to a notion of  "similarly directed" and "oppositely 

directed" as discussed in [3]. 
Now, it was conjectured by Tait (.see [2]) that the edges of  any trivalent 

graph are 3-colorable: the Petersen graph gives a counterexample 
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(see [2] again). It is not known whether Tait's conjecture is true in the 
special case of planar graphs, and in fact it is then equivalent to the 
Four-Color Conjecture. However, for planar trivalent graphs, one can 
assert that the edges are 3-colorable i f  and only if  there exists an orientation 
such that the f low ratio of  each cocircuit does not exceed 3. The proof is 
via the dual-graph, using the theorem of [5]. 

The object of this paper is to extend the above result to non-planar 
graphs. 

The symbols J, (74, D2 stand for the (Abelian) groups: the integers, 
the cyclic group of 4 elements, the Klein four-group, respectively. 

2. THE THEOREM 

The following conditions on a trivalent (finite, undirected, not necessarily 
planar) graph are all equivalent: 

(a) There exists a 3-coloring of  the edges. 
(b) There exists a non-vanishing l-cycle with values in D2. 
(c) There exists an orientation and a non-vanishing 1-cycle with values 

in C4 on the diagraph. 
(d) There exists an orientation and a 1-cycle with values in J on the 

digraph, such that only the values 1, 2, 3 e J are assumed by the 1-cycle. 
(e) There exists an orientation such that the f low ratio of  each cocircuit 

does not exceed 3. 

REMARKS: The main point of  this theorem is the equivalence of  (a) and (e ). 
The equivalence of  (a), (b), and (c) is shown by Tutte in [7], corollary to 
Theorem XI, and the equivalence of  (c) and (d) is shown by the same 

author in [8], Theorem 6.3. The settings are considerably more abstract 
and general, and the proofs somewhat less constructive than given here. 

PROOF: The equivalence of (a) and (b) is easily seen by identifying 
the three "colors" with the three non-zero elements of D2 �9 

Let us show (a) implies (c). Assume a 3-coloring of the edges: say 
with red, green, and blue. Assign to each green line the element 2 of C4 
and orient the line arbitrarily. Deletion of the green lines leaves a system 
of circuits; for each such circuit, orient the lines "all in the same direc- 
tion" relative to the circuit. Assign to the red lines and blue lines the 
elements 1 and 3 of C4, respectively; the remainder of the argument is 
trivial verification. 
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Let us show (c) implies (d). Assume an orientation and a non vanish- 
ing l-cycle with coefficients in C~: let g be tile obvious associated 
l-chain with coefficients in a. The boundary  0g o [ ' g  is a 0-chain with 

coefficients in the set 

{ . . . - - 8 ,  4 ,0,  4, : 8 . . . .  ] c J :  

it is easy to show that  the sum of these coefficients over all the vertices 
is zero. l f g  is a l-cycle, no further reduction is necessary. I f  not, choose a 
vertex v such that  Og is negative on ~,, and let S be the set of  vertices 

(including v) "accessible" from z,,, with the edges thought  of  as "one-way 

streets," the direction of permitted travel being given by the " a r row"  of 
the orientation, and let S be the remaining vertices, Let E be the set of  

edges connecting a vertex of S with a vertex of  S. It is not hard to show 
that the sum of the coecients associated with E by g is equal to the sum 
of the coefficients of  Og associated with the vertices of  S. Since the first 
sum is non-negative, so is the second, and there is a vertex l~' of  S with 

positive coefficient, and an oriented path f rom ~, to ,/. Reverse the orien- 

tations of  all edges of  the path,  replace coefficients 1 by 3 and 3 by 1 on 

all edges of  the path (leaving the 2's unchanged) and we now have a 
non-vanishing 1-cycle with coefficients in C~, which is "closer to being" 

a 1-cycle with coefficients in J, in the sense that:  regarding it as a 1-chain 
with coefficients in J, the sum of the absolute values of  the coefficients 

of  its boundary  is smaller than before the reduction. Finitely many  itera- 
tions of  the above reduction process eventually produce the desired 

orientation and non-vanishing l-cycle with coefficients in J, taking on 

only the values 1, 2, 3. 
Now let us show (d) implies (a). Given a l-cycle h with coefficients in 

J and taking on only the values 1, 2, 3: let s be the set of  edges with 

coefficient 2. By listing all possibilities, one shows easily that  each vertex 
has precisely one edge of  E1 incident on it; thus deletion of s leaves a 
system of  circuits. For each such circuit C, let E~(C) be the set of  lines of  
E1 incident on it. Now, the sum of the entries of  h over El (C)  is zero 
(mod 4); thus C has an even number  of  vertices and hence an even 

number  of  edges. Color  the edges of  each C alternately red and blue, 

and color the edges of  E1 green. 
We turn now to the equivalence of  (d) and (e). For an interval I c J, 

define ( -  I)  as {x: -- x e I}, and for two intervals 11,/~ c J, define 
I1 + 12 as {x -- y:  x e I1, y e /~}. Recall the theorem ([3], Theorem 4.1): 
Let there be given a fimction which assigns to each edge of  a digraph, 
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an interval in J. If, for each cocircuit, the sum of  the intervals assigned 

to the edges of" the cocircuits (signed + and - according to the directions 

of  the lines) contains zero, then there exists a 1-cycle with coefficients in J 
such that the integer assigned to each edge lies in the corresponding interval. 

(This theorem is really " i f  and only if," the "only i f "  part being essentially 

trivial.) 

To apply this theorem, think of  the intervals in J as being all (1, 2, 3), 

and note that  the hypothesis of  the above theorem is equivalent to the 

condit ion that the flow ratio of  each cocircuit does not exceed 3. 

REMARK: The tool theorem adduced above is a variant  on the "integer 

fo rm"  of  the Max-Flow-Min-Cut  Theorem of  Ford  and Fulkerson. 

An  explicit algori thm for the construct ion is given in [4]. There is a con- 

nection with the method of  Grundy  functions [1],[6] which will not  

be explored here. 
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