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Syncytial nuclear aggregates in normal placenta show increased nuclear
condensation, but apoptosis and cytoskeletal redistribution are uncommon
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Introduction: Syncytial nuclear aggregates (SNAs) are increased in pregnancy complications; however,
little is known about their origin or function. This study aimed to characterise SNAs in more detail than
has been reported previously.
Methods: Immunohistochemistry and morphological examination at the light and ultrastructural level
were used to determine the nature and structure of SNAs.
Results: SNAs comprising bridges and syncytial knots had similar frequency with 974 per mm3 of villous
tissue (IQR 717e1193) and 833 per mm3 (IQR 766e1190), respectively while there were approximately
four times as many sectioning artefacts than knots and bridges combined. SNAs had increased pro-
portions of condensed nuclei compared to the remaining syncytiotrophoblast (33.3% vs. 8.9%) and
decreased proportions of euchromatic nuclei (0.0% vs. 16.2%), as assessed by examination of an electron
micrograph archive. SNAs showed little evidence of apoptosis, with weak positivity for the apoptosis
markers M30-neoepitope at 16.6% and TUNEL at 10.0%; strong staining was rarely seen for either marker.
Immunofluorescence demonstrated rare association of actin (a, b or g) with SNAs, whereas tubulin was
in close proximity to SNAs and cytokeratin was seen within and surrounding SNAs.
Discussion: M30-positive SNAs traced through serial sections were significantly more likely to be syn-
cytial knots or sectioning artefacts than bridges. Nuclei within SNAs showed signs consistent with
degeneration; however, this is unlikely to be an apoptotic process. There are few changes in configuration
of cytoskeletal proteins around SNAs.
Conclusions: These data suggest that the biogenesis and functional significance of SNAs still
require resolution.

� 2013 Elsevier Ltd. Open access under CC BY license.
1. Introduction

The outer layer of the placenta, the syncytiotrophoblast, is
formed by fusion of progenitor cytotrophoblasts into a continuous
cell layer [1,2]. The morphology of syncytiotrophoblast nuclei is
variable and some are so condensed they are reminiscent of
apoptotic nuclei [3,4]. As a result, the hypothesis has arisen that
nuclear condensation reflects an ageing process [5e7]. Throughout
the third trimester in syncytiotrophoblast, nuclei are found in
clusters termed syncytial nuclear aggregates (SNAs) [8]. There are
more SNAs in pregnancy complications including preeclampsia,
reduced fetal movements, intra-uterine growth restriction (IUGR)
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and stillbirth than in normal pregnancies [9e13]. The mechanism
of nuclear association and the role of SNAs in disease are unknown
[14], but electron micrographs suggest cytoskeletal components
may be involved in SNA formation or stabilisation [5,15]. Support-
ing this, the UniGene database lists many actin, tubulin and cyto-
keratin expressed sequence tags (EST) in placenta (data in
Supplementary file 1).

True SNAs have been classified into three groups: sprouts, knots
and bridges [4,10,16]. Sprouts, pedunculated collections of
euchromatic nuclei generally found in the first trimester placenta,
are thought to arise at the initiation of new villi [17,18]. Knots, found
towards term, protrude slightly from the villous surface [5]. Bridges
are highly nucleated regions that connect two villi [1]. As well as
these “true” SNAs, tangential sectioning of the syncytiotrophoblast
produces sectioning artefacts [19] that resemble SNAs but are
oblique sections through normal syncytium. Aggregates that
cannot be reliably classified as knots or bridges, most likely due to
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Fig. 1. Nuclei were classified into an ordinal scale of patterning. Euchromatic nuclei
were defined as nuclei showing very little heterochromatin with the exception of a
nucleolus, typical nuclei contain approximately equal amounts of heterochromatin and
euchromatin and condensed nuclei contained very little euchromatic matter. Scale
bars: 2 mm.
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misrepresentation of three-dimensional structures in serial two-
dimensional sections, are referred to in the present work as
“other/unclassified” SNAs.

There is a hypothesis of syncytiotrophoblast turnover that
suggests effete nuclei are collected into knots, undergo apoptosis
and are shed into the maternal circulation [20e23]. This model is
based on i) the condensed morphology of nuclei within SNAs [24],
ii) the activation of caspase-8 during cytotrophoblast fusion [25]
and iii) the appearance of multinucleate syncytial particles in
uterine venous blood [26] and in the lungs of womenwith terminal
eclampsia [27]. However, this hypothesis has been disputed as
there is transcriptional activity in the syncytiotrophoblast [28]
implying that it is functionally intact and therefore unlikely to be
apoptotic. Other research has questioned the role of caspase-8 in
cytotrophoblast fusion [29,30], the turnover of effete nuclei into
SNAs [4] and whether apoptosis in the syncytiotrophoblast could
be controlled apart from within isolated structures [31,32].

This study aimed to investigate by morphometry the nature of
SNAs. In linewith the abovemodel, it was hypothesised that i) SNAs
exist in differing phenotypes, ii) nuclei in SNAs aremore condensed
than other syncytiotrophoblast nuclei, iii) SNAs show different
patterns of cytoskeletal organisation, iv) SNAs are more likely to be
positive for markers of caspase-mediated apoptosis than other
parts of the syncytiotrophoblast and v) syncytial knots are more
likely to be apoptotic than other types of SNA [20e23].

2. Methods

Unless otherwise stated, all reagents were obtained from SigmaeAldrich
Chemical Company (Poole, UK). Following ethical approval (North-West Research
Ethics Committee 08/H1010/55), fresh placental tissue was obtained following
written informed consent. Normal placental tissue was included if it was from 37
to 41 weeks gestation, the baby was in the 10the90th individualised birthweight
centile, maternal BMIwas 19e29.9 and therewere nomaternalmorbidities before or
during pregnancy. Tissuewas collectedwithin 30min of delivery,waxembedded and
sectioned at 5 mm thickness onto 3-aminopropyltriethoxysilane (APES) coated slides.

2.1. Tracing SNAs through serial sections

Six placentawere sampled in three areas and ten serial sections weremade from
these. Sections were stained with haematoxylin and eosin and three fields of view
were imaged from each serial section slide. An Open Source programme was
developed, Basic Aid Evaluating Serial Sections (BAESS, Version 1.0 [33], available as
Supplementary file 2), to track SNAs through serial sections and to total the numbers
of manually tagged knots, bridges, other/unclassified SNAs and sectioning artefacts
from each set of serial sections. Volume of placental tissue in each serial section
stack was estimated by averaging the area measurements of the first and last image
and multiplying the area value by 50 mm (10 serial sections of 5 mm).

SNAs were categorised based on their attachment to surrounding villi, developed
fromCantle et al. [16]. First, sectioning artefactswere scored as regions appearing tobe
SNAs on single sections but revealed by serial sections to result from transverse
sectioningof syncytiotrophoblast. Second, syncytial knotswere scored as regionswith
ten or more tightly packed nuclei that protruded from a single villus. Third, syncytial
bridgeswere scored as regions composed of 10 ormore nuclei linking two villi which,
using serial sections, could be observed to separate above and below the bridge.
Finally,wescored asother/unclassifiedanyapparent SNA that didnotfit into theabove
categories. Light microscopy staining was visualised using a Dialux 22 microscope
(Leitz, Germany) and ImageProPlus 6.0 imaging software (Media Cybernetics Inc.).

2.2. Review of electron micrographs

An archive of placental electron micrographs [34] was reviewed to evaluate
nuclear morphology in 7 normal placentas. Nuclei in the micrographs were
described as being in an SNA if there were �10 nuclei in close proximity to one
another with little internuclear cytoplasm. As an internal control, SNA nuclei were
compared against scores from general syncytiotrophoblast nuclei. Every syncytio-
trophoblast nucleus in the micrograph collection was assessed for chromatin
patterning according to an ordinal scale as being euchromatic, typical of the syn-
cytiotrophoblast, or condensed (Fig. 1). While truly euchromatic nuclei do not exist
in syncytiotrophoblast, the definition was applied to nuclei that appeared mostly
euchromatic but with some heterochromatin under the nuclear membrane and
dispersed through the nucleoplasm. Data were collected by two blinded
investigators (SC, AH) and converted to percentages of the total number of nuclei.
Inter-observer variation was calculated by coefficient of variation to be 26.9%.
2.3. Immunofluorescence staining for cytoskeletal components

Sections from 3 random areas of 6 normal placentas were blocked for auto-
fluorescencewith 1mg/ml sodiumborohydride solution [35] andnon-specificbinding
with 10% animal/2% human serum. Mouse monoclonal anti-a actin (Sigma clone
AC-40, 5 mg/ml), anti-b actin (Sigma cloneAC-74,1.25mg/ml), anti-g actin (Sigma clone



Fig. 2. SNAsonsingle sectionswere traced through serial sections todetermine towhich category theybelonged.While syncytial knots, bridges andother/unclassifiedSNAswerepresent,
therewere significantlymore sectioning artefacts than “true” SNAs (A). Examples are given of a syncytial bridge (B), other/unclassified SNAs (C andD), a knot (E) and a sectioning artefact
(F) shown through serial sections, yellow arrows: SNAs. *P � 0.05, ***P � 0.001 as assessed by KruskaleWallis followed by Dunn’s multiple comparison test. Scale bars: 25 mm.
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2-2.1.14.17, 4 mg/ml), anti-a tubulin (Abcam DM1A, 1 mg/ml), anti-b tubulin (Sigma
SAP.4G5, 0.46 mg/ml) and anti-cytokeratin 7 (Dako clone OV/TL 12/30, 4.6 mg/ml)were
applied overnight at 4 �C. Negative controls were carried out with matching concen-
trations of isotype matched non-immune mouse IgG. Sections were incubated in
secondary antibody rabbit anti-mouse FITC (Dako,1:200) at room temperature for 1 h
then mounted with Vectashield containing DAPI or PI (Vector, Burlingame, CA) to
counterstain nuclei. Fluorescence staining was visualised on a Zeiss AxioObserver
inverted microscope (Carl Zeiss Inc, Europe) using AxioVision Rel. 4.8.

2.4. Assessment of apoptosis

Apoptosis was assessed by terminal d-UTP nick-end labelling (TUNEL) and
immunoperoxidase staining for cytokeratin M30-neoepitope as previously
described [36,37]. Tissue was blocked with a 3% (v/v) hydrogen peroxide solution
and 10% (v/v) animal serum against endogenous peroxidise activity and non-specific
interactions, respectively. Immunostaining was performed with mouse monoclonal
antibodyM30 Cytodeath (Roche 1.1 mg/ml) or non-specificmouse IgG1 (1.1 mg/ml) as
a negative control and incubated overnight at 4 �C. After washing, biotinylated goat
anti-mouse (Dako; 1:200) was applied followed by incubation with avidine
peroxidase (5 mg/ml in 0.125 M Tris buffered saline with 0.347 M NaCl). Immuno-
staining was revealed by exposure to concentrated 3,3-diaminobenzidine for 3 min.
TUNEL staining was performed using a commercially available kit (Roche Applied
Diagnostics, Sussex, UK) with modifications to the manufacturers’ instructions as
previously described [38]. A positive control was treated with DNAse I for 20 min at
37 �C, while a negative control omitted the terminal deoxynucleotidase enzyme.
Sections were counterstained with haematoxylin. 10 fields of view were assessed by



Fig. 3. Nuclei classified for chromatin patterning showed significantly fewer euchro-
matic nuclei and significantly more condensed nuclei within SNAs compared to the
syncytiotrophoblast generally (A). Examples of electron micrographs are given,
(B) showing condensed nuclei in an SNA and (C) “euchromatic” and typical nuclei in
the syncytiotrophoblast. *P � 0.05 as assessed by KruskaleWallis followed by Dunn’s
multiple comparison test. STB: syncytiotrophoblast, scale bars: 20 mm.

S.J. Coleman et al. / Placenta 34 (2013) 449e455452
2 investigators (LG, AH) per experiment for presence of staining within SNAs, with
0 ¼ no staining, 1 ¼ weak staining around one nucleus and 2 ¼ strong staining
around one or more nuclei. Serial sections from normal placentas were similarly
stained for M30-neoepitope. M30-positive SNAs were traced through 10 serial
sections to determine to which category of SNA they belonged. Immunoreactivity
was undetectable in all negative control samples.

2.5. Statistical analysis

Statistical significance was assessed using Graphpad Prism (Version 5.03, La
Jolla, CA). KruskaleWallis test with Dunn’s post-hoc test was used as normal dis-
tribution cannot be assumed. P values of �0.05 were assumed to be statistically
significant.

3. Results

Sectioning artefacts were the most common phenomenon
observed in single sections (Fig. 2A) with over 4-fold greater fre-
quency than other SNA types combined. Syncytial bridges and
syncytial knots were more prevalent than SNAs which could not be
classified. Examples of SNAs in serial sections are shown, a syncytial
bridge (Fig. 2B), other/unclassified (Fig. 2C and D), syncytial knot
(Fig. 2E) and sectioning artefact (Fig. 2F).

Nuclei imaged by electron microscopy were assessed based on
the amounts of heterochromatin as shown in Fig. 1. Review of
electron micrograph archive images found a higher proportion of
euchromatic nuclei in the syncytiotrophoblast compared to nuclei
within SNAs. Conversely, there were an increased number of
condensed nuclei within SNAs compared to nuclei throughout the
syncytiotrophoblast (Fig. 3A). Fig. 3B shows condensed nuclei
within an SNA, in contrast, Fig. 3C shows typical nuclei and a
euchromatic nucleus.

Cytoskeletal proteins were found throughout the syncytio-
trophoblast layer and were only occasionally differently expressed
around SNAs. Actin was rarely associated with SNAs; a-actin was
found surrounding blood vessels (Fig. 4A), b-actin was largely
expressed within villous stroma (Fig. 4B) and g-actin (Fig. 4C) in the
stroma and trophoblast layer. In contrast, a- and b-tubulin were
seen throughout the syncytiotrophoblast layer but also close to
SNAs just above or below prominent aggregates (Fig. 4D and E).
Cytokeratin 7 was consistently found in the syncytiotrophoblast
interweaving and surrounding nuclei and this was also true for
SNAs (Fig. 4F).

Most SNAs lacked staining for cytokeratin M30-neoepitope
and/or TUNEL; a few had weak staining, and very few had strong
M30-neoepitope or TUNEL staining (Fig. 5A and C). M30-positive
SNAs traced through serial sections were more likely to be knots
than bridges P � 0.05, however knots were not significantly more
likely to be M30-positive than sectioning artefacts, P � 0.05
(Fig. 5E). Other/unclassifiedwere significantly less likely to beM30-
positive in comparison to knots and sectioning artefacts.

4. Discussion

This study confirms that in normal human term placenta, both
syncytial knots and syncytial bridges are found. Nuclei in SNAs are
morphologically different to nuclei in the remaining syncytio-
trophoblast, with a higher incidence of condensed nuclei, but with
little difference in cytoskeletal organisation compared to syncy-
tiotrophoblast in general as assessed by immunofluorescence. Also,
despite the appearance of nuclei in SNAs, apoptotic cell death was
rare and, when present, was seen more in syncytial knots than
bridges.

Sectioning artefacts comprised approximately 80% of apparent
SNAs in single sections, whereas syncytial bridges and syncytial
knots were similar in number and formed the majority of the
remaining SNAs. These results are in agreementwith Burton [19,39]
and confirm the necessity to study SNAs in serial sections where
possible.

When imaged by electron microscopy, SNAs were found to
contain fewer euchromatic and more condensed nuclei than other
areas of the syncytiotrophoblast, possibly a sign of ageing [5,6]. It is
possible that SNAs could attract more heterochromatic nuclei or
SNA formation could accelerate nuclear degeneration; more studies
are required to discern whether either of these possibilities occurs.

Cytoskeletal proteins may have a role in SNA formation or sta-
bilisation. Cytokeratin was heavily distributed in and around SNAs
which suggests that SNAs are stable structures. The presence of



Fig. 4. Immunofluorescence stained green for anti-a actin (A), anti-b actin (B), anti-g actin (C), anti-b tubulin (D), anti-a tubulin (E) and anti-cytokeratin 7 (F) with respective
negative controls as inserts. Nuclei were counterstained with DAPI (blue) or PI (red). White arrows: SNAs, yellow arrows: syncytiotrophoblast (STB). FV: Fetal vessels. Scale bars:
20 mm.
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tubulin indicates a potential role in SNA formation, whereas actin is
less likely to be involved as it was not noticeably associated
with SNAs. On the other hand several genes of proteins associated
with the cytoskeleton are repressed during syncytialisation
including microtubule-associated protein 4 and keratin-7, -15 and
-18 [40], which could explain why some proteins are found more
commonly in stroma or cytotrophoblasts rather than in the
syncytiotrophoblast.

M30-neoepitope and TUNEL were found infrequently in syncy-
tiotrophoblast or SNAs, being found in only 16.6% and 10.0%
of apparent SNAs in single sections, respectively. This estimate ap-
pears greater than the levels of apoptosis described by Smith et al.
[3] who found only 0.26% of nuclei in the term placenta were
TUNEL-positive. However, the definition of an SNA as containing at
least 10 clustered nuclei means that these values should be reduced
at least 10-fold for comparison. If this adjustment is applied, the
level of apoptosis in SNAs is consistent with other studies. In addi-
tion, anti-apoptotic proteinsMdm2, Bcl-2, XIAP and survivin are not
reduced in the region of SNAs [41]. Combined, these data suggest
that apoptosis is not a prerequisite for nuclear inclusion into SNAs.

Importantly, the level of apoptosis varied between different
types of SNA which may relate to different roles. Syncytial bridges,
which are infrequently apoptotic, are hypothesised to provide an
internal strut system that may reduce villous injury in adverse
conditions such as maternal hypertension [15,42]. Their formation
may account for the previously unexplained presence of adhesion
molecules in the syncytial microvillous membrane [43]. Although
syncytial knots were the most likely to be apoptotic of “true” SNAs,
there was no greater degree of apoptosis in them than in the syn-
cytiotrophoblast as seen in sectioning artefacts. This provides a
further indication that SNAs do not have increased levels of
apoptosis compared to the remaining syncytiotrophoblast. These
findings thus suggest that i) SNAs do not arise from caspase-
mediated apoptosis and ii) different types of SNA have varied
roles within the term placenta.

The M30-neoepitope is a relatively stable product of caspase-
mediated cytokeratin 18 cleavage associated with early apoptosis.
Therefore, positive staining found in SNAs could be retained from
apoptosis that occurred before cytotrophoblast fusion rather than
during SNA formation, or de novo proteolysis triggered within an
SNA. It should be noted that caspase activation occurs within
skeletal muscle cells to allow those cells to fuse and therefore
caspases may also have a role in cytotrophoblast fusion rather than
exclusively as a programmed cell death marker [44]. If caspase-
mediated apoptosis is not occurring, then autophagy, another
regulated process that can lead to cell death, could be contributing
towards the syncytiotrophoblast nuclear clustering [45] by elimi-
nation of areas of cytosol.



Fig. 5. SNAs mostly failed to stain for M30-neoepitope (A) and TUNEL (C); examples of positive staining are given in B and D. Green circle: no staining, orange circle: weak staining,
blue circle: strong staining. (E) Distribution of M30-positive SNAs into categories *P � 0.05, ***P � 0.001, as assessed by KruskaleWallis followed by Dunn’s multiple comparison
test. (F) M30-neoepitope positive SNA tracked through serial sections and revealed to be a knot (red arrow).
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Caspase-mediated apoptosis has been shown to occur primarily
within cytotrophoblasts or in the syncytiotrophoblast next to fibrin
deposits [31,46], so apoptotic effectors are not free to diffuse within
the syncytiotrophoblast layer. This phenomenon may account for
the positive apoptosis markers found in this paper in the syncy-
tiotrophoblast. In addition, Fogarty et al. and Ellery et al. [28,47]
have shown transcription in the syncytiotrophoblast layer and
partially within SNAs, so nuclei in SNAs may contribute to placental
function. These observations call into question the model of syn-
cytiotrophoblast turnover [20e23] where nuclear features of
apoptosis commence with cytotrophoblast fusion and continue
until effete nuclei are aggregated into syncytial knots prior to being
shed into the maternal circulation.

The increased number of SNAs in single sections of pre-
eclamptic placentas has been attributed to a greater number of
sectioning artefacts because of a more branched placental struc-
ture [48]. This does not account for the increased numbers of
SNAs in IUGR where villous branching is reduced [49]. Further
work is needed to clarify why SNAs are increased in pregnancy
complications and whether the proportions of sectioning arte-
facts, knots and bridges differ between normal and complicated
pregnancies.
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SNAs may form to structurally reinforce the placenta and
minimise damage from shear stresses or other mechanical sources,
reduce the proportion of nuclei in highly active vasculo-syncytial
membranes or result from cell turnover in the placenta without
an apoptotic trigger or shedding process. Ultimately, a better un-
derstanding of the processes leading to SNA formation will give
insight into their significance in pregnancy complications.
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