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ABSTRACT 

The Gram-Schmidt (GS) orthogonalization is one of the fundamental procedures 
in linear algebra. In matrix terms it is equivalent to the factorization A = QlR, where 

Qi E Rm”” with orthonormal columns and R upper triangular. For the numerical 
GS factorization of a matrix A two different versions exist, usually called cZus.sical 

and modzjied Gram-Schmidt (CGS and MGS). Although mathematically equivalent, 
these have very different numerical properties. This paper surveys the numerical 
properties of CGS and MGS. A key observation is that MGS is numerically equivalent 
to Householder QR factorization of the matrix A augmented by an n x n zero matrix 
on top. This can be used to derive bounds on the loss of orthogonality in MGS, and to 
develop a backward-stable algorithm based on MGS. The use of reorthogonalization 

and iterated CGS and MGS algorithms are discussed. Finally, block versions of GS 
are described. 

1. INTRODUCTION 

Let A E R”““, m > n = rank (A). The Gram-Schmidt orthogonalization 
produces Qi and R in the factorization 

A = (al,. . . , a,) = QlR, Ql = (q~,...,qn)t 

where Qr has orthogonal columns and R is upper triangular. The columns 
of Qr in the factorization are obtained by successively orthogonalizing the 
columns of A. In this paper we survey a number of numerical properties of 
Gram-Schmidt orthogonalization. We show that in spite of a sometimes bad 
reputation the Gram-Schmidt algorithm has a number of remarkable proper- 
ties that make it the algorithm of choice in a variety of applications. 
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In Section 2 we give several computational variants of Gram-Schmidt 
orthogonalization. These different versions have an interesting history. The 
“modified” Gram-Schmidt algorithm (MGS) was derived long ago by Laplace 
[15, $21 as an elimination method using weighted row sums; see Farebrother 
[9, Chapter 41. However, Laplace did not interpret his algorithm in terms 
of orthogonalization, nor did he use it for computing least squares solutions. 
Bienayme [3] g ave a similar derivation of a slightly more general algorithm; 
see Section 5. (The idea of elimination with weighted row combinations also 
appears in Bauer [2], but without references to earlier sources.) What is now 
called the “classical” Gram-Schmidt algorithm (CGS) first appeared explicitly 
later, in a paper by Schmidt [25, p. 611, which treats the solution of linear 
systems with infinitely many unknowns. The orthogonalization is used here as 
a theoretical tool rather than a computational procedure. 

The bad reputation of Gram-Schmidt orthogonalization as a numerical 
algorithm has arisen mostly because of the (sometimes catastrophic) loss of 
orthogonality which can occur. In Section 3 we comment on the remarkable 
fact that in this respect the classical and modified algorithms behave very 
differently. In MGS the loss of orthogonality occurs in a predictable manner 
and is related to the conditioning of the matrix A, which is not the case for 
CGS. 

In Section 4 we outline a roundoff error analysis, which explains the supe- 
rior stability of MGS. A key observation is that MGS is numerically equivalent 
to Householder QR factorization applied to the matrix A augmented with a 

square matrix of zero elements on top. Hence the computed fi from MGS is 
numerically as good as that from the ordinary Householder QR factorization. 

In Section 5 we give a backward-stable algorithms based on MGS for solv- 
ing the least squares problem min, l]Ar - b 112. This algorithm is not new, and 
indeed goes back to Laplace [ 151. However, the proof of backward stability 
is of recent origin. For the minimum norm problem min l]yllz, subject to 
Ary = c, a new backward stable algorithm is given. 

If MGS is used only as a tool for computing pseudoinverse solutions to 
linear systems, then the loss of orthogonality in Q causes no problems. How- 
ever, in some applications, it is essential that the computed Q be orthogonal 
to working accuracy. Then the Gram-Schmidt algorithm needs to be modified. 
In Section 6 we consider reorthogonalization and introduce the iterated CGS 
and MGS algorithms. 

To obtain efficient implementations of matrix algorithms on modern com- 
puting systems it is necessary to consider block algorithms. In Section 7 we 
show how a block version of the Gram-Schmidt algorithm can be developed, 
which to some extent is simpler than the corresponding Householder version. 



NUMERICS OF GRAM-SCHMIDT ORTHOGONALIZATION 299 

2. GRAM-SCHMIDT ORTHOGONALIZATION 

In this section we review a number of different computational variants 
of the mathematical Gram-Schmidt orthogonalization, and first consider the 
modified version. In row-oriented MGS a sequence of matrices, A = A(‘), 
A’s’ , . ..> A(“) is computed, where Acn) = Qi, and A@) E Rmxn has the form 

Ack’ = (ql . . qk_l ack) 1 . > 
) k , . . . ,a;)>. 

Hereaf)...., aik) have been made orthogonal to 41, . . . , ~-1, which are final 
rolumns in Qr. In the kth step we first obtain qk by normalizing the vector 
$4: 

k 

$k = af’, rkk = (qr@k)1’2v qk = ik/rkk, (1) 

(k) and then orthogonahze ak+l, . . . , aAk) against qk: 

a(k+l) T (k) 
I 

= a(k) 
I - rkjqk+ rkj =qkaj , j =k+l,...,n. (2) 

The unnormalized vector & is just the orthogonal projection of Uk onto the or- 
thogonal complement of span [al, a2, . . . , Q-11 = span [ql, 92, . . . , q&l]. Af- 
ter n steps we have obtained the factorization A = QlR, where the columns 
of Qr are orthonormal by construction. 

It is possible to get a column-oriented version of the modified Gram- 
Schmidt algorithm by interchanging the order of computation in Algorithm 
2.1 so that the column ak is not transformed until the kth major step. We 
summarize these MGS algorithms below. 
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ALGORITHM 2.1. [Modified Gram-Schmidt (MGS) row version]. Given 
A(‘) = A E R”X” with rank(A) = n, the following algorithm computes the 
factorization A = QlR using mn2 flops: 

for k = 1,2, . . . , n 

& := af); rkk := (+t&)“‘; 

qk := (jkhkk; 

forj=k+l,...,n 

rkj := q;,~); 3 Jb+l) := a(k) 
1 - rkjqk; 

end 

end 

ALGORITHM 2.2. [Modified Gram-Schmidt (MGS) column version]. 
Given A(‘) = A E R”“” with rank(A) = n, the following algorithm computes 
Qi and R in the factorization A = QlR: 

for k = 1,2, . . , n 

fori=l,...,k-1 

rik := qTa:Z’; (i+l) ak := at) - rikqi; 

end 

REMARK 1. The column- and row-oriented versions of the MGS algo- 
rithm are numerically equivalent. The operations and rounding errors are the 
same, and both produce the same numerical results. The row-oriented version 
is often preferred because it can be combined with column pivoting, which 
is necessary when treating rank-deficient problems. The column-oriented ver- 
sion of the MGS Algorithm 2.2 was used by Rutishauser [24] (see also Gander 
[lo]) and independently d erived by Longley [ 181. It is appropriate to use when 
the columns are A are obtained sequentially, as, e.g., when used in Lanczos 
type algorithms. 
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REMARK 2. A square-root-free version of modified Gram-Schmidt or- 
thogonalization results if the normalization of the vectors 9k is omitted. The 
changes in Algorithm 2.2 are to put 

A . ,. 
and subtract out ik9i instead of rik9i, to get A = QlR with R unit upper trian- 
gular. It is interesting to note that no corresponding square-root-free House- 
holder orthogonalization method seems possible. 

Another way to derive the Gram-Schmidt factorization is as follows. As- 

sume that 91, . . . , qk-1 have been determined. Then by orthogonality 9raF) = 
9Tak, and we can compute 

k-l 

Gk := ak - xrikqit 

i=l 

rik = qyak, i = 1,. . . , k - 1, 

This leads to the classical Gram-Schmidt algorithm, where the factors Qr and 
R are generated column by column. Note that the column Uk is not used until 
the kth step. 

ALGORITHM 2.3. [Classical Gram-Schmidt (CGS)]. Given A E Rmxn with 
rank(A) = n, the following algorithm computes for k = 1,2, . . . , n the column 
9k of Qr and the elements rrk, . . . , qk of R in the factorization A = QlR: 

for k = 1,2, . . . , n 

fori=I,...,k-I 

r& := 9Fak; 

end 
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REMARK 3. In CGS the main work can be performed as a matrix-vector 
multiplication 

rk = Qk’_lakT Gk = ak - Qk-l’-kt 

where Qk_1 = (41,. . . , q-l), and rk E Rk-' is the kth column in R (excluding 
the diagonal element). Hence CGS is better adapted to parallel computing 
than MGS. 

REMARK 4. The difference between CGS and MGS is that in the modi- 
fied algorithm the projections r&qi are subtracted from ak before inner prod- 
ucts with qj, j > i, are computed. Although mathematically CGS and MGS 
are equivalent, they differ numerically. As a rule, CGS should not be used 

numerically without reorthogonalization. The superiority of the MGS algo- 
rithm over CGS for solving least squares problems was first experimentally 
established by Rice [22]. 

3. ORTHOGONALITY OF COMPUTED FACTOR 

The Gram-Schmidt algorithms explicitly computes the matrix Qr, which 
theoretically provides an orthogonal bases for %!(A). This is in contrast to 
other numerical methods for computing the QR decomposition, in which Q is 
implicitly defined as a product of Householder or Givens matrices. However, 
due to round off, there will in general be a gradual loss of orthogonality in 
the computed vectors qk, and the computed matrix Qr will not be orthogonal 
to working accuracy. The reason for this is that cancellation takes place when 
the orthogonal projection on qi is subtracted in 

(i+l) 

‘k := ai’) - rikqi. 

We will show that this may lead to a serious loss 

11a~+1)l12 < llaf)ll2 

of orthogonality in case 
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To exhibit the loss of orthogonality it suffices to consider a case of or- 
thogonalizing two vectors. Given vectors 91 (]]9l]l2 = 1) and ~2, we want to 
compute 

92 = a2 - r1291, ~12 = 9Ta2. (3) 

We assume the standard model for floating point computation 

fl(x op y> = 6 op y)(l + l ), 

where fl denotes floating point computation, op = (+, -, ., /], and u is the 
unit roundoff. Then it can be shown (see [5]) that 

Ilfu@d - 42112 < 4la2112, c = l.O6(2m + 3). 

(This estimate holds even when the normalization error is included.) Since 
9T92 = 0, it follows that ]qTfl(&)l < cul]a2l]~. Hence the loss of orthogonality 
is proportional to 

lb2 II2 llazllz 1 
X-E 

Ilfwj2) II2 II42 II2 sin 4(91, ~2)’ 

where 4(9r, ~2) is the angle between 91 and a2. 
Remarkably, for MGS the loss of orthogonality can be bounded in terms 

of the condition number K(A) also for 12 > 2. (Note that for n = 2 MGS and 
CGS are the same.) In [5] it was proved that if &KU < 1, then 

III - or01 II2 5 
21 

1 - C2KUKU’ 
(4) 

Here, and in the following, Ci and ci, i = 1,2, . . ., denote constants depending 
on m, n, and the details of the arithmetic. Hence the loss of orthogonality in 
(91, . . ,9k) depends on K(u~, . . , ak), k = 1,2, . . . , n, and column pivoting 
may be used in maintaining orthogonality as long as possible. 

In contrast, the computed vectors 9k from CGS may depart from orthogo- 
nality to an almost arbitrary extent. As pointed out by Gander [lo], even com- 
puting Qr via the Cholesky decomposition ATA = RTR, Q1 = AR-’ seems to 
give better orthogonality than CGS. The more gradual loss of orthogonality 
in the computed vectors 9i for MGS is illustrated in the example below from 
Bjiirck [5]. 
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EXAMPLE 5. Consider the matrix in Lauchli [17], 

and assume that 161 is so small that fl(1 + l 2) = 1. (This assumption implies 
that 1~1 5 fi, where u is the unit roundoff.) If no other rounding errors are 
made, then the orthogonal matrices computed by CGS and MGS respectively 
are 

where, for simplicity, we have omitted the normalization of 0. It is easily 
verified that the maximum deviations from orthogonality of the computed 
columns are 

CGS : lq;q21 = f , 
2 112 

MGS : l&11 = 3 
0 

1~1 < %(A)u 
3 ’ 

The last inequality follows from K(A) = lrl-‘(3 + e2)li2 x &le]-l. For CGS 
orthogonality has been completely lost. Note that in this example K(u~, as) z 
K(u~, us, aa). For MGS cancellation occurs only when orthogonalizing against 

41, and qlq2 = 0. 

4. MGS AS A HOUSEHOLDER METHOD 

A key observation for understanding the numerical properties of the mod- 
ified Gram-Schmidt algorithm is that it can be interpreted as Householder 
QR factorization applied to the matrix A augmented with a square matrix of 

zero elements on top. These two algorithms are not only mathematically (see 
[16, Problem 19.39]), but also numerically equivalent. This key observation, 
apparently by Charles Sheffield, was relayed to the author in 1968 by Gene 
Golub. This relationship was studied in detail by Bjorck and Paige in [6]. We 
now outline the main results. 
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In the MGS method the columns are transformed by 

.(k+‘) = &&:k), 
.I Mk = I- qkq;, (5) 

where &tk is the orthogonal projection onto the complement of qk. In the 
Householder method one computes the factorization 

P$) = (i), PT=P,...P&, 

where 

pk =1-f&V;, Ok = Ibkll; = 2, 

(6) 

are Householder transformations. Because of the special structure of the aug- 
mented matrix the vectors Vk have a special form. Since the first n rows are 
initially zero, the scalar products of the vector vk with later columns will only 
involve qk, and it is easily verified that the quantities rkj and qk are numerically 

equivalent to the quantities in the modified Gram-Schmidt method (6)-(7). 
Ideally, if q:qj = 0, i # j, the orthogonal matrix P in (6) has the form 

and P i> fully defined by its (I, 2) block Qr = (41, . . . , qn). Using the com- 
puted Qr = (41, . . . , q,) the corresponding matrix F has the form (see [6, 
Theorem 4.11) 

where 

- -T is upper triangular, and fi, = Z - qiqi, i = 1, . . , n - 1. 
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The equivalence of MGS and Householder QR gives us a way to under- 
stand the numerical behavior of MGS. From Wilkinson’s classical error analy- 
sis of Householder QR in [29] it follows that there exists an exactly orthogonal 

i (not equal to p) such that 

(,:I,,) =F(f) = (;;$A. lIEi 112 i c~AIIz~ (8) 

where ci, i = 1,2, are constants. Using the CS decomposition (see [ll, p. 
77]), we can write 

where U = (Ur, U,) and V = (VI, Vz) are square orthogonal matrices and 
C 3 0, S > 0 diagonal with C2 + S2 = 1. Then it follows (see [6]) that 

A + E = @, lIElIz F h +c2)~llAll2, (9) 

where 01 = VrWT is the closest orthogonal matrix to Pa1 in any unitarily 
invariant norm. This shows that the computed fi from MGS is numerically as 
good as that from the ordinary Householder QR factorization. 

From (8) it follows that Prr = E1kl, and assuming C~UK < 1, where 
cs = cl + ~2, it is easily shown that 

llp11112 I 
Cl 

1 - C3UKUK. 

This could be used to obtain a bound for the deviation from orthogonality of 
01. More simply, we can derive a slightly less sharp bound using the bound 
from [5], 

A+Eo=&li, lIEoIl I co~llAll2~ (10) 

involving the computed Q1 and R. Combining this with (9), we get Qr = 

& + (Eo + E)kl, giving 

II@ - &II2 5 1 _c;3UKUKt c4 = co +cg. 

From this we obtain a bound roughly the same as (4), 

III - or& II2 5 1 _“,‘,,uK + o((uK)2). 
3 

(11) 
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5. PSEUDOINVERSE SOLUTIONS WITH MGS 

We first consider the use of the modified Gram-Schmidt algorithm for 
solving linear least squares problems. It is important to note that because 
of the loss of orthogonality in Qr that takes place also in MGS, computing 
cr = QTb and then x from Rx = cl will not give an accurate solution. A 
backward-stable algorithm can be derived by applying the MGS algorithm to 
the matrix (A, b) to compute the factorization 

C&b) = (Q~,qn+d f ; ( 1 (12) 

From this we have 

Ax - b = (A, b) =Cyl,yn+d(; ~)(~l)=Q,(Rx-;)-~q,,+l. 

is orthogonal to Q1, then the solution of min, 1lAr - blln is obtained 

Rx = z, 7” = P9n+l. 

(Note that it is not necessary to assume that Qi is orthogonal for this conclu- 
sion to hold.) The resulting algorithm can be written as follows: 

ALGORITHM 5.1. (Linear Least Squares Solution by MGS) Carry out MGS 
on A E RnXn to give Qr = (91, . . . ,9,) and R, and put b(l) = 6. Then the 
least squares solution x is computed by: 

for k = 1,2,. . . , n 

8k = q;bck’; b’k+l’ = b’k’ _ ,jkqk; 

end 

Rx = (61, . ) c&y; 
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In [6] it is shown that Algorithm 5.1 is numerically equivalent to the 
Householder-Golub method 

Pn...P2Pl(; ;) = (; ;;). 

This follows by taking the special form (7) of the matrices Pk into account. 
Using this equivalence, it is proved in [6] that Algorithm 5.1 is a backward 
stable method for solving the linear least squares problem, which is a new re- 
sult. However, from the numerical experiments of Jordan [14] and Wampler 
[27, 281, it is known that MGS often gives slightly more accurate least squares 
solutions than other orthogonalization methods. In [21] Wilkinson writes “Ev- 
idence is accumulating that the modified Gram-Schmidt method gives better 
results than Householder.... The reasons for this phenomenon appear not to 
have been elucidated yet.” Note, however, that MGS is somewhat more ex- 
pensive in terms of operations and storage. 

We now show how Algorithm 5.1 can be derived from Gaussian elimina- 
tion applied to the normal equations, with the computation of inner prod- 
ucts deferred as long as possible. Bienayme [3] gave a constructive deriva- 
tion of an algorithm of Cauchy for solving more general systems of the form 
ZTAx = ZTb, where Z = (~1, . . . , z,), which we illustrate for the case n = 3, 

In the first elimination step the i, jth element is transformed 

T zral T T z,aj - Gz’aj = zi aj - 
> 

2 5 i, j 5 3. 
1 

The reduced system has the form 

where we have defined 

a(2) = a - 
zTaj 

J 3 -al, 
zral 

b’2’ = b _ en, 
z;b ’ 

Since the vectors ~2, zs are not used in the first step, only zr need be chosen 
at this stage. The reduced system is of similar form, and the reduction can be 
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continued by chasing z2 and eliminating x2 by Gaussian elimination to obtain 
the single equation 

zTU(3)X3 = zTb(3) 
3 3 3 . 

Taking the first equation from each step now gives a triangular system defining 
the solution. 

If 2 = A, we are solving the normal equations. However, it suffices that 
CR(Z) = %(A) for the algorithm to produce a least squares solution. In partic- 
ular, taking 2 = Q = (41,92, . . . , q,,), where 

q1 =a1, q2=up ,...) qn =a?), 

this condition is satisfied, since span [qr, . . . , q,] = span [al, . . . , a,]. With this 
choice we have 

Tu(2) 

q3 = af’ - hq2,. . . ) 
qiq2 

which leads exactly to Algorithm 5.1. As remarked in the introduction, this 
algorithm was derived originally by Laplace [15]. 

Using the numerical equivalence of MGS with the special Householder 
factorization we can also derive a backward stable algorithm for computing 
the minimum norm solution of an underdetermined linear system 

min Ilyll2, ATy = c, (13) 

The algorithm is derived by using the Householder factorization to solve the 
augmented problem 

min 
W II ( ) II Y 2’ 

(0 AT) ; =c. 
0 

If we solve RTz = c for Z, the solution y (w = 0) is obtained from 

W 0 Y 
= PlPZ.. . P, 

0 ; . 

Again, on simplification using the special form of the matrices Pk, this gives 
the following backward-stable MGS algorithm for the problem (13) (see [6]): 
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ALGORITHM 5.2. (Minimum norm solution by MGS). Carry out MGS on 
AT E R”‘” to give Q1 = (41, . . , q,) and R. Then the minimum norm solution 
y = y(O) is obtained from: 

R%l, . . . ) .gT = c; y(n) = 0; 

for k = n, . . . ,2,1 

T (k). 
wk=qkY 3 !d 

(k-1) = y’k’ 
- (wk - <k)qk; 

end 

If the columns of Q1 were orthogonal, then w, = . . . = WI = 0. Otherwise 
w compensates for the lack of orthogonality. Hence this new algorithm is the 
correct dual to Algorithm 5.1. It does not seem likely that this algorithm 
could have been discovered without using the interpretation of MGS as a 
Householder method. 

6. ITERATED GRAM-SCHMIDT ORTHOGONALIZATION 

In the orthogonal basis problem one wants to compute Q1 and R such 
that A = QlR and Q1 is accurately orthogonal. Perhaps the most important 
application is in updating a QR factorization when rows/columns are added 
or deleted; see Daniel et al. [8]. To solve the orthogonal basis problem we 
must use Gram-Schmidt with reorthogonalization. It can be shown, in a sense 
made more precise below, that one reorthogonalization always suffices. This 
will at most double the cost of the Gram-Schmidt method. 

We first consider the case n = 2 and describe the Kahan-Parlett algorithm; 
see Parlett [2O, pp. 105-IlO]. This algorithm is based on unpublished notes 
of Kahan on the fact that “twice is enough”. Given vectors q1 (11q1112 = 1) 
and a2, we want to compute es = a2 - rlzql, r12 = q:az. Assume that we can 
perform this computation with an error 1192 - 42112 5 ~l[aJz for some small 
positive E independent of q1 and as. (As remarked in Section 2, this holds 
with E = cu for standard floating point arithmetic.) Let a! be a fixed value 
chosen in the range [1.26,0.83 - E]. Then a vector & is computed as follows: 
Take 

C2 = fUqTa2), 92 = m2 - f12qA 

where fl denotes floating point computation. If ]]42]]2 1 cxlla2112, then put 
is = 92, else reorthogonalize &; 

h2 := fKqfq2), 92 := fl(& - 6r12q1). 
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If 1192112 > crl]9z]lz, then accept 92 := 92, else accept 92 := 0. The computed 
(52 satisfies 

lkj2 - 42112 5 (1 +~)~ll~2llz, 11&42II 5 ~~-‘ll~2112. (14) 

When (Y is large, say 0.5, then the bounds (14) are very good but reorthog- 
onalization will occur more frequently. If a! is small, reorthogonalization will 
be rarer, but the bound on orthogonality less good. Rutishauser [24] used 
a! = 0.1, but there seems to be a good case for recommending the more 
stringent value o = 0.5; see below. 

It should be noted that in the algorithm above we may end up with a zero 
column, if the matrix is sufficiently close to being rank-deficient. This is not 
good enough for some applications, where a full set of orthogonal columns is 
needed also when A is numerically rank-deficient. In this case two orthogonal- 
izations are not enough. The analysis of this situation is surprisingly intricate 
(see [S]), and we will not include a discussion of it here. 

We now consider the more general case when we are given the matrix 
Qi = (91, . . ,qk_i) with ]]9i]]s = . . . = ]Jqk_11]2 = 1, together with the vector 
ak, and want to compute a vector 9k E span (Qi, Uk) -L 91. The solution equals 
9k = Uk - Ql?-k, where ?-k solves the least squares problem 

mr$ bk - Qlrklh. (15) 

For solving this problem when the columns of Qi need not be accurately 
orthogonal we consider iterated Gram-Schmidt methods, where the CGS or 
MGS algorithm is repeatedly applied as follows. 

ALGORITHM 6.1. (Iterated CGS Algorithm). Given Q1 E Rmx(k-l) with 

diag CQTQd = L and a vector Uk $ %(Ql), the following algorithm computes 
?“k and 9k = Uk - Qi?-k 1 %(Ql): 

9fl 7 ak; $ := 0; 

forp=O,l,... , until 91 I %(Qi) 

^ @+n s; := QT@;; qk := 9; - Qp;; 

rk 
@+I) := < + slk’; 

end 

The first step of this algorithm is the usual CGS algorithm, and each step 
is a reorthogonalization. The iterated MGS algorithm is similar, except that 
each projection is subtracted as soon as it computed: 
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fori=l,...,k-1 

s;k := q& @k := qk - $qi; 

?-!p+l) := ?$ + syk; rk 

end 

-(p+U 
qk := qk; 

Iterated Gram-Schmidt algorithms have been considered and analyzed by 
Daniel et al. [B], Ruhe [23], and Hoff mann [12] A rounding error analy- 
sis for the CGS algorithm with reorthogonalization has also been given by 
Abdelmalek [ 11. 

Ruhe [23] shows that the iterated CGS and MGS algorithms correspond 
to the Jacobi and Gauss-Seidel iterative methods for the system of normal 
equations 

QTQlrk = QFak (16) 

for (15). Hence with the splitting QTQl = Z +L +LT, the rate of convergence 
for iterated CGS and MGS is related to the spectral radius of L + LT and 
(I + L)-lLT respectively. Ruhe also points out that in case Q1 is far from 
orthogonal, fewer iterations may be needed if the system (16) is instead solved 
by the conjugate gradient method. 

Hoffmann [12] has given a very detailed error analysis for iterated CGS 
and MGS. He shows that, as in the Kahan-Parlett algorithm, the stopping 

criterion 4: _L %(Q,) in iterated CGS can be chosen as II,?“‘112 > al@llz. 
Hoffmann considers in particular the case when iterated Gram-Schmidt is 
used recursively, adding one column Uk at a time, to compute the factorization 
A = QlR. He concludes that if A has full column rank, then with the choice 
cr = 0.5 both iterated CGS and MGS give a factor Q1 which is orthogonal to 
almost full working precision, using at most one reorthogonalization. Hence 
in this case iterated CGS is not inferior to the iterated MGS. 

If less than full precision orthogonality is wanted, values of a! 4 0.5 may 
be used. For iterated MGS orthogonality of Q1 will then be bounded roughly 
by U-~&L. No such result holds for iterated CGS. Note that if a! is chosen 
small enough, then no reorthogonalization will occur and we have the bound 
(4) for MGS. For more details we refer to [12]. We finally note that the 
solution of the orthogonal basis problem with Householder’s method requires 
2(mn2 - n3/3) flops. Hence if the average number of reorthogonalizations 
needed is u, then the Gram-Schmidt method requires less operations when 
v < 2-2n/(3m). More important is that for updating the QR factorization the 
Householder method requires storage of a full Q E Rmxm, whereas iterated 
CGS or MGS only needs to store Q1 E R"'". 
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7. BLOCK ORTHOGONALIZATION METHODS 

Many current computing architectures require code that is dominated by 
matrix-matrix multiplication in order to attain near-peak performance. This 
explains the current interest in developing block algorithms, such as the block 
Householder QR by Schreiber and Van Loan [26]. We now show that a block 
version of the Gram-Schmidt algorithm can be developed using similar ideas. 

Assume that the matrix A is partitioned into blocks of columns 

A=(A~,A~,...,AN), Aj E RmX)', 

where n = Np, and p << n. The block QR algorithm proceeds in N steps, 
k = 1, . . , N. For k = 1 we first compute by MGS the factorization 

AI = Qlfh> Ql = (91, . . > qph 

and then update the remaining N - I block columns of A through premulti- 
plication by PI : 

A?) = PIAj, j = 2, . . . , N, Pl = (1 - 9p93. ” (I- 9193. 

We want to perform this updating as a sequence of matrix multiplications, and 
therefore express ~‘1 in the form 

PI = Z - Q&IQ;, (17) 

where L1 E RPXP is lower triangular. Here Q1 and L1 can be recursively 
generated as follows: Let Qi := 91, L1 := 1, and for i = 2, . . . , p, compute 

Zi := -Lr(QT9k), 91 := (91 9i). 

This requires about ip”(m + ip) flops. 
We can now express the update in (17) as two matrix-matrix multiplications 

and one rank p update: 

A:) = PlAj = (I - QlLlQT)Aj = Aj - Q1[L1(QrAj)l. (18) 

This requires 2(n - p)(mr + $p”) fl o p s, and constitutes the main work in the 
first step. 

In the next step, k = 2, we compute the QR factorization of Af), 92, and 
L2, and premultiply the rest of the block columns by P2 = Z - QzLzQl. All 
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the remaining steps, k = 3, . . . , N, are similar, and the operation count for 
the complete QR factorization becomes: 

(1) Compute the factorizations Af’ = Q&k: mnp flops. 

(2) Generate the matrices Lk: $p(m + !jp) flops. 

(3) Apply projections: PkAy: (n2 - np)(m + ap) flops. 

In practice, typically p = 16 or p = 32 and p < O.ln. Then, as for the 
corresponding Householder version, the overhead 3mnp/2 + n2p/4 flops in 
steps 1 and 2 is small compared to the dominating term n2m flops in step 3. 

An even simpler version of the block Gram-Schmidt algorithm can be 
developed by noting that if the matrix Qk in the factorization & = Q,r&k 
is orthogonal, then Lk = 1 and Pk = Z - @Qt. This can be achieved by 
using iterated Gram-Schmidt with cx = 0.5, as described in Section 5, to 
compute the QR factorization of the column blocks. This will at most increase 
the operation count in step 1 with mnp flops. On the other hand, we save 
about imnp flops in step 2, and n2p/4 flops in step 3. Also, the storage 
space np/2 for the matrices Lk is saved. As remarked in Section 5, with the 
choice a! = 0.5, CGS is as good as MGS. Since in classical Gram-Schmidt the 
factorization of & can be performed by matrix-vector multiplication, CGS 
should be preferred to MGS. This block method, which has recently been 
analyzed by Jalby and Philippe [13] and Malard [19], has no corresponding 
Householder version. 

The traditional column pivoting strategy cannot be used with the block 
algorithm, since it requires the update of all remaining columns as one column 
is processed. We note that Bischof [4] has suggested a local pivoting strategy 
based on an incremental condition estimator. Columns which are found to be 
nearly linearly dependent on the space spanned by previously chosen columns 
are permuted to the end of the matrix. 

The author is grateful for several comments from an anonymous referee 

which greatly improved the presentation. 
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