CONVEX SUBSETS OF 2^n AND BOUNDED TRUTH-TABLE REDUCIBILITY

Louise HAY
University of Illinois at Chicago Circle, Chicago, IL 60680, U.S.A.

Received 31 March 1975
Revised 28 February 1977

Let 2^n be the set of n-tuples of 0's and 1's, partially ordered componentwise. A characterization is given of the possible decompositions of arbitrary subsets of 2^n as disjoint unions of sets which are convex in this ordering; this result is used to obtain a decomposition theorem for Boolean functions in terms of monotone functions. The second half of the paper contains applications to recursion theory; in particular, canonical forms for certain minimum-norm bounded-truth-table reductions are obtained.

1. Introduction

Let 2^n denote the set of all n-tuples of 0's and 1's, partially ordered componentwise. In this paper we characterize (in terms of their characteristic functions) the subsets of 2^n which are convex in this ordering, and describe the possible decompositions of arbitrary subsets as unions of convex sets. These results are then used to prove a decomposition theorem for Boolean functions in terms of monotone functions. A related theorem was proved by Gilbert [2, Theorem 6] who pointed out that it was not especially helpful for minimizing negations. It may be expected to be useful, however, in a context where monotone Boolean functions are basic in some sense. This is the case in the bounded-truth-table reducibility of recursion theory; in the second half of the paper the decomposition theorem will be applied to obtain a canonical form for “shortest” bounded-truth-table reductions.

2. Notation and terminology

If b is a mapping from $\{1, \ldots, n\}$ to $\{0, 1\}$, $b(i)$ will be denoted as b_i and (b_1, \ldots, b_n) as b; 2^n then denotes the set of all such b's. \bar{b} is defined by $\bar{b_i} = 1 - b_i$, $1 \leq i \leq n$. If $a_i = 0$ and $b_i = 1$ for $0 \leq i \leq n$ we denote a by 0 and b by 1. 2^n is partially ordered in the usual way by defining $a \leq b$ iff $a_i \leq b_i$ for $0 \leq i \leq n$. A Boolean function f mapping 2^n to $\{0, 1\}$ is called increasing if $a \leq b$ implies $f(a) \leq f(b)$, decreasing if $a \leq b$ implies $f(a) \geq f(b)$. Boolean forms in the variables x_1, \ldots, x_n will in general be identified with the Boolean functions they determine.
A subset of 2^n is convex with respect to the partial ordering of 2^n if $a, b \in S$ and $a \preceq c \preceq b$ implies $c \in S$, for all $a, b, c \in 2^n$. In this section we characterize the convex subsets of 2^n (Theorem 3.3) and describe the possible decompositions of arbitrary subsets of 2^n into unions of subsets (Theorem 3.9). We shall require the following two lemmas:

Lemma 3.1. Suppose f is a Boolean function for which there exist increasing functions g_1, \ldots, g_{2m}, $m \geq 1$, such that $f = \sum_{i=1}^{m} g_{2i-1} g_{2i}$; then there are increasing functions f_1, \ldots, f_{2m} satisfying $f_1 \geq f_2 \geq \cdots \geq f_{2m}$ such that $f = \sum_{i=1}^{m} f_{2i-1} f_{2i}$ (and therefore also $f = f_1 + f_2 + \cdots + f_{2m}$).

Proof. By induction on m. The argument is analogous to that used in [1, Proposition 1] to prove a related theorem concerning unions of differences of sets; we include it here for completeness. For $m = 1$, suppose $f = g_1 g_2$ where g_1, g_2 are increasing. Let $f_1 = g_1$ and $f_2 = g_2$; then f_1, f_2 are increasing, $f_1 \geq f_2$ and $f = f_1 f_2$. For $m = 2$, suppose $f = g_1 g_2 + g_3 g_4$ where g_1, g_3, g_2, g_4 are increasing. By the case $m = 1$ we may assume $g_1 \geq g_2$ and $g_3 \geq g_4$. Let

$$f_1 = g_1 + g_3, \quad f_2 = g_2 + g_4 + g_1 g_3, \quad f_3 = f_1 f_2, \quad f_4 = g_2 g_4.$$

Then f_1, f_2, f_3, f_4 are increasing, $f_1 \geq f_2 \geq f_3 \geq f_4$, and we note for later use that $f_2 \geq g_4$; it is now easily verified that $f_1 f_2 = g_1 g_2 g_3 + g_1 g_3 g_4$ and $f_3 f_4 = g_1 g_2 g_3 + g_1 g_2 g_4$ so that $f_3 f_4 = g_1 g_2 g_3 + g_1 g_2 g_4 = f$.

Now assume the lemma holds for m and let $f = \sum_{i=1}^{m+1} g_{2i-1} g_{2i}$ where g_1, \ldots, g_{2m+2} are increasing.

By the induction hypothesis, we may assume that $g_3 \geq g_4 \geq \cdots \geq g_{2m+2}$. As in the case $m = 2$, replace g_1, g_2, g_3, g_4 by increasing functions f_1', f_2', f_3', f_4' satisfying $f_1' \geq f_2' \geq f_3' \geq f_4'$ and

$$f = f_1' f_2' + f_3' f_4' + \sum_{i=3}^{m+1} g_{2i-1} g_{2i}.$$
Let
\[g = f_3 f_4 + \sum_{i=1}^{m+1} g_{2i-1} g_{2i}. \]

Then \(g \leq f_3 + g_5 \) since \(g_5 \geq g_6 \geq \cdots \geq g_{2m+2} \); but \(f_2' \geq f_3 \) and, as noted above, \(f_2' \geq g_4 \geq g_5 \) and hence \(g \leq f_2' \). By the induction hypothesis, there are increasing functions \(g_3', \ldots, g_{2m+2}' \) satisfying \(g_3' \geq g_4' \geq \cdots \geq g_{2m+2}' \) such that \(g = \sum_{i=2}^{m+1} g_{2i-1} g_{2i} \). Let \(f_i = f_i' \) for \(i = 1, 2 \) and \(f_i = g_i f_i' \) for \(3 \leq i \leq 2m+2 \). Then \(f_1, \ldots, f_{2m+2} \) are increasing, \(f_1 \geq f_2 \geq \cdots \geq f_{2m+2} \), and \(g \leq f_2' \) implies \(g = \sum_{i=2}^{m+1} f_{2i-1} f_{2i} \); hence

\[f = f_1 f_2' + g = \sum_{i=1}^{m+1} f_{2i-1} f_{2i} \]

which completes the induction.

Lemma 3.2. For each \(a \in 2^n \), let \(a^+ \) denote the product of all the variables \(x_i \) such that \(a_i = 1 \) and \(a^- \) the sum of all the variables \(x_i \) such that \(a_i = 0 \), \(1 \leq i \leq n \). (By the usual convention, \(a^+ = 1 \) if \(a = 0 \) and \(a^- = 0 \) if \(a = 1 \).) Then for all \(a, b \in 2^n \),

(a) \(a^+ \) is an increasing function \(\neq 0 \);
(b) \(b^- \) is an increasing function \(\neq 1 \);
(c) \(a \leq b \iff a^+(b) = 1 \iff b^-(a) = 0 \).

Proof. It is clear that \(a^+ \neq 0 \) and \(b^- \neq 1 \); that they are increasing functions follows from the well-known characterization of increasing functions as the sums of products of the variables \(x_i \) (given, e.g., in [3, Theorem 5, p. 139]). For (c), note that

\[a \leq b \iff (\forall i)_{1 \leq i \leq n} (a_i = 1 \rightarrow b_i = 1) \]
\[a^- (b) = 1 \]

and

\[a \leq b \iff (\forall i)_{1 \leq i \leq n} (b_i = 0 \rightarrow a_i = 0) \]
\[b^- (a) = 0. \]

The convex subsets of \(2^n \) can now be characterized as follows:

Theorem 3.3. Let \(S \) be a subset of \(2^n \), and let \(a_1, \ldots, a_m \), \(m \geq 0 \), be the minimal elements of \(S \). For each \(j \) let \(b_{1j}, \ldots, b_{mj} \), \(M_j \geq 1 \), be the maximal elements \(b \) of \(S \) satisfying \(a_i \leq b \). The following conditions are then equivalent:

(a) \(S \) is convex;
(b) \(S = \bigcup_{j=1}^m \bigcup_{i=1}^{M_j} \{ a : a_i \leq a \leq b_{ij} \} \);
(c) there are increasing functions \(f, g \) such that \(C_S = f g \).
Moreover, if (c) holds, then

(d1) \(S = \emptyset \iff f \leq g \);
(d2) \(\emptyset \in S \iff f = 1 \) and \(g \neq 1 \);
(d3) \(1 \in S \iff f \neq 0 \) and \(g = 0 \);
(d4) \(S = 2^+ \iff f = 1 \) and \(g = 0 \);
(d5) \(\emptyset \notin S \) and \(1 \notin S \iff f \leq g \) or \(f \neq 0, 1 \) and \(g \neq 0, 1 \).

Proof. (a) \(\rightarrow \) (b): Assume \(S \) is convex. If \(S = \emptyset \), then \(m = 0 \) and \(\bigcup_{j=1}^{m-1} = \emptyset = S \). If \(S \neq \emptyset \) then since every element of \(S \) lies between a minimal and a maximal element,

\[
S \subseteq \bigcup_{j=1}^{m} \bigcup_{i=1}^{M_j} \{ a : a_i \leq a \leq b_i \}.
\]

The converse inclusion follows from the convexity of \(S \).

(b) \(\rightarrow \) (c): Assume

\[
S = \bigcup_{j=1}^{m} \bigcup_{i=1}^{M_j} \{ a : a_i \leq a \leq b_i \}.
\]

If \(m = 0 \), then \(S = \emptyset \) and \(C_s = f \bar{g} \) for \(f = 0 \), \(g = 1 \). If \(m > 0 \), then

\[
a \in S \iff (\exists j)_{1 \leq j \leq m} (\exists i)_{1 \leq i \leq M_j} (a_i \leq a \leq b_i) \iff [(\exists j)_{1 \leq j \leq m} (a_i \leq a)] \text{ and } [(\forall j)_{1 \leq j \leq m} (a_i \leq a) \implies (\exists i)_{1 \leq i \leq M_j} (a_i \leq b_i)].
\]

Let \(f = \sum_{j=1}^{m} a_j^+ \), \(g = \sum_{j=1}^{m} (a_j^+ - b_j^-) \). By Lemma 3.2, \(f \) and \(g \) are increasing functions, and

\[
a \in S \iff [(\exists j)_{1 \leq j \leq m} a_j^+(a) = 1] \text{ and } [(\forall j)_{1 \leq j \leq m} a_j^+(a) = 0 \implies (\exists i)_{1 \leq i \leq M_j} b_i^-(a) = 0] \iff f(a) = 1 \text{ and } g(a) = 0.
\]

Hence \(C_s = f \bar{g} \).

(c) \(\rightarrow \) (a): Assume \(C_s = f \bar{g} \) where \(f, g \) are increasing functions. Then

\[
a \in S \iff f \bar{g}(a) = 1 \iff f(a) = 1 \text{ and } g(a) = 0.
\]

Suppose \(a \leq c \leq b \) where \(a, b \in S \); then \(f(c) = 1 \) and \(g(b) = 0 \). Moreover, since \(f, g \) are increasing functions, \(f(a) = 1 \) implies \(f(c) = 1 \) and \(g(b) = 0 \) implies \(g(c) = 0 \), so that \(c \in S \); hence \(S \) is convex.

To prove (d), assume \(C_s = f \bar{g} \) where \(f, g \) are increasing functions. We note first the following easily verified facts: (i) \(S \) is convex \(\iff \bar{S} \) is convex; (ii) \(f \) is increasing \(\iff f^D \) is increasing; (iii) \(C_s = f \bar{g} \iff C_s = g^D f_D = g^D f^D \).

(d1) It is clear that \(S = \emptyset \iff f \bar{g} = 0 \iff f \leq g \).
(d₂) If \(\emptyset \in S \) then \(f\bar{g}(\emptyset) = 1 \); hence \(f(\emptyset) = 1 \) and \(\bar{g}(\emptyset) = 1 \), which implies \(f = 1 \) and \(g \neq 1 \). Conversely, suppose \(f = 1 \) and \(g \neq 1 \). Then \(C_S = \bar{g} \neq 0 \); hence for some \(a \in 2^n \), \(g(a) = 0 \), which implies \(g(\emptyset) = 0 \) and \(\emptyset \in S \).

(d₃) As noted above, \(\tilde{S} \) is convex and \(C_{\bar{S}} = \bar{g} \bar{D} \tilde{f} \bar{D} \); hence by (d₂), \(1 \in S \iff \emptyset \in \tilde{S} \iff \bar{g} \bar{D} = 1 \) and \(f \bar{D} \neq 1 \iff g = 0 \) and \(f \neq 0 \).

(d₄) If \(S = 2^n \) then \(\emptyset \in S \) and \(1 \in S \); hence by (d₂) and (d₃), \(f = 1 \) and \(g = 0 \). The converse is obvious.

\((d₅) \) Suppose \(\emptyset \notin S \) and \(1 \notin S \). If \(S = \emptyset \) then by (d₁), \(f \leq g \). If \(S \neq \emptyset \) then \(f \neq 0 \), \(g \neq 1 \) and hence by (d₂), \(\emptyset \notin S \) implies \(f \neq 1 \) and by (d₃), \(1 \notin S \) implies \(g \neq 0 \). Conversely, if \(f \leq g \) then by (d₁). \(S = \emptyset \); if \(f \neq 0 \) or \(1 \) and \(g \neq 0 \) or \(1 \) then by (d₂) and (d₃), \(\emptyset \notin S \) and \(1 \notin S \). This completes the proof of Theorem 3.3.

Corollary 3.4. \(S \) is a convex subset of \(2^n \) containing \(1 \) if and only if \(C_S \) is a non-zero increasing function.

Proof. Assume \(S \) is convex and \(1 \in S \). Then by Theorem 3.3 (c) and (d₃), \(C_S = f\bar{g} \) where \(f \) is increasing, \(f \neq 0 \) and \(g = 0 \); hence \(C_S = f \neq 0 \). Conversely, if \(C_S = f \neq 0 \) is increasing then \(C_{\bar{S}} = f \cdot \bar{g} \) which by Theorem 3.3 implies \(S \) is convex and \(1 \in S \).

Corollary 3.5. \(S \) is a convex subset of \(2^n \) containing \(0 \) if and only if \(C_S \) is a non-zero decreasing function.

Proof. By Corollary 3.4, since \(\emptyset \in S \iff 1 \in \tilde{S} \iff C_{\bar{S}} = g \) is increasing and \(\neq 0 \iff C_S = \bar{g} \bar{D} \) where \(g \bar{D} \) is decreasing and \(\neq 0 \).

Corollary 3.6. Let \(S \) be a subset of \(2^n \) such that \(S \neq \emptyset \) and \(\tilde{S} \neq \emptyset \). Then \(S \) is a convex set containing \(0 \) if and only if \(\tilde{S} \) is a convex set containing \(1 \).

Proof. By Corollary 3.4 and 3.5, \(S \) is convex, \(\emptyset \in S \) and \(\tilde{S} \neq \emptyset \iff C_S = \bar{g} \) where \(g \) is increasing and \(\neq 0 \), \(1 \iff C_{\bar{S}} = \bar{g} \) is increasing and \(\neq 0 \), \(1 \iff \tilde{S} \) is convex, \(1 \in S \) and \(S \neq \emptyset \).

Corollary 3.7. \(S \) is a non-empty convex subset of \(2^n \) not containing \(0 \) or \(1 \) if and only if \(\tilde{S} \) is not convex but there exist disjoint convex sets \(S_0, S_1 \) such that \(\emptyset \in S_0 \), \(1 \in S_1 \) and \(\tilde{S} = S_0 \cup S_1 \).

Proof. Assume \(S \) is convex, \(S \neq \emptyset \), \(0 \notin S \) and \(1 \notin S \). By Theorem 3.3, \(C_S = f\bar{g} \) where \(f, g \) are increasing, \(f \neq 0 \) or \(1 \) and \(g \neq 0 \) or \(1 \). Then \(C_{\tilde{S}} = \bar{f} + \bar{g} = \bar{f} + fg \); hence \(\tilde{S} = S_0 \cup S_1 \) if \(S_0 = \{ a : \bar{f}(a) = 1 \} \) and \(S_1 = \{ a : fg(a) = 1 \} \), and \(S_0, S_1 \) are clearly disjoint. By Corollary 3.5, \(C_{\bar{S}} = \bar{f} \) implies \(S_0 \) is convex and \(\emptyset \in S_0 \); and by Corollary 3.4, \(C_{\bar{S}} = fg \) implies \(S_1 \) is convex and \(1 \in S_1 \). Finally, \(\emptyset \in \tilde{S} \) and \(1 \in \tilde{S} \) implies \(\tilde{S} \) is not convex since \(S \neq \emptyset \). Conversely, assume there exist disjoint convex sets \(S_0, S_1 \) such that \(\emptyset \in S_0 \), \(1 \in S_1 \) and \(\tilde{S} = S_0 \cup S_1 \), but \(\tilde{S} \) is not convex. Then in particular \(\tilde{S} \neq 2^n \).
and hence $S \neq \emptyset$, $r \notin S$, $1 \notin S$. Also, by Corollaries 3.4 and 3.5 there are increasing functions f, g such that $C_a = \tilde{f} \neq 0$ and $C_{g} = g \neq 0$; hence $S = S_0 \cup S_1$ implies $C_a = \tilde{f} + g$. Then $C_a = f \tilde{g}$ which by Theorem 3.3 implies S is convex.

Corollary 3.8. Let S be any subset of 2^n. If S is the union of m convex sets, then

(a) \tilde{S} is a disjoint union of $m+1$ convex sets;

(b) if $0 \in S$ or $1 \in S$ then \tilde{S} is a disjoint union of m convex sets;

(c) if $0 \in S$ and $1 \in S$ then \tilde{S} is a disjoint union of $m-1$ convex sets.

Proof. Suppose $S = \bigcup_{i=1}^{m} S_i$ where each S_i is convex. Then by Theorem 3.3, for each $i, 1 \leq i \leq m$, there are increasing functions f_i, g_i such that $C_n = f_i \tilde{g}_i$. Hence $C_S = \sum_{i=1}^{m} f_i \tilde{g}_i$; since by Lemma 3.1 we may assume $f_1 \geq g_1 \geq \cdots \geq f_m \geq g_m$ it follows that

$$C_S = \tilde{f}_1 + g_m + \sum_{i=1}^{m-1} g_i \tilde{f}_{i+1}.$$

Let

$$T_i = \{a : f_i(a) = 1\}, \quad T_{m+1} = \{a : g_m(a) = 1\},$$

$$T_{i+1} = \{a : g_i(a) = 1\} \text{ for } 1 < i < m.$$

Then each T_i is convex by Theorem 3.3, and $f_i \geq g_i \geq \cdots \geq f_m \geq g_m$ implies $T_i \cap T_j = \emptyset$ if $i \neq j$; clearly $S = \bigcup_{i=1}^{m+1} T_i$, which proves (a). If $0 \in S$, we may assume without loss of generality that $0 \in S_1$; then by Theorem 3.3(d), $C_n = f_1 \tilde{g}_1$ implies $f_1 = 1$, so that $T_1 = \emptyset$ and hence $S = \bigcup_{i=2}^{m+1} T_i$; the second half of (b) follows by considering \tilde{S}, since $S = S$ is a disjoint union of m convex sets; \tilde{S} is a disjoint union of m convex sets. For (c), suppose $0 \in S$ and $1 \in S$; we may again assume that $0 \in S_1$ and hence $f_1 = 1$ and $T_1 = \emptyset$. If $1 \notin S_1$ also then since S_1 is convex, $S_1 = S = 2^n$ and $\tilde{S} = \emptyset$. If $1 \in S_1$ we may assume $1 \in S_m$ where $m > 1$ so that $g_m = 0$, $T_{m+1} = \emptyset$ and $S = \bigcup_{i=1}^{m} T_i$; in either case, S is a disjoint union of $m-1$ convex sets, which proves (c).

We can now completely characterize arbitrary subsets of 2^n as disjoint unions of convex sets, as follows.

Theorem 3.9. Let S be any subset of 2^n. Then

(a) if neither of $0, 1$ are in S then for some $m, 0 \leq m \leq \lfloor \frac{1}{2} n \rfloor$, S is a disjoint union of m convex sets and \tilde{S} is a disjoint union of $m + 1$ convex sets;

(b) if exactly one of $0, 1$ is in S then for some $m, 0 \leq m \leq \lfloor \frac{1}{2} (n - 1) \rfloor$, S and \tilde{S} are each a disjoint union of $m + 1$ convex sets.

(c) if both of $0, 1$ are in S then for some $m, 0 \leq m \leq \lfloor \frac{1}{2} n \rfloor$, S is a disjoint union of $m + 1$ convex sets and \tilde{S} is a disjoint union of m convex sets.

Proof. For each $a \in 2^n$ let the weight $w(a)$ be defined by

$$w(a) = |\{i : c_i = 1\}|.$$
If \(\emptyset \notin S \), define
\[
S_i = \{a \in S : w(a) = 2i + 1 \text{ or } 2i + 2\}. \quad 0 \leq i \leq \lfloor \frac{1}{2} n \rfloor.
\]
Clearly \(S_i \cap S_j = \emptyset \) if \(i \neq j \); moreover, each \(S_i \) is convex since for \(a, b \in S_n \), \(a < b \) only if \(b \) is an immediate successor of \(a \) in the partial ordering of \(2^n \) and hence \(a < c < b \) vacuously implies \(c \in S_i \). If \(1 \notin S \), then \(S = \bigcup_{i=0}^{\lfloor \frac{1}{2} n \rfloor} S_i \); hence \(S \) is a disjoint union of \(m \) convex sets for some \(m, 0 \leq m \leq \lfloor \frac{1}{2} n \rfloor \) and, by Corollary 3.8(a), \(\bar{S} \) is a disjoint union of \(m + 1 \) sets, which proves (a). Part (c) follows by interchanging \(S \) and \(\bar{S} \). If \(1 \in S \) then if \(n \) is even, \(S = \bigcup_{i=0}^{\lfloor \frac{1}{2} n \rfloor-1} S_i \) and if \(n \) is odd, \(S = \bigcup_{i=0}^{\lfloor \frac{1}{2} n \rfloor} S_i \); in either case \(S \) is a disjoint union of \(m + 1 \) convex sets for some \(m, 0 \leq m \leq \lfloor \frac{1}{2} (n - 1) \rfloor \) and by Corollary 3.8(b) so is \(\bar{S} \). This proves half of (b); the second half follows by interchanging \(S \) and \(\bar{S} \).

The following Proposition shows that the bounds in Theorem 3.9 are best possible.

Proposition 3.10. Let \(B_n = \{a \in 2^n : w(a) \text{ is odd}\} \). Then

(a) if \(n \) is even, \(B_n \) is a disjoint union of \(m \) convex sets or \(\bar{B}_n \) is a disjoint union of \(m + 1 \) convex sets if and only if \(m \geq \lfloor \frac{1}{2} n \rfloor \).

(b) if \(n \) is odd, \(B_n \) or \(\bar{B}_n \) is a disjoint union of \(m + 1 \) convex sets if and only if \(m \geq \lfloor \frac{1}{2} (n - 1) \rfloor \).

Proof. The "if" part follows from Theorem 3.9 (adding empty sets if necessary). Now assume \(B_n \) is a union of \(m \) convex sets \(S_1, \ldots, S_m \). Since each \(S_i \subseteq B_n \), all elements of \(S_i \) have odd weight; hence since \(S_i \) is convex, all elements of \(S_i \) must have the same weight.

It follows that there are at least as many \(S_i \)'s as there are weights of elements of \(B_n \); hence \(m \geq \lfloor \frac{1}{2} n \rfloor \). Similarly \(\bar{B}_n = \bigcup_{i=0}^{m} S_i \) where \(S_i \) is convex. \(0 \leq i \leq m \), implies \(m + 1 \geq 1 + \lfloor \frac{1}{2} n \rfloor \). Part (b) is proved similarly.

4. Decomposition of Boolean functions

We now apply the results of the previous section to show that every Boolean function of \(n \) variables can be decomposed as a monotone function of at most \(n \) monotone functions. Subsequent to proving this theorem, we found that an essentially equivalent result had been proved by Gilbert by a different method in [2, Theorem 6].

Theorem 4.1. Let \(f(x_1, \ldots, x_n) \) be any non-constant Boolean function. Then

(a) \(f(1) = 1 \) and \(f(0) = 0 \) if and only if there exist some \(m, 0 \leq m \leq \lfloor \frac{1}{2} (n - 1) \rfloor \), and non-constant increasing functions \(g_1, \ldots, g_{2m+1} \) such that

\[
f = g_{2m+1} \sum_{i=1}^{m} g_{2i-1} \bar{g}_{2i}.
\]
(b) $f(1) = 0$ and $f(0) = 0$ if and only if $n \geq 2$ and there exist some m, $1 \leq m \leq \frac{1}{2} n$ and non-constant increasing functions g_1, \ldots, g_m such that

$$f = \sum_{i=1}^{m} g_{2i-1} \beta_{2i};$$

(c) $f(1) = 0$ and $f(0) = 1$ if and only if there exist some m, $0 \leq m \leq \frac{1}{2} (n-1)$ and non-constant increasing functions g_1, \ldots, g_{m+1} such that

$$f = \beta_{2m+1} + \sum_{i=1}^{m} g_{2i-1} \beta_{2i};$$

(d) $f(1) = 1$ and $f(0) = 1$ if and only if $n \geq 2$ and there exist some m, $1 \leq m \leq \frac{1}{2} n$ and non-constant increasing functions g_1, \ldots, g_m such that

$$f = g_{2m+1} + \sum_{i=1}^{m-1} g_{2i-1} \beta_{2i};$$

Proof. The “if” part follows trivially from the fact that if g is a non-constant increasing function, $g(0) = 0$ and $g(1) = 1$. For the other direction, let $S = \{a : f(a) = 1\}$. If $f(1) = 1$ and $f(0) = 0$ then by Theorem 3.9(b), there exist m, $0 \leq m \leq \frac{1}{2} (n-1)$ and disjoint convex sets S_1, \ldots, S_{m+1} such that $S = \bigcup_{i=1}^{m+1} S_i$. Let m be such that each $S_i \neq \emptyset$; we may assume $1 \in S_{m+1}$. Then by Theorem 3.9(c) and (d) there are increasing functions g_1, \ldots, g_{2m+1} such that $C_{S_i} = g_{2i-1} \beta_{2i}$ for $1 \leq i \leq m$ and $C_{S_{m+1}} = g_{2m+1}$; and since $1 \notin S_i$ for $i \leq m$ and $0 \notin S_i \neq \emptyset$ for $i \leq m+1$, the g_i's are non-constant. Hence

$$f = C_S = \sum_{i=1}^{m+1} C_{S_i} = g_{2m+1} + \sum_{i=1}^{m} g_{2i-1} \beta_{2i};$$

which proves (a). If $f(0) = 0$ and $f(1) = 0$ then f non-constant implies $n \geq 2$ and $S \neq \emptyset$; hence by Theorem 3.9(a) there are disjoint non-empty convex sets S_1, \ldots, S_m, $1 \leq m \leq \frac{1}{2} n$, such that $S = \bigcup_{i=1}^{m} S_i$. Since none of the S_i's contain 0 or 1, it follows from Theorem 3.3 that there are non-constant increasing functions g_1, \ldots, g_{2m} such that

$$f = C_S = \sum_{i=1}^{m} g_{2i-1} \beta_{2i};$$

which proves (b). Parts (c) and (d) now follow by applying (a) and (b) to f and then invoking Lemma 3.1.

5. Bounded truth-table reducibility

Theorem 4.1 may be expected to have useful applications in any context where monotone increasing Boolean functions are "basic" in some sense; one such context is bounded truth-table reducibility in recursion theory. In this section we
obtain a canonical form for shorted bounded truth-table reductions in certain cases (Theorem 5.4).

The recursion-theoretic terminology and notation will be that of [8]; in particular \(\mathbb{N} \) denotes the natural numbers. If \(A, B \subseteq \mathbb{N} \), \(\overline{A} \) denotes the complement of \(A \), and \(A \times B \) the recursive Cartesian product with recursive inverse functions; by iteration we can recursively decompose \(x \in \mathbb{N} \) as \(x = (x_1, \ldots, x_n) \) for each \(n > 0 \). \(K \) denotes the complete recursively enumerable (r.e.) set; (i.e., \(K = \{ x : x \) is accepted by Turing machine \(x \} \). \(B \leq_m A \) denotes many-one reducibility and \(B \leq_T A \) Turing reducibility. \(B \leq_{\text{btt}} A \) denotes bounded truth-table reducibility; i.e., the existence of a recursive function \(\varphi \) and some \(m > 0 \) such that for each \(x \),

(a) \(\varphi(x) = ((y_1, \ldots, y_k), f_x) \), where \(0 < k \leq m \), \(y_1, \ldots, y_k \in \mathbb{N} \) and \(f_x \) is a \(k \)-ary Boolean function; and

(b) \(x \in B \iff f_x(C_A(y_1), \ldots, C_A(y_k)) = 1 \). \(m \) is called the norm of the reduction.

As pointed out in [8], bounded truth-table reducibility is not affected (except in trivial cases) by requiring that the number \(k \) and the Boolean function \(f_x \) be the same for all \(x \) (although the norm of the possible reductions may be affected). We call these fixed reductions, and will assume below that all btt-reductions are fixed. If \(\varphi \) is such a reduction, we will use \(f_\varphi \) (or simply \(f \), if the context is unambiguous) to denote the corresponding Boolean function. We will further restrict the btt-reduction \(\varphi \) by requiring that \(f_\varphi \) be non-constant. It is evident that the only reductions lost by this restriction are of the form \(B \leq_{\text{btt}} A \) where \(B \) is recursive; and in that case we shall say by convention that \(B \leq_{\text{btt}} A \) with norm 0. In addition we shall always assume that \(A \) is non-trivial, i.e., \(A \neq \emptyset \) or \(\mathbb{N} \).

In order to make use of the decomposition theorem of the previous section, it is necessary to place restrictions on the set \(A \) which will allow the "collapsing" of conjunctions and disjunctions in truth-table conditions. In [6], a set \(A \) is called a \(p \)-cylinder if \(A \times A \leq_m A \), and \(\overline{A} \times \overline{A} \leq_m \overline{A} \). The name is justified by the following lemma, whose easy proof is left to the reader:

Lemma 3.1. If \(A \times A \leq_m A \), \(\overline{A} \times \overline{A} \leq_m \overline{A} \), and \(g(x_1, \ldots, x_n) \) is any non-constant increasing Boolean function, then there is an \(n \)-ary recursive function \(\psi \) such that

\[
g(C_A(y_1), \ldots, C_A(y_n)) = 1 \iff \psi(y_1, \ldots, y_n) \in A.
\]

In the terminology of [6] it follows that if \(A \times A \leq_m A \) and \(\overline{A} \times \overline{A} \leq_m \overline{A} \) then whenever \(B \leq_{\text{btt}} A \) with a "positive" truth table, \(B \leq_m A \); hence the name \(p \)-cylinder. As an example, note that \(K \times K \) is r.e. and \(\overline{K} \times \overline{K} \) is co-r.e., so that \(K \times K \leq_m K \) and \(\overline{K} \times \overline{K} \leq_m \overline{K} \), hence \(K \) is a \(p \)-cylinder.

We now introduce sets which will be shown to be "complete" with respect to btt-reductions. If \(x \in \mathbb{N} \) and \(x = (x_1, \ldots, x_n) \), \(n > 0 \), let

\[\sigma^A_n(x) = \#\{ i : x_i \in A \},\]

\[A_n = \{ x : \sigma^A_n(x) \text{ is odd} \},\]

\[A_0 = \text{any infinite, co-infinite recursive set}.\]

To simplify notation, \(\overline{A}_n \) will be used to denote \(\mathbb{N} - A_n \) (and not \(\mathbb{N} - A \)).
Lemma 5.2. For all n,
(a) $A_n \subseteq A_{n+1}$ and $\overline{A}_n \subseteq_m A_{n+1}$;
(b) if $m \vdash A_n$ then $B \vdash A_m$ with norm n.

Proof. Let a, b be fixed elements of A and \bar{A} respectively. Define α, β as follows: if $x = (x_1, \ldots, x_m)$ then
$$\alpha(x) = (a_1, \ldots, a_m, a), \quad \beta(x) = (a_1, \ldots, a_m, b).$$
Then α, β are recursive and it is evident that
$$x \in A_n \iff \beta(x) \in A_{n+1}, \quad x \in \overline{A}_n \iff \alpha(x) \in A_{n+1}$$
which proves (a). For (b), suppose that there is a recursive function γ such that
$$y \in B \iff \gamma(y) \in A_n \iff \sigma_n^{\alpha}(\gamma(y)) \text{ is odd.}$$
Then $B \subseteq \overline{A}$ by the reduction
$$\varphi = ((\gamma(y))_{i_1}, (\gamma(y))_{i_2}, \ldots, (\gamma(y))_{i_n}, f),$$
where $f(x_1, \ldots, x_n)$ is the Boolean function which has value 1 exactly when the weight of (x_1, \ldots, x_n) is odd.

Lemma 5.3. Suppose A is a p-cylinder and $B \subseteq A$ by a reduction $\varphi = ((y_1, \ldots, y_n), f)$ of norm $n > 0$. Then
(a) $f(1) = 0$ and $f(0) = 0$ implies $B \subseteq A_n$ for some $k, 1 \leq k \leq [\frac{1}{2}n]$;
(b) $f(1) = 1$ and $f(0) = 0$ implies $B \subseteq A_{k+1}$ for some $k, 0 \leq k \leq [\frac{1}{2}(n-1)]$.

Proof. (a) If $f(1) = 0$ and $f(0) = 0$ then by Theorem 4.1(b) there exist $k, 1 \leq k \leq [\frac{1}{2}n]$ and non-constant increasing functions g_1, \ldots, g_{2k} such that
$$f = \sum_{i=1}^{k} g_{2i-1}g_{2i}.$$
By Lemma 3.1 we may assume $g_1 \geq g_2 \geq \cdots \geq g_{2k}$, and hence that for $a \in 2^n$,
$$|\{i: g_i(a) = 1\}| \text{ is odd } \iff (\exists i)_{1 \leq i \leq k} (g_{2i-1}(a) = 1 \text{ and } g_{2i}(a) = 0).$$
Then
$$x \in B \iff f(C_A(y_1), \ldots, C_A(y_n)) = 1$$
$$\iff \sum_{i=1}^{k} g_{2i-1}(C_A(y_1), \ldots, C_A(y_n))g_{2i}(C_A(y_1), \ldots, C_A(y_n)) = 1$$
$$\iff (\exists i)_{1 \leq i \leq k} (g_{2i-1}(C_A(y_1), \ldots, C_A(y_n)) = 1 \text{ and }\quad g_{2i}(C_A(y_1), \ldots, C_A(y_n)) = 0)$$
$$\iff |\{j: g_j(C_A(y_1), \ldots, C_A(y_n)) = 1\}| \text{ is odd}$$
$$\iff |\{j: \psi_j(y_1, \ldots, y_n) \in A\}| \text{ is odd.}$$
where \(\psi_j \) is related to \(g_j \) as in Lemma 5.1; hence if \(\psi(x) = (\psi_1(y_1, \ldots, y_n), \ldots, \psi_{2k}(y_1, \ldots, y_n)) \), \(x \in B \rightarrow \psi(x) \in A_{2k} \) and \(B \leq_m A_{2k} \). Part (b) is proved similarly, using Theorem 4.1(a).

For convenience of notation, we will say that \(B \) has \(A \)-order \(n \) if \(B \leq_m A_n \) or \(B \leq_m \tilde{A}_n \) but \(B \leq_m A_{n-1} \) and \(B \leq_m \tilde{A}_{n-1} \).

Theorem 5.4. Assume \(A \) is a \(p \)-cylinder. Then \(B \) has \(A \)-order \(n \) if and only if \(B \leq_{btt} A \) with minimum norm \(n \); and in that case, all reductions \(\varphi \) of minimum norm satisfy \(f_\varphi(0) \neq f_\varphi(1) \) if \(n \) is odd and \(f_\varphi(0) = f_\varphi(1) \) if \(n \) is even (and \(n > 0 \)).

Proof. Assume the hypothesis. If \(B \) has \(A \)-order \(n \), then \(B \leq_m A_n \) or \(B \leq_m \tilde{A}_n \) and hence by Lemma 5.2, \(B \leq_{btt} A \), with norm \(n \). If \(B \leq_{btt} A \) with norm \(n' < n \) then by Lemma 5.3 either \(B \) or \(\tilde{B} \leq_m A_{n'} \), where \(n'' < n' < n \); hence by Lemma 5.2(a) \(B \leq_m A_{n-1} \) or \(B \leq_m \tilde{A}_{n-1} \), contrary to hypothesis. Hence \(n \) is the minimum norm. Conversely, suppose \(B \leq_{btt} A \) with minimum norm \(n \). If \(n = 0 \) then \(B \leq_m A_0 \) and hence has order 0. If \(n > 0 \), then by Lemma 5.3 and 5.2(a), \(B \) or \(\tilde{B} \leq_m A_{n'} \) for some \(n' < n \) and hence \(B \leq_m A_n \) or \(\tilde{A}_n \); while by Lemma 5.2(b) if \(B \leq_{btt} A \) or \(B \leq_{btt} \tilde{A}_n \), then \(B \leq_{btt} A \) with norm \(n - 1 \), which contradicts the minimality of \(n \). Hence \(B \) has \(A \)-order \(n \).

Now let \(\varphi \) be a reduction of minimum norm \(n > 0 \), and let \(f \) denote \(f_\varphi \). Suppose \(n \) is odd; if \(f(1) = f(0) \) then either \(f(1) = f(0) = 0 \) or \(f(1) = f(0) = 0 \). It then follows from Lemma 5.3(a) that \(B \) or \(\tilde{B} \leq_m A_{2k} \) for some \(k \leq \lfloor \frac{1}{2} n \rfloor \) and hence \(B \) has \(A \)-order \(< n \), contradicting the minimality of \(n \). Hence \(f(1) \neq f(0) \) if \(n \) is odd and it is shown similarly that \(f(1) = f(0) \) if \(n \) is even, \(n > 0 \).

One may ask whether it is possible to strengthen Theorem 5.4 by specifying the actual values of \(f_\varphi(0) \) and \(f_\varphi(1) \) for reductions \(\varphi \) of minimum norm. That this is not possible is seen by the following example.

Lemma 5.5. Let \(K \oplus \bar{K} \) denote the recursive join of \(K \) and \(\bar{K} \); i.e., \(K \oplus \bar{K} = \{ x : (x = 2y \text{ and } y \in K) \text{ or } (x = 2y + 1 \text{ and } y \in \bar{K}) \} \). Then

(a) \(K \oplus \bar{K} \leq_m K \oplus \bar{K} \);

(b) \(K \oplus \bar{K} \leq_{btt} K \) with minimum fixed norm 2.

Proof. For (a), let \(\alpha \) be the recursive function defined by

\[
\alpha(x) = \begin{cases}
 x + 1 & \text{if } x \text{ is even,} \\
 2 \lceil \frac{1}{2} x \rceil & \text{if } x \text{ is odd.}
\end{cases}
\]

It is then easily verified that \(x \in K \oplus \bar{K} \iff \alpha(x) \notin K \oplus \bar{K} \). For (b), note first that \(K \oplus \bar{K} = C_1 - C_2 \) where

\[
C_1 = \{ x : x = 2y + 1 \text{ or } \lceil \frac{1}{2} x \rceil \in K \}, \\
C_2 = \{ x : x = 2y + 1 \text{ and } \lceil \frac{1}{2} x \rceil \in K \},
\]
are both r.e. Hence, if $C_i \leq_m K$ via recursive functions β_i, $i = 1, 2$, then $K \oplus K \leq_m K \times K$ via the recursive function $\gamma(x) = (\beta_1(x), \beta_2(x))$. Now $K \times K \leq_{br} K$ via the reduction $\varphi_0(x) = ((x_1, x_2), f_0)$ where f_0 is the Boolean function satisfying $f_0(0) = 1$ if and only if $a = (1, 0)$. It follows that $K \oplus K \leq_{br} K$ via $\varphi_0 = (\gamma(x))_1, (\gamma(x))_2, f_0)$, where $f_0(0) = f_0(1) = 0$. Hence $K \oplus K \leq_{br} K$ with norm 2. Suppose the minimum (fixed) norm < 2. It cannot be 0 since $K, K \leq_m K \oplus K$ and hence $K \oplus K$ is not recursive. If it is 1, then by Theorem 5.4, $K \oplus K$ has K-order 1 and hence $K \oplus K \leq_m K$ or $K \oplus K \leq_m K$, which implies $K \leq_m K$ or $K \leq_m K$ which is false. Hence 2 is the minimum fixed norm. (The word “fixed” is emphasized here because in this case the norm can be reduced to 1 by removing the restriction that in the reduction $\varphi(x) = (y, j_x)$, the Boolean function f_x be the same for all x; clearly $K \subseteq \mathbb{E}$ via $\varphi(x) = ([1], f_x)$ where f_x is the identity if x is even and f_x is the identity if x is odd.)

It follows from Lemma 5.5(b) and Theorem 5.4 that if φ is a btt-reduction of $K \oplus K$ to K of norm 2 then $f_\varphi(0) = f_\varphi(1)$. We now show that there are such btt-reductions φ for which $f_\varphi(0) = f_\varphi(1) = 0$ and others for which $f_\varphi(0) = f_\varphi(1) = 1$. The btt-reduction $\varphi_0 = (\gamma(x))_1, (\gamma(x))_2, f_0)$ given in the proof of Lemma 5.5(b) satisfies $f_0(0) = f_0(1) = 0$. Now $\varphi_0 = (\gamma(x))_1, (\gamma(x))_2, f_0)$ is a btt-reduction of $K \oplus K$ to K of norm 2. Combining this with Lemma 5.5(a) then gives the desired reduction. More precisely, if α is as in the proof of Lemma 5.5(a), then $\varphi(x) = (\gamma(x))_1, (\gamma(x))_2, f_0)$ is a btt-reduction of $K \oplus K$ to K of norm 2 for which $f_\alpha(0) = f_\alpha(1) = 1$. This construction evidently depends on the symmetry of $K \oplus K$ and its complement. If the sets B, \overline{B} are very asymmetric one might expect to strengthen the information yielded by Theorem 5.4 about btt-reductions of minimum norm. It will be shown in the next section that this is the case when $B \leq_{br} K$ and B is an index set.

6. Btt-reductions of index sets to K

Let $\{W_x\}_{x \in \mathbb{N}}$ be a standard indexing of all r.e. sets; if C is a class of r.e. sets, the index set θC of C is $\{x : W_x \in C\}$. We may set $A = K$ in the results of the previous section since K is evidently a p-yylinder. In the case where $\theta C \leq_{br} K$ much more complete information can then be obtained about btt-reductions of minimum norm. (Theorem 6.2 and 6.4). We shall require the following results from [4]:

Lemma 6.1. Let θC be any class of r.e. sets, $n \geq 0$,

(a) If $\emptyset \in \theta C$ then $\theta C \leq_m K_{n+1}$ implies $\theta C \leq_m K_n$;
(b) If $N \in \theta C$ then $\theta C \leq_m K_{2n+1}$ implies $\theta C \leq_m K_{2n}$ and $\theta C \leq_m K_{2n+2}$ implies $\theta C \leq_m K_{2n+1}$;
(c) If $\theta C \leq_m K_{n+1}$ and $\theta C \leq_m K_{n+1}$ then $\theta C \leq_m K_n$ or $\theta C \leq_m K_{n}$.

Proof. (a) and (b) are proved by combining Theorem 2, Theorem 3, Lemma 13 and Lemma 15 of [4] (noting that the sets K_{2n-1}, K_{2n-2} as defined in the previous
section are denoted in \([4]\) by \(Z_{2n}, Z_{2n+1}\) respectively.) Part (c') is Theorem 3(g) of \([4]\).

The following information can now be added to that yielded by Theorem 5.4:

Theorem 6.2. Assume \(\theta \in \leq_{\text{bt}} K\) with minimum norm \(n > 0\), and let \(\{f_i\}_{i=0}^n\) be the set of Boolean functions \(f_i\) determined by all possible \(\varphi\) of norm \(n\) which reduce \(\theta \in\) to \(K\). The following conditions are then equivalent:

(a) \(f_i(0) = 0\) for every \(i\);

(b) \(f_i(0) = 0\) for some \(i\);

(c) \(\theta \in \leq_m K;\)

(d) \(\theta \in \leq_m \overline{K};\)

(e) \(\emptyset \notin \mathcal{C}\).

Proof. If \(\theta \in \leq_{\text{bt}} K\) with minimum norm \(n > 0\) then by Theorem 5.4, \(\theta \in\) has \(K\)-order \(n\) and hence \(\theta \in \leq_m K_n\) or \(\overline{K};\), \(\theta \in \leq_m K_{n-1}\), \(\theta \in \leq_m \overline{K}_{n-1}\). The implication (a) \(\rightarrow\) (b) is evidently trivial.

(b) \(\rightarrow\) (c): If \(f_i(0) = 0\) for some \(i\), then by Lemma 5.3 either \(\theta \in \leq_m K_{2k}\) for some \(k, 1 \leq k \leq [\frac{1}{2} n]\) or \(\theta \in \leq_m K_{2k+1}\) for some \(k, 0 \leq k \leq [\frac{1}{2} (n - 1)]\); in either case \(\theta \in \leq_m K_{n'}\) for some \(n' \leq n\) and hence by Lemma 5.2(a) \(\theta \in \leq_m K_n\).

(c) \(\rightarrow\) (d): Assume \(\theta \in \leq_m K_n\); since \(\theta \in \leq_m K_{n-1}\) and \(\theta \in \not\leq_m \overline{K}_{n-1}\) it follows from Lemma 6.1(c) that \(\theta \in \leq_m \overline{K}_{n}\).

(d) \(\rightarrow\) (e): Assume \(\theta \in \leq_m \overline{K}_{n}\). Then \(\theta \in \leq_m K_{n}\), and since \(\theta \in \not\leq_m K_{n-1}\) it follows from Lemma 6.1(a) that \(\emptyset \notin \mathcal{C}\).

(e) \(\rightarrow\) (a): Assume \(\emptyset \notin \mathcal{C}\). If \(f_i(0) = 1\) for some \(i\), then \(f_i(0) = 0\). But \(\overline{f_i}\) corresponds to a bt-reduction \(\varphi\) of \(\overline{\theta \in}\) to \(K\); hence since (b) \(\rightarrow\) (e) it follows that \(\emptyset \notin \mathcal{C}\) and thus \(\emptyset \in \mathcal{C}\), contrary to assumption. Hence \(f_i(0) = 0\) for all \(i\).

Thus among classes whose index sets are bt-reducible to \(K\) (but non-recursive) those which do not contain \(\emptyset\) are exactly those for which the minimum-norm reductions are “0-preserving”. An easy consequence is the following:

Corollary 6.3. If \(\theta \in \leq_{\text{bt}} K\) and \(\mathcal{D} = _m \theta \in\) then \(\emptyset \notin \mathcal{C} \leftrightarrow \emptyset \in \mathcal{D}\).

We note that Corollary 6.3 actually holds under the weaker hypothesis \(\theta \in \leq_{\text{bt}} K\), this was shown in \([5, \text{Theorem 4.5}]\) where a different characterization was given for index sets \(\theta \in \leq_{\text{bt}} K\) for which \(\emptyset \notin \mathcal{C}\).

By using Lemma 6.1(b) the following sharper result can be obtained:

Theorem 6.4. Assume \(\theta \in \leq_{\text{bt}} K\) with minimum norm \(n > 0\) and let \(\{f_i\}_{i=0}^n\) be as in Theorem 6.2. Then \(\mathcal{C}\) satisfies exactly one of the following sets of conditions:

I

(a) \(\emptyset \notin \mathcal{C}\) and \(N \in \mathcal{C}\)

(b) \(f_i(0) = 0\) and \(f_i(1) = 1\) for some \(i\)

II

(a) \(\emptyset \in \mathcal{C}\) and \(N \notin \mathcal{C}\)

(b) \(f_i(0) = 1\) and \(f_i(1) = 0\) for some \(i\).
Ve note that the hypothesis of Corollary 6.5 cannot be weakened to \(\mathcal{E} \subseteq \tau K \) (as was the case for Corollary 6.3), as shown by the following example: Let \(\mathcal{E} = \{ W : W, \mathcal{E}, P \mathcal{E} \text{ and the least element of } WX \text{ is even} \} \)

\[\mathcal{E} = \{ W : W, \mathcal{E}, Z \mathcal{E} \text{ and the least element of } WX \text{ is odd} \} \]

Then \(\mathcal{E} \subseteq \mathcal{F} \) and \(\mathcal{E} \not\subseteq \mathcal{F} \). That \(\mathcal{E} \subseteq \tau K \) and \(\mathcal{E} \not\subseteq \tau K \) is easily seen from the fact that membership in \(\mathcal{E} \), \(\mathcal{F} \) can be tested by asking finitely many questions of the form: Is \(W, = 0 \)? Does \(W, \mathcal{E} \)? But \(\mathcal{E} \not\subseteq \mathcal{F} \) since if we define

\[W_{\psi(x)} = \{ n + 1 : n \in W, \} \]

then \(\psi \) \(m \)-reduces \(\mathcal{E} \) to \(\mathcal{F} \) and \(\mathcal{F} \not\subseteq \mathcal{E} \).

As an application of the “canonical” minimum norm reductions provided by Theorem 6.2, we sketch a proof of the following theorem, first proved by Morris [7].
Theorem 6.6 (Morris). If A is r.e. then $\{x : W_x \cap \tilde{A} \neq \emptyset\} \leq_{bt} K$ if and only if A is recursive.

Proof. The “if” part is obvious. For the “only if” part, let $H_{\tilde{A}}$ denote $\{x : W_x \cap \tilde{A} \neq \emptyset\}$ and assume $H_{\tilde{A}} \leq_{bt} K$ with minimum (fixed) norm n. If $n = 0$ then $H_{\tilde{A}}$ is recursive which evidently implies A is recursive. Assume A is non-recursive; then $n > 0$ and by Theorem 6.2 $H_{\tilde{A}} \preceq_{m} K_{n}$, i.e.. there is a recursive function

$$\varphi(x) = (\varphi_1(x), \ldots, \varphi_n(x))$$

such that

$$x \in H_{\tilde{A}} \iff [\{i : \varphi_i(x) \in K\}] \text{ is odd.}$$

Let $\psi(x, y)$ be a recursive function such that

$$W_{\psi(x, y)} = W_x \cup \{y\}$$

for all x, y and note that if $y \in A$ then

$$x \in H_{\tilde{A}} \iff \psi(x, y) \in H_{\tilde{A}}.$$

Hence if $y \in A$, the “reduction” φ may be applied equivalently to x or to $\psi(x, y)$. Now if $x \in H_{\tilde{A}}$, then $[\{i : \varphi_i(x) \in K\}]$ is odd, hence ≥ 1 so that $\{i : \varphi_i(x) \in K\} \neq \emptyset$. If $x \notin H_{\tilde{A}}$ we claim that $\{i : \varphi_i(\psi(x, y)) \in K\} \neq \emptyset$ for some $y \in A$; if not,

$$y \in \tilde{A} \iff W_{\psi(x, y)} \cap \tilde{A} \neq \emptyset \iff \{i : \varphi_i(\psi(x, y)) \in K\} \neq \emptyset$$

so that \tilde{A} is r.e. and A is recursive, contrary to hypothesis. The “reduction” φ may then be replaced by a “reduction” φ' of smaller norm as follows: To compute $\varphi'(x)$, simultaneously enumerate K and

$$E_x = \{\varphi(x)\} \cup \{\varphi(\psi(x, y)) : y \in A\}$$

and for each $z \in E_x$, $z = (z_1, \ldots, z_n)$, look to see if $z_i \in K$ for some i. By the above, some such z must appear, and let z be the first such; if $z = (z_1, \ldots, z_n)$, let z_i be the first component appearing in K. Then if

$$\varphi'(x) = (z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_n)$$

evidently

$$x \in H_{\tilde{A}} \iff [\{i : \varphi'_i(x) \in K\}] \text{ is even}$$

$$\iff \varphi'(x) \in K_{n-1}.$$

But this contradicts Theorem 5.4; hence A is recursive.

Acknowledgement

We are indebted to Joel Berman and Nancy Johnson for useful discussions on minimization of Boolean functions.
References