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Abstract

In this work, we consider the didity of impulsive infinite dely differential equations. By using Lyapunov functions and the
Razumikhin technique, we get some results that are more geheraines given before. And in using the Razumikhin technique,
we use a new technique that has been given by Shunian Zhang; we extend this technique to study impulsive systems. An examy
is also discussed in this work to illustrate the advantage of the results obtained.
(© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is known that many biological phenomena involving thresholds, bursting rhythm models in medicine and biology,
optimal control models in economics, pharmacokineticsfaegluency modulated systems exhibit the impulse effect.
Thus impulsive differential equations, that is, differential equations involving impulse effects, appear as a natura
description of observed evolution phenomena for several word problems. In recent years, qualitative properties of
the mathematical theory of ipulsive differential equations have been developed by a large number of mathematicians;
see [l-13.

Since time delay exists in many fields in our societgtsms with time delay have resed dgnificant attention
in recent years. In4—€, the authors considered the stability of impulsive differential equations with finite delay, and
got some results. Systems with infinite delay deserve dbedpuse they describe a kind of system present in the real
world. For ekample, in a predator—prey system the predationehsgs the average growth rate of the prey species,
linearly, with an infinite delay—for the predator cannot hunt prey when the predators are infants, and predators hav
to mature for a duration of time (which for simplicity in the mathematical analysis has been assumed to be infinite)
before they are capable of decregsthe aveage growth rate of the prey species. And there are some results on
systems with infinite delay; se&3,14] and rderences therein. However, to the best of the authors’ knowledge, results
for impulsive irffinite delay differential equations are rare.
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In this note, we consider impulsive infinite delay diffetial equations, by using Lyapunov functions and the
Razumikhin technique; we get some results tha more general than the ones given4h We extend the new
technique developed inl] to study impulsivesystems.

This work is organized as follows. Bection 2 we introduce some basic deffiilons and notation. lisection 3we
get some aiteria for uniform stability for impulsive infinite delay differential equations; an example is also discussed
in this section to illustrate the advantage of the results obtained. Finally, concluding remarks are §eetian 4

2. Preliminaries

Consider the following impulsive infinite delay differential equations:

X(t) = f(t, x®),xt —7(®)), t=to, t#m,

AX() £ x(1) —x(t7) = lk(X(t7), t=w, k=1,2,... (1)
wheret € RY, f € C[RT x R" x PC((—o0, 0], RM), R"], PC((—o0, 0], R") denotes the space of piecewise
right continuous functiong : (—oo, 0] — R" with the sip-norm|¢|| = sup_,_s<o ¢ ()|, | - | is anorm in R",
ft,0,00 =0, 1k0) =0,t > tt) >0,0=19 <11 < T2 < -+ < Tk < -+, 7k > oo fork — o0,
X(tT) = limg_+ X(S), andx(t™) = limg_,;- X(s). The functionsly : R" — R" k = 1,2, ..., are suchhat if

IIX]l < H andlk(x) # 0, then|x + Ix(X)|| < H, whereH = const.> 0.
The initial condition for systen(l) is given by

Xo =@ (2)

wherep € PC((—o0, 0], R").

We assume that a solution for the initial probléf) and(2) does exist and is unique. Sindét, 0, 0) = 0, then
x(t) = 0 is a soldion of (1), which iscalled the zero solution.

Let

PC(p) = {¢ € PC((—00,0], R") : [|9]| < p}.
Fory € PC(p), we define

el = el = sup [p(9)].

—00<S<t
For convaience, we define

IX| = max|xj|, forxe R".
1<i<n

We introduce some definitions as follows:

Definition 1 ([4]). The zero solution ofl) and (2) is said to be stable if for any > tp ande > O there is a
8 = 68(o,e) > 0suchhat[p € PC(§),t > o] implies that|x(t, o, ¢)| < &. Thezero solution is said to be uniformly
stable if§ is indgpendent ob.

Definition 2 ([1]). A continuous functionw : R* — R is called a wedge function if(0) = 0 andw(s) is (strictly)
increasing.

In what follows we will split ¢ = (¢1,92,...,9n)] € PC(p) into several vectors, say,
H @ 1 2 @ 2

@ 05 o @2 0 DT @™ ed, L e)T suchthatng +nz + -+ + N = n and
1 @ 2

{(pi),...,(pr(]l),wi),...,(pr(]z),...,(pim),...,wr(,m)}={¢1,¢2,...,¢n}.

For convaience, we define
o) = ((pij), goéj), e, go,ﬁjj)), j=12,...,m
and

9@ eMT,
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Forx = (X1, X2, ..., Xn)| € R", we alopt notation similar to that used before, asgoe PC(p).
Let

xDp= max x], j=12....,m
1<k<n;j

and thus,

x| = max x|,

<J=m
Correspondingly,

()| = max pls)), j=12....m and |ps)|= max ¢ (s).
1<k=<n;j 1<j<m

Let
leP =NV = sup lpD(e)), j=1,2,....m,
—oo<s<t
PCO(t) = {1 : (—o00,t] - R | o' is continuous and boundgd
and

PC ) = (o) e PCDt) | 10D]l < p).
3. Main results
For simpicity, we start with the case ah = 2, and first establish the following result on the uniformly stability.
Theorem 1. Let ¢; : RT — RT be continuous, ¢; € L’[0, 00), ¢j(t) < K; for t > 0 with some constant

Ki (j =12 a_nd wij (= 1,234 ) = 1,2) be wedge functions. If there exist continuous functionals
V; : [0, 00) x PCY(t) - Rt (i = 1,2) suchthat

(@) w1j (PO < Vjt, e D) < w2 (e DO + wai [, ¢}t — Hwaj (P (s)N)ds], j = 1, 2;
(i) when Vy(t, xD (1)) > Va(t, x@(t)), it holdsthat

Vi, xP () <0, if Vit — o), xPt — z(1))) < Vat, xP(t)),
when Vi (t, xD (1)) < Va(t, x@(t)), it holdsthat
Vyt, x@ (1) <0, if Vot — (1), x@(t — z(1))) < Va(t, x?(1));

(i) Vj(m, X(r) + k(X( ) < L+ bVj(r . x( ), ] = 1,2,k = 1,2,..., for which by > 0, and
> k1 bk < 00;

where x(t) = (x®(t), x@(t)) isa solution of (1) and (2), then the zero solution of (1) and (2) is uniformly stable.

Proof. Sincebyx > 0, and} ;2 bk < oo, it follows that[Tpo,(1+ bk) = M and 1< M < co.
Define a finctionV (t) as follows:

V(t) = Vit xP ) if Vi, xP ) > Vat, x@ (1)),
V(t) = Va(t, x@ 1) if Vat, xXP1) < Vat, x@1)). ®)

Obviously,V (t) is continuous for alt € RT.
In the following, we denote, for the sake of brevity,

Vi =Vit.xD) Vo =VviexP), j=12
First, we prove that for any e R™,

wir(XP®)]) + wi2(x@ )]
2

t t
+w31[ f ¢1<t—s>w41<|x<1)(s)|>ds]+w32[ f ¢z(t—s>w4z(|x<2>(s>|>ds]. @)

< V() < wa((xP @) + w22(x?)))
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In fact, if V1(t) > V(1), then by(3) and condition (i),
Va® + Va© _ [waa(x 0] + wiz(x @ (©)))]

2 - 2
whereas, ilV1(t) < Vo(t), we also have
Vi) + Vo®] _ [w1n(XxP®D + waa(xP ()D)]

2 - 2 '
On the other hand, the right-hand inequality{4) obviously holds.

Next, we show that for each> tp, the rght-hand and the left-hand derivatives\¢ft), both denoted by’ (1),
satisfy

V() =Va(t) =

V(t) = Va(t) =

V/(t) <0, ifV(t—r() <V(). (5)
Indeed, suppos¥;(sp) > Vo(so) and there exists song > s suchthat
Vi(t) = Vo(t) fort € [so, s1].
Then by(3),
V() = Vi(t) fort e [s, s1].

If Vit — t(t)) = Vo(t — (1)), thenV(t — (1)) = Vi(t — (1)), andhenceV(t — t(t)) < V(1) implies
Vit—1(t)) < Vit); whileif Vi(t—z(t)) < Va(t—z (1)), thenV (t—z(t)) = Va(t—z(t)), and alsoV/ (t—z(t)) < V(1)
impliesVa(t — 7(t)) < Va(t — 7(t)) < V(1) = Vi(1).

Therefore, in any case we have

V(1) =V{(t) <0, ifV(Et—rt@)=<V®).
If V1(t) < Va(t) fort € [so, s1], like before we can also prove thi&) holds.

For anygivene > 0 (¢ < H), let Me* = min{w11(¢), wi2(¢)}, we may choose d(¢) > 0 such that

* *

d<e, wzj(d) < % and wgj(Jjwsj(8)) < 5 j=12

whereJj = [5° ¢j(s)ds (j =1, 2).
For anyo > tg, ¢ € PC(3), o € [11—1, 71) for some positie integerl. Definex(t) = Xx(t, o, ¢). Then by(4) we
have

V(t, x(1) = V(t, ¢t —0)) < w21(8) + w22()

*

&
+ w31(J1wa1(8)) + ws2(Jowa2(8)) < > fort € [0,0].
We prove that

win(X PO +waa(xP ) _
5 <

If this does not hold, then there ifa& (o, 1) suchthat

V(t)g% foroc <t < 1. (6)

*

V(f)>% and V@) >0 V) <V@ fortelo,f].

Sincet > t(t) > 0, we haveV (f — =(f)) < V(). From(5) we haveV’(f) < 0. This is a contradiction. S@) holds.
If Vi(z1) > Va(1)), thenV (7)) = V1(1)); from inequdity (6) and condition (iii) we have

V(@) = V@, x(1) + kX(17)) = Vilm, X(57) + lk(X(5;7)

—_— — 8*
< (1+b)Va(y~, x(1 ))s(1+b|)?
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If Vi(r1) < Va(1), thenV (1) = Va(7)); from inequdity (6) and condition (iii) we have
V(@) = V@, X(m) + k(XX(r,) = Va(u, X(7,7) + lk(X(7)))

*

< (L4+b)Va(g, X(5)) < (1+ u)%_

So in either case we have proved that

*

V() < (1+b|>%.

Next, we pove that

*

V(t) < (1+b|)% form <t < 7.1. @

If inequality(7) does not hold, then there iSee (1, 71+1) suchthat

*

V(§)>(1+b|)% and V'8 >0, V() <V(® forteln.s

Sincet > z(t) > 0, we haveV (§ — 7(8)) < V (5). From(5) we haveV’(8) < 0. This is a contradiction. S@) holds.
If Vi(ti+1) = Vo(11+1), thenV (741) = Vi(7+1); from inequdity (7) and condition (iii) we have
V(t41) = V(u+1, X(1 1) + k(X (1)) = Vi(@i+1, X(7 1) + k(X (75.0))

*

_ _ &
< (L+ b))Vt 4, X(759) < X+ b)) (1 + bl)E-
If Vi(ti+1) < Va(ti+1), thenV (r111) = Va(11+1); from inequdity (7) and condition (iii) we have

V(@41) = V(@41 X070 + kX (@30 = Va(@41, X(47) + k(X(530)))

_ _ &
< (L4 bipa)Va(r 4, X(751) < 1+ b)) (1 + bl)E-

So, in either case we have proved that

*

V(n41) < 1+ by @+ bn%.

By simple induction, we can prove that, in general

*

&
V) < A+Dbyitn) - A+ b|)? fornyi <t <m4ita.
Taking this together with(4) and(6) and[ [y, (1 + bk) = M, we have

&N 2 *
w11(IX (O J2r w12(]X (D)) V(@O < M%

SinceMe* = min{w11(¢), wi2(e)}, we have

fort > o. (8)

wit (XY @) < wirle),  wi2(x@@®)]) < wia(e).
Therefore,
Ix(®)| = max((xXP )], xXP®)]) <e.

Thus the zero solution d¢fL) and(2) is uniformly stable.

Corollary 1. Suppose there exist continuous Lyapunov functions Vj : (—oo, 00) x B,(j) — Rt with B,j_, = {x e
RY | x| < H} (j = 1, 2) and wedge functions w1, woj  (j = 1, 2) suchthat

(i) wij (e PO < Vjt, xD) < wzj (oD ®)]);
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(ii) when Vi(t, xD(t)) > Va(t, x@(t)), it holdsthat
Vi, xPt) <0, if Vit — t (), x Pt — z(t) < Vat, xP b)),
when Vi (t, XD (1)) < Va(t, x@(t)), it holds that
Va(t, xP (1) <0, if Vot — (1), xP (t — (1)) < Va(t, xPt));
(i) Vj(m, X(m) + kX(r ) < A+ bvj(r . X(m ), ] = L2,k = 1,2,...,in which by > 0, and
Y g bk < o0;
where x(t) = (x(t), x@(t)) isa solution of (1) and (2), then the zero solution of (1) and (2) is uniformly stable.
Remark. We can easily see th&@orollary 1 which is a special case dheorem lis an extension of the result for

finite delay equations id] (Theorem J. Since in our result (t) may beco, the resulthat we hae obtained is more
general than that given id].

Theorem 2. Supposethere exist continuous functionalsV; : [0, co) x Pcﬂ)(t) — R* (i=1,2,..., m)suchthat
wij, w2j (j =1,2,..., m) arewedge functions,

(i) wij (oD D < Vj(t, oD ) < waj oD O + wi[[L, $j(t — waj eV (9)ds], j =1,2,...,m;
@iy if Vjt, xD(t)) = maxMit, xP (1)) | 1 <1 < my}, it holds that

Vit xD) <0, if Vit — ), xVt — ) < Vi xD

(i) Vj(m, (7o) + Ik(X(r, ) < A+ bVj(r . x(r ), j =1,2,..., m,k=12,...,for which by > 0, and
Y g bk < o0;

where x(t) = XD 1), x@),...,xM(t)) is a solution of (1) and (2), then the zero solution of (1) and (2) is
uniformly stable.

Proof. Like in the proof ofTheorem 1for x(t) = (x®P(t), x@ (1), ..., xM(t)), we can define
V(t) = Vi(t, x® ) if Vi(t, x® ) = maxvj . xD) 1< j <m}:

and, instead of4), similarly we can prove that

m .
_lelmx(”(tm
]=

m

m
VM) <D wa(xP o))
j=1

m t )
+Zw3,- [/ b (t — s)w4,-(|x<l>(s)|)ds], fort > o.
j=1 -

And by the sameprocess as in the proof of tiEheorem 1 we can prove that the zero solution ¢f) and (2) is
uniformly stable.

Example. Consider the following impulsive infinite delay differential equations:

Xp(H) = —arxa(t) + agXa(t) + asxa(t — (1)) t>to,t # w  Xa(w) = cXa ()

Xé(t) = bix1(t) — boxa(t) + baxa(t — (1)) t >to,t #1%« Xo(tk) = cxa(ty) (9)
wherek = 1,2,...,t > () > 0,a1 > 0,a2 > 0,a3 > O,by > O,bp > O,b3 > 0,0 < ¢ < 1,
ax+az <ap,by+b3<bpandx;(0)=0j=12.

Let Vj(t, xj (1)) = %[xj (112 (j = 1,2); obviously condition (i) of theTheorem 1holds, and moreover when
Va(t, x1(1)) > Va(t, X2(1)), i.e. [x1(t)] > [x2(b)], if Vit — (1), xa(t — z(1))) < Vi(t, xe (1)), i.e. [xe(t — ()] <
IX1(t)|, we have

Vit xa(®) = xaOxq () = —ax§(t) + axa®)xa(t) + agxat)xa(t — v())

(—aq + ap + ag)x2(t) < 0;

IA
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whenVi(t, x1(t)) < Va(t, x2(1)), i.e.[xa ()] < [x2(D)], if Va(t—7 (1), X2(t—7(1))) < Va(t, x2(1)), i.e.[X2(t =T (1))] <
|X2(t)|, we have

Vj(t, X2(1)) = X2(t)X5(t) = brxa(t)Xa(t) — bpx2(t) + baxa(t)Xa(t — (1)) < (by — by 4+ bg)x3(t) < 0.
And

1 1 .
Vi (X (1) + Ik (Xj (7)) = Vj(exj (o) = Eczsz(rk—) < Exj?(rk—) =Vi0¢(), j=12

Letby = 0,k = 1,2,.... Then condtions (ii) and (iii) of Theorem 1lhold. Therefore the zero solution @) is
uniformly stable.
Since n this xkamplez (t) may beoo, by the previous theory we cannot obtain this stability result.

4. Conclusion

In this work, we have considered thelstdy of impulsive infinite delay differential equations. By using Lyapunov
functions and the Razumikhin technique, we have obtained some more general results. When using the Razumikh
technique, we used a new technique that has been givet],imfid we extended this technique to study impulsive
infinite delay differential systems. We can see that impulses do contribute to the system'’s stability behavior.
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