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Stability of impulsive infinite delay differential equations✩
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Abstract

In this work, we consider the stability of impulsive infinite delay differential equations. By using Lyapunov functions and the
Razumikhin technique, we get some results that are more generalthanones given before. And in using the Razumikhin technique,
we use a new technique that has been given by Shunian Zhang; we extend this technique to study impulsive systems. An example
is also discussed in this work to illustrate the advantage of the results obtained.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is known that many biological phenomena involving thresholds, bursting rhythm models in medicine and biology,
optimal control models in economics, pharmacokinetics andfrequency modulated systems exhibit the impulse effect.
Thus impulsive differential equations, that is, differential equations involving impulse effects, appear as a natural
description of observed evolution phenomena for several real word problems. In recent years, qualitative properties of
the mathematical theory of impulsive differential equations have been developed by a large number of mathematicians;
see [1–12].

Since time delay exists in many fields in our society, systems with time delay have received significant attention
in recent years. In [4–6], the authors considered the stability of impulsive differential equations with finite delay, and
got some results. Systems with infinite delay deserve studybecause they describe a kind of system present in the real
world. For example, in a predator–prey system the predation decreases the average growth rate of the prey species,
linearly, with an infinite delay—for the predator cannot hunt prey when the predators are infants, and predators have
to mature for a duration of time (which for simplicity in the mathematical analysis has been assumed to be infinite)
before they are capable of decreasing the average growth rate of the prey species. And there are some results on
systems with infinite delay; see [13,14] and references therein. However, to the best of the authors’ knowledge, results
for impulsive infinite delay differential equations are rare.
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In this note, we consider impulsive infinite delay differential equations, by using Lyapunov functions and the
Razumikhin technique; we get some results thatare more general than the ones given in [4]. We extend the new
technique developed in [1] to study impulsivesystems.

This work is organized as follows. InSection 2, we introduce some basic definitions and notation. InSection 3, we
get some criteria for uniform stability for impulsive infinite delay differential equations; an example is also discussed
in this section to illustrate the advantage of the results obtained. Finally, concluding remarks are given inSection 4.

2. Preliminaries

Consider the following impulsive infinite delay differential equations:

ẋ(t) = f (t, x(t), x(t − τ (t))), t ≥ t0, t �= τk,

�x(t) � x(t) − x(t−) = Ik(x(t−)), t = τk, k = 1, 2, . . . (1)

where t ∈ R+, f ∈ C[R+ × Rn × PC((−∞, 0], Rn), Rn], PC((−∞, 0], Rn) denotes the space of piecewise
right continuous functionsφ : (−∞, 0] → Rn with the sup-norm‖φ‖ = sup−∞<s≤0 |φ(s)|, | · | is a norm in Rn ,
f (t, 0, 0) ≡ 0, Ik(0) = 0, t ≥ τ (t) ≥ 0, 0 = τ0 < τ1 < τ2 < · · · < τk < · · · , τk → ∞ for k → ∞,
x(t+) = lims→t+ x(s), andx(t−) = lims→t− x(s). The functionsIk : Rn → Rn, k = 1, 2, . . ., are suchthat if
‖x‖ < H andIk(x) �= 0, then‖x + Ik(x)‖ < H , whereH = const.> 0.

The initial condition for system(1) is given by

xσ = ϕ (2)

whereϕ ∈ PC((−∞, 0], Rn).
We assume that a solution for the initial problem(1) and(2) does exist and is unique. Sincef (t, 0, 0) = 0, then

x(t) = 0 is a solution of (1), which iscalled the zero solution.
Let

PC(ρ) = {φ ∈ PC((−∞, 0], Rn) : ‖φ‖ < ρ}.
Forϕ ∈ PC(ρ), we define

‖ϕ‖ = ‖ϕ‖(−∞,t ] = sup
−∞<s≤t

|ϕ(s)|.

For convenience, we define

|x | = max
1≤i≤n

|xi |, for x ∈ Rn .

We introduce some definitions as follows:

Definition 1 ([4]). The zero solution of(1) and (2) is said to be stable if for anyσ ≥ t0 and ε > 0 there is a
δ = δ(σ, ε) > 0 such that[ϕ ∈ PC(δ), t ≥ σ ] implies that|x(t, σ, ϕ)| ≤ ε. Thezero solution is said to be uniformly
stable ifδ is independent ofσ .

Definition 2 ([1]). A continuous functionw : R+ → R+ is called a wedge function ifw(0) = 0 andw(s) is (strictly)
increasing.

In what follows, we will split ϕ = (ϕ1, ϕ2, . . . , ϕn)
T ∈ PC(ρ) into several vectors, say,

(ϕ
(1)
1 , ϕ

(1)
2 , . . . , ϕ

(1)
n1 )T , (ϕ

(2)
1 , ϕ

(2)
2 , . . . , ϕ

(2)
n2 )T , . . . , (ϕ

(m)
1 , ϕ

(m)
2 , . . . , ϕ

(m)
nm )T suchthat n1 + n2 + · · · + nm = n and

{ϕ(1)
1 , . . . , ϕ

(1)
n1 , ϕ

(2)
1 , . . . , ϕ

(2)
n2 , . . . , ϕ

(m)
1 , . . . , ϕ

(m)
nm } = {ϕ1, ϕ2, . . . , ϕn}.

For convenience, we define

ϕ( j ) = (ϕ
( j )
1 , ϕ

( j )
2 , . . . , ϕ

( j )
n j ), j = 1, 2, . . . , m

and

ϕ = (ϕ(1), ϕ(2), . . . , ϕ(m))T .
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For x = (x1, x2, . . . , xn)T ∈ Rn , we adopt notation similar to that used before, as forϕ ∈ PC(ρ).
Let

|x ( j )| = max
1≤k≤n j

|x ( j )
k |, j = 1, 2, . . . , m

and thus,

|x | = max
1≤ j≤m

|x ( j )|.

Correspondingly,

|ϕ( j )(s)| = max
1≤k≤n j

|ϕ j
k (s)|, j = 1, 2, . . . , m, and |ϕ(s)| = max

1≤ j≤m
|ϕ( j )(s)|.

Let

‖ϕ( j )‖ = ‖ϕ( j )‖(−∞,t ] = sup
−∞<s≤t

|ϕ( j )(s)|, j = 1, 2, . . . , m,

PC( j )(t) = {ϕ( j ) : (−∞, t] → Rn j | ϕ( j ) is continuous and bounded},
and

PC( j )
ρ (t) = {ϕ( j ) ∈ PC( j )(t) | ‖ϕ( j )‖ < ρ}.

3. Main results

For simplicity, we start with the case ofm = 2, and first establish the following result on the uniformly stability.

Theorem 1. Let φ j : R+ → R+ be continuous, φ j ∈ L ′[0,∞), φ j (t) ≤ K j for t ≥ 0 with some constant
K j ( j = 1, 2) and wi j (i = 1, 2, 3, 4; j = 1, 2) be wedge functions. If there exist continuous functionals

Vj : [0,∞) × PC(i)
H (t) → R+ (i = 1, 2) such that

(i) w1 j (|ϕ( j )(t)|) ≤ Vj (t, ϕ( j )(t)) ≤ w2 j (|ϕ( j )(t)|) + w3 j [
∫ t
−∞ φ j (t − s)w4 j (|ϕ( j )(s)|)ds], j = 1, 2;

(ii) when V1(t, x (1)(t)) ≥ V2(t, x (2)(t)), it holds that

V ′
1(t, x (1)(t)) ≤ 0, if V1(t − τ (t), x (1)(t − τ (t))) ≤ V1(t, x (1)(t)),

when V1(t, x (1)(t)) ≤ V2(t, x (2)(t)), it holds that

V ′
2(t, x (2)(t)) ≤ 0, if V2(t − τ (t), x (2)(t − τ (t))) ≤ V2(t, x (2)(t));

(iii) Vj (τk, x(τ−
k ) + Ik(x(τ−

k ))) ≤ (1 + bk)Vj (τ
−
k , x(τ−

k )), j = 1, 2, k = 1, 2, . . ., for which bk ≥ 0, and∑∞
k=1 bk < ∞;

where x(t) = (x (1)(t), x (2)(t)) is a solution of (1) and (2), then the zero solution of (1) and (2) is uniformly stable.

Proof. Sincebk ≥ 0, and
∑∞

k=1 bk < ∞, it follows that
∏∞

k=1(1 + bk) = M and 1≤ M < ∞.
Define a functionV (t) as follows:

V (t) = V1(t, x (1)(t)) if V1(t, x (1)(t)) ≥ V2(t, x (2)(t)),

V (t) = V2(t, x (2)(t)) if V1(t, x (1)(t)) ≤ V2(t, x (2)(t)). (3)

Obviously,V (t) is continuous for allt ∈ R+.
In the following, we denote, for the sake of brevity,

Vj (t) = Vj (t, x ( j )(t)) V ′
j (t) = V ′

j (t, x ( j )(t)), j = 1, 2.

First, we prove that for anyt ∈ R+,

w11(|x (1)(t)|) + w12(|x (2)(t)|)
2

≤ V (t) ≤ w21(|x (1)(t)|) + w22(|x (2)(t)|)

+ w31

[∫ t

−∞
φ1(t − s)w41(|x (1)(s)|) ds

]
+ w32

[∫ t

−∞
φ2(t − s)w42(|x (2)(s)|) ds

]
. (4)
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In fact, if V1(t) ≥ V2(t), then by(3) and condition (i),

V (t) = V1(t) ≥ [V1(t) + V2(t)]
2

≥ [w11(|x (1)(t)|) + w12(|x (2)(t)|)]
2

whereas, ifV1(t) ≤ V2(t), we also have

V (t) = V2(t) ≥ [V1(t) + V2(t)]
2

≥ [w11(|x (1)(t)|) + w12(|x (2)(t)|)]
2

.

On the other hand, the right-hand inequality in(4) obviously holds.
Next, we show that for eacht ≥ t0, the right-hand and the left-hand derivatives ofV (t), both denoted byV ′(t),

satisfy

V ′(t) ≤ 0, if V (t − τ (t)) ≤ V (t). (5)

Indeed, supposeV1(s0) ≥ V2(s0) and there exists somes1 > s0 suchthat

V1(t) ≥ V2(t) for t ∈ [s0, s1].
Then by(3),

V (t) = V1(t) for t ∈ [s0, s1].
If V1(t − τ (t)) ≥ V2(t − τ (t)), then V (t − τ (t)) = V1(t − τ (t)), and henceV (t − τ (t)) ≤ V (t) implies
V1(t−τ (t)) ≤ V1(t); while if V1(t−τ (t)) ≤ V2(t−τ (t)), thenV (t−τ (t)) = V2(t−τ (t)), and alsoV (t−τ (t)) ≤ V (t)
impliesV1(t − τ (t)) ≤ V2(t − τ (t)) ≤ V (t) = V1(t).

Therefore, in any case we have

V ′(t) = V ′
1(t) ≤ 0, if V (t − τ (t)) ≤ V (t).

If V1(t) ≤ V2(t) for t ∈ [s0, s1], like before we can also prove that(5) holds.
For anygivenε > 0 (ε < H ), let Mε∗ = min{w11(ε),w12(ε)}, we may choose aδ(ε) > 0 such that

δ < ε, w2 j (δ) <
ε∗

8
and w3 j (Jjw4 j (δ)) <

ε∗

8
j = 1, 2

whereJj = ∫ ∞
0 φ j (s)ds ( j = 1, 2).

For anyσ ≥ t0, ϕ ∈ PC(δ), σ ∈ [τl−1, τl) for some positive integerl. Definex(t) = x(t, σ, ϕ). Then by(4) we
have

V (t, x(t)) = V (t, ϕ(t − σ)) ≤ w21(δ) + w22(δ)

+ w31(J1w41(δ)) + w32(J2w42(δ)) <
ε∗

2
for t ∈ [0, σ ].

We prove that

w11(|x (1)(t)|) + w12(|x (2)(t)|)
2

≤ V (t) ≤ ε∗

2
for σ ≤ t < τl . (6)

If this does not hold, then there is at̂ ∈ (σ, τl) suchthat

V (t̂) >
ε∗

2
and V ′(t̂) > 0, V (t) ≤ V (t̂) for t ∈ [σ, t̂].

Sincet ≥ τ (t) ≥ 0, we haveV (t̂ − τ (t̂)) ≤ V (t̂). From(5) we haveV ′(t̂) ≤ 0. This is a contradiction. So(6) holds.
If V1(τl) ≥ V2(τl), thenV (τl) = V1(τl); from inequality (6) and condition (iii) we have

V (τl) = V (τl, x(τ−
l ) + Ik(x(τ−

l ))) = V1(τl , x(τ−
l ) + Ik(x(τ−

l )))

≤ (1 + bl)V1(τ
−
l , x(τ−

l )) ≤ (1 + bl)
ε∗

2
.
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If V1(τl) < V2(τl), thenV (τl) = V2(τl); from inequality (6) and condition (iii) we have

V (τl) = V (τl , x(τ−
l ) + Ik(x(τ−

l ))) = V2(τl, x(τ−
l ) + Ik(x(τ−

l )))

≤ (1 + bl)V2(τ
−
l , x(τ−

l )) ≤ (1 + bl)
ε∗

2
.

So in either case we have proved that

V (τl) ≤ (1 + bl)
ε∗

2
.

Next, we prove that

V (t) ≤ (1 + bl)
ε∗

2
for τl ≤ t < τl+1. (7)

If inequality(7) does not hold, then there is aŝ ∈ (τl , τl+1) suchthat

V (ŝ) > (1 + bl)
ε∗

2
and V ′(ŝ) > 0, V (t) ≤ V (ŝ) for t ∈ [τl, ŝ].

Sincet ≥ τ (t) ≥ 0, we haveV (ŝ − τ (ŝ)) ≤ V (ŝ). From(5) we haveV ′(ŝ) ≤ 0. This is a contradiction. So(7) holds.
If V1(τl+1) ≥ V2(τl+1), thenV (τl+1) = V1(τl+1); from inequality (7) and condition (iii) we have

V (τl+1) = V (τl+1, x(τ−
l+1) + Ik(x(τ−

l+1))) = V1(τl+1, x(τ−
l+1) + Ik(x(τ−

l+1)))

≤ (1 + bl+1)V1(τ
−
l+1, x(τ−

l+1)) ≤ (1 + bl+1)(1 + bl)
ε∗

2
.

If V1(τl+1) < V2(τl+1), thenV (τl+1) = V2(τl+1); from inequality (7) and condition (iii) we have

V (τl+1) = V (τl+1, x(τ−
l+1) + Ik(x(τ−

l+1))) = V2(τl+1, x(τ−
l+1) + Ik(x(τ−

l+1)))

≤ (1 + bl+1)V2(τ
−
l+1, x(τ−

l+1)) ≤ (1 + bl+1)(1 + bl)
ε∗

2
.

So, in either case we have proved that

V (τl+1) ≤ (1 + bl+1)(1 + bl)
ε∗

2
.

By simple induction, we can prove that, in general

V (t) ≤ (1 + bl+i+1) · · · (1 + bl)
ε∗

2
for τl+i ≤ t ≤ τl+i+1.

Taking this together with(4) and(6) and
∏∞

k=1(1 + bk) = M, we have

w11(|x (1)(t)|) + w12(|x (2)(t)|)
2

≤ V (t) ≤ M
ε∗

2
for t ≥ σ. (8)

SinceMε∗ = min{w11(ε),w12(ε)}, we have

w11(|x (1)(t)|) ≤ w11(ε), w12(|x (2)(t)|) ≤ w12(ε).

Therefore,

|x(t)| = max(|x (1)(t)|, |x (2)(t)|) ≤ ε.

Thus the zero solution of(1) and(2) is uniformly stable.

Corollary 1. Suppose there exist continuous Lyapunov functions Vj : (−∞,∞) × B( j )
H → R+ with B j

H = {x ( j ) ∈
Rn j | |x ( j )| < H } ( j = 1, 2) and wedge functions w1 j , w2 j ( j = 1, 2) such that

(i) w1 j (|ϕ( j )(t)|) ≤ Vj (t, x ( j )(t)) ≤ w2 j (|ϕ( j )(t)|);
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(ii) when V1(t, x (1)(t)) ≥ V2(t, x (2)(t)), it holds that

V ′
1(t, x (1)(t)) ≤ 0, if V1(t − τ (t), x (1)(t − τ (t))) ≤ V1(t, x (1)(t)),

when V1(t, x (1)(t)) ≤ V2(t, x (2)(t)), it holds that

V ′
2(t, x (2)(t)) ≤ 0, if V2(t − τ (t), x (2)(t − τ (t))) ≤ V2(t, x (2)(t));

(iii) Vj (τk, x(τ−
k ) + Ik(x(τ−

k ))) ≤ (1 + bk)v j (τ
−
k , x(τ−

k )), j = 1, 2, k = 1, 2, . . ., in which bk ≥ 0, and∑∞
k=1 bk < ∞;

where x(t) = (x (1)(t), x (2)(t)) is a solution of (1) and (2), then the zero solution of (1) and (2) is uniformly stable.

Remark. We can easily see thatCorollary 1 which is a special case ofTheorem 1is an extension of the result for
finite delay equations in [4] (Theorem 1). Since in our resultτ (t) may be∞, the resultthat we haveobtained is more
general than that given in [4].

Theorem 2. Suppose there exist continuous functionals Vi : [0,∞) × PC(i)
H (t) → R+ (i = 1, 2, . . . , m) such that

w1 j , w2 j ( j = 1, 2, . . . , m) are wedge functions,

(i) w1 j (|ϕ( j )(t)|) ≤ Vj (t, ϕ( j )(t)) ≤ w2 j (|ϕ( j )(t)|) + w3 j [
∫ t
−∞ φ j (t − s)w4 j (|ϕ( j )(s)|)ds], j = 1, 2, . . . , m;

(ii) if V j (t, x ( j )(t)) = max{Vl(t, x (l)(t)) | 1 ≤ l ≤ m}, it holds that

V ′
j (t, x ( j )(t)) ≤ 0, if V j (t − τ (t), x ( j )(t − τ (t))) ≤ Vj (t, x ( j )(t));

(iii) Vj (τk, x(τ−
k ) + Ik(x(τ−

k ))) ≤ (1 + bk)Vj (τ
−
k , x(τ−

k )), j = 1, 2, . . . , m, k = 1, 2, . . ., for which bk ≥ 0, and∑∞
k=1 bk < ∞;

where x(t) = (x (1)(t), x (2)(t), . . . , x (m)(t)) is a solution of (1) and (2), then the zero solution of (1) and (2) is
uniformly stable.

Proof. Like in the proof ofTheorem 1, for x(t) = (x (1)(t), x (2)(t), . . . , x (m)(t)), wecan define

V (t) = Vk(t, x (k)(t)) if Vk(t, x (k)(t)) = max{Vj (t, x ( j )(t)) | 1 ≤ j ≤ m};
and, instead of(4), similarly we can prove that[

m∑
j=1

w1 j (|x ( j )(t)|)
]

m
≤ V (t) ≤

m∑
j=1

w2 j (|x ( j )(t)|)

+
m∑

j=1

w3 j

[∫ t

−∞
φ j (t − s)w4 j (|x ( j )(s)|) ds

]
, for t ≥ σ.

And by the sameprocess as in the proof of theTheorem 1, we can prove that the zero solution of(1) and (2) is
uniformly stable.

Example. Consider the following impulsive infinite delay differential equations:

x ′
1(t) = −a1x1(t) + a2x2(t) + a3x1(t − τ (t)) t ≥ t0, t �= τk x1(τk) = cx1(τ

−
k )

x ′
2(t) = b1x1(t) − b2x2(t) + b3x2(t − τ (t)) t ≥ t0, t �= τk x2(τk) = cx2(τ

−
k ) (9)

where k = 1, 2, . . . , t ≥ τ (t) ≥ 0, a1 > 0, a2 > 0, a3 > 0, b1 > 0, b2 > 0, b3 > 0, 0 < c < 1,
a2 + a3 ≤ a1, b1 + b3 ≤ b2 andx j (0) = 0 j = 1, 2.

Let Vj (t, x j (t)) = 1
2[x j (t)]2 ( j = 1, 2); obviously condition (i) of theTheorem 1holds, and moreover when

V1(t, x1(t)) ≥ V2(t, x2(t)), i.e. |x1(t)| ≥ |x2(t)|, if V1(t − τ (t), x1(t − τ (t))) ≤ V1(t, x1(t)), i.e. |x1(t − τ (t))| ≤
|x1(t)|, we have

V ′
1(t, x1(t)) = x1(t)x ′

1(t) = −a1x2
1(t) + a2x1(t)x2(t) + a3x1(t)x1(t − τ (t))

≤ (−a1 + a2 + a3)x2
1(t) ≤ 0;
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whenV1(t, x1(t)) ≤ V2(t, x2(t)), i.e.|x1(t)| ≤ |x2(t)|, if V2(t −τ (t), x2(t −τ (t))) ≤ V2(t, x2(t)), i.e.|x2(t −τ (t))| ≤
|x2(t)|, we have

V ′
2(t, x2(t)) = x2(t)x ′

2(t) = b1x1(t)x2(t) − b2x2
2(t) + b3x2(t)x2(t − τ (t)) ≤ (b1 − b2 + b3)x2

2(t) ≤ 0.

And

Vj (x j (τ
−
k ) + Ik(x j (τ

−
k ))) = Vj (cx j (τ

−
k )) = 1

2
c2x2

j (τ
−
k ) <

1

2
x2

j (τ
−
k ) = Vj (x2

j (τ
−
k )), j = 1, 2.

Let bk = 0, k = 1, 2, . . .. Then conditions (ii) and (iii) of Theorem 1hold. Therefore the zero solution of(9) is
uniformly stable.

Since in this exampleτ (t) may be∞, by the previous theory we cannot obtain this stability result.

4. Conclusion

In this work, we have considered the stability of impulsive infinite delay differential equations. By using Lyapunov
functions and the Razumikhin technique, we have obtained some more general results. When using the Razumikhin
technique, we used a new technique that has been given in [1], and we extended this technique to study impulsive
infinite delay differential systems. We can see that impulses do contribute to the system’s stability behavior.
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