Two-cacti with minimum number of spanning trees

Preben Dahl Vestergaard

Institut for Electronic Systems, Aalborg University, Fredrik Bajers Vej 7, DK-9220 Aalborg, Denmark

Received 2 June 1990 Revised 22 July 1991

Abstract

Zelinka (1978) proved that the spanning trees of a 2-cactus partition into at least 3 isomorphism classes. Here we examine the structure of these 2-cacti for which the spanning trees partition into exactly 3 isomorphism classes.

1. Notation and preliminaries

A tree is a connected graph with no circuit. A rooted tree (T, v) is a tree T together with a distinguished vertex v, the root. When it is clear which root v is intended, we may for short write the rooted tree T.

A unicyclic graph is a connected graph G with exactly one circuit C. Let the vertices on C be $v_1, v_2, ..., v_n$ in that order, $C = (v_1, v_2, ..., v_n)$. The connected components of G - E(C) are trees $T_1, T_2, ..., T_n$ and we can choose notation such that $v_i \in V(T_i)$, $1 \le i \le n$. We say that the rooted tree (T_i, v_i) is attached to C at v_i and we write $G = C((T_1, v_1), (T_2, v_2), ..., (T_n, v_n))$ or for short $G = C(T_1, T_2, ..., T_n)$. $L(T_1, T_2, ..., T_n)$ denotes the graph $C(T_1, T_2, ..., T_n) - (v_1, v_n)$.

A cactus is a connected graph which contains at least one circuit and which has the property that any pair of its circuits have at most a vertex in common. An *n*-cactus is a cactus with exactly *n* circuits, $n \ge 1$.

Let G be a 2-cactus with the two circuits $D_1 = (u_1, u_2, ..., u_m)$ and $D_2 = (v_1, v_2, ..., v_n)$ where notation can be chosen such that u_1 and v_1 are the two vertices in D_1 and D_2 respectively, having minimum distance in G, where $u_1 = v_1$ may occur. G contains a connected graph H consisting of D_1, D_2 and a path joining u_1 to v_1 . If $u_1 = v_1$ then the path is that single vertex. The connected components of G - E(H) are trees. For i=2, 3, ..., m denote by (U_i, u_i) that rooted tree which is a connected component of G - E(H) and contains u_i . We say that U_i is attached to D_1 at u_i or to H at u_i . Analogously we say that $V_2, V_3, ..., V_n$ are trees attached to D_2 , or to H, at $v_2, v_3, ..., v_n$, respectively. \hat{D}_1 denotes that connected component of $G-u_1$ which contains D_1-u_1 . Analogously \hat{D}_2 is that connected component of $G-v_1$ which contains D_2-v_1 . $G' \cong G''$ means that the graphs G' and G'' are isomorphic. $(G', v') \cong (G'', v'')$ means that the rooted graphs (G', v') and (G'', v'') are root-isomorphic, i.e., there exists an isomorphism from G' onto G'' which maps v' onto v''. If it is clear which roots are intended, we may write $G' \cong G''$ for short.

A spanning tree for G is a subgraph of G which is a tree and which contains all vertices of G. For a connected graph G we denote by $\tau(G)$ the number of isomorphism classes into which all the spanning trees of G partition.

The distance between two vertices x and y in a connected graph is denoted d(x, y). The distance between two vertex-subsets A and B in a connected graph is $d(A, B) = \min\{d(x, y) | x \in A, y \in B\}$.

For a vertex x in a tree T we let

$$\delta_T(x) = \delta(x) = \sum_{y \in V(T)} d(x, y)$$

denote the deviation of x w.r.t. T. A vertex q in T with minimum deviation is called a median of T and $\delta(q) = \delta(T)$ is called the deviation of T.

In [6] it was proved that each tree has either exactly one median or exactly two medians which are joined by an edge.

If v is a vertex of a tree T and e is an edge of T incident with v, then all vertices which belong to paths from v with the first edge e form a subgraph which is called a branch of T with the knag v. The branch of T with the knag v with the maximal number of vertices is called a *weight branch* and its number of vertices is called the *weight* at v. In [6] it was proved that a vertex of a tree has minimum weight, if and only if it is a median of this tree.

Below in (1)–(3) we give adaptions of the characterization of graphs with exactly one isomorphism class of spanning trees ([1, 2, 4, 7]) and the characterization of graphs with exactly two isomorphism classes of spanning trees ([3, Theorem 2]).

Let F denote a unicyclic graph obtained from a 2-cactus by the deletion of one edge. We then have the following.

 $\begin{aligned} \tau(F) &= 1 \text{ if and only if} \\ (1) \ F &= C(A, B; A, B, ...; A, B) \text{ or } F &= C(A, A, ..., A). \\ \tau(F) &= 2 \text{ if and only if} \\ either \\ (2) \ F &= C(A, B, B; A, B, B; ...; A, B, B; ...; A, B, B), A \stackrel{.}{\neq} B, \\ or \\ (3) \ F &= C(A, B, C, B; A, B, C, B; ...; A, B, C, D; ...; A, B, C, B), A \stackrel{.}{\neq} C. \end{aligned}$

2. Statement of Theorem

Theorem. The spanning trees of a 2-cactus G partition into exactly three isomorphism classes if and only if G can be obtained by one of the following constructions:

Fig. 1. Construction 1.

Construction 1 (see Fig. 1): (I) Let U be the unicyclic graph $U = D_1(A, A, A)$,

- (II) Add an edge e to one of the pendant trees A, such that:
 - (i) the circuit D_2 in A + e has length 3 or 4 and
 - (ii) the edges of D_2 partition into exactly two \cong -isomorphism classes in the rooted graph (A + e, a), where the root a is the attachment-vertex of A to D_1 in the graph U.

Construction 2 (see Fig. 2): (I) Let U be the unicyclic graph

$$U = D_1((A_1, a_1), (B_1, b_1) (A_2, a_2), (B_2, b_2))$$

where

$$(A_1, a_1) \stackrel{.}{\cong} (A_2, a_2)$$
 and $(B_1, b_1) \stackrel{.}{\cong} (B_2, b_2)$.

Fig. 3. Construction 3.

- (II) Add an edge e to one of the pendant trees, say A_1 such that:
 - (i) the circuit D_2 in $A_1 + e$ has length 3 or 4 and
 - (ii) the edges of D_2 partition into exactly two \doteq -isomorphism classes in the rooted graph $(A_1 + e, a_1)$.

Construction 3 (see Fig. 3): Let H be a 2-cactus consisting of the two circuits $D_1 = (u_1, u_2, u_3), D_2 = (v_1, v_2, v_3)$ and a path joining u_1 to v_1 . Attach a copy of the rooted tree (A, a) to H at each of the vertices u_2, u_3, v_2, v_3 .

Attach symmetrically a rooted tree at each vertex of the u_1v_1 -path:

$$C_1, C_2, C_3, \dots, C_k, C_{k+1}, C_k, \dots, C_3, C_2, C_1$$

or

$$C_1, C_2, C_3, \dots, C_{k-1}, C_k, C_k, C_{k-1}, \dots, C_3, C_2, C_1$$

Construction 4 (see Fig. 4): Let H be a 2-cactus consisting of the two circuits $D_1 = (u_1, u_2, u_3, u_4), D_2 = (v_1, v_2, v_3, v_4)$ and a path joining u_1 to v_1 . Attach a copy of the rooted tree (A, a) to H at each of the vertices u_2, u_4, v_2, v_4 . Attach a copy of the rooted tree (B, b) to H at each of the vertices u_3, v_3 .

Attach symmetrically a rooted tree at each vertex of the u_1v_1 -path:

 $C_1, C_2, C_3, \dots, C_k, C_{k+1}, C_k, \dots, C_3, C_2, C_1$

or

$$C_1, C_2, C_3, \ldots, C_{k-1}, C_k, C_k, C_{k-1}, \ldots, C_3, C_2, C_1$$

Definition. We shall call a 2-cactus *symmetric* if it can be obtained by Construction 3 or 4.

Fig. 4. Construction 4.

Remark. (ii) implies (i) in both of Constructions 1 and 2: If the edges of a rooted circuit partition into exactly two \doteq -isomorphism classes then the circuit must have length 3 or 4. Further, (ii) implies that trees attached to the circuit equidistant from the root (resp. *a* and a_1) must be \doteq -isomorphic.

3. Proof of the Theorem

If G has been obtained by Constructions 1, 2, 3 or 4, then it can be verified by inspection that $\tau(G)=3$. Conversely, let G be a 2-cactus with $\tau(G)=3$. We shall then prove that G can be obtained by one of Constructions 1, 2, 3 or 4.

Let for the remainder of this paper G denote a 2-cactus with $\tau(G)=3$ with circuits $D_1=(u_1, u_2, \ldots, u_m)$ and $D_2=(v_1, v_2, \ldots, v_n)$. Let $d(D_1, D_2)=d(u_1, v_1)$ and let $\hat{D_1}$ (resp. $\hat{D_2}$) denote that connected component of $G-u_1$ (resp. $G-v_1$) which contains D_1-u_1 (resp. D_2-v_1). We may suppose $|V(\hat{D_1})| \ge |V(\hat{D_2})|$. This hypothesis implies by [8] that for any spanning tree of G the intersection of its median with $\hat{D_2}$ will be empty.

Lemma 1. With notation and hypotheses about G as above we have

 $\forall e \in E(D_2) : \tau(G-e) \leq 2.$

Proof of Lemma 1. Suppose that an edge $e \in E(D_2)$ exists such that $\tau(G-e) \ge 3$. We shall then prove that $\tau(G) \ge 4$. Among all spanning trees of G-e choose one, say T, for which the deviation, $\delta(T)$, is maximum. If $e \notin \{(v_1, v_2), (v_1, v_n)\}$ then the spanning tree $T^* = T + e - (v_1, v_2)$ for G will have the same median, $M(T^*) = M(T)$, and therefore $\delta(T^*) > \delta(T)$, but then T^* cannot be isomorphic to any spanning tree of G-e, and we

have that $\tau(G) \ge 4$. If $e \in \{(v_1, v_2), (v_1, v_n)\}$ then we may analogously obtain $\tau(G) \ge 4$ by considering a spanning tree T of G-e with minimum deviation and $T^* = T + e - (v_2, v_3)$. In either case the hypothesis $\tau(G) = 3$ is contradicted, so Lemma 1 is proven. \Box

For i=1,2 let $E_i(D_2) = \{e \in E(D_2) | \tau(G-e) = i\}$. Then $E(D_2) = E_1(D_2) \cup E_2(D_2)$ is a partitioning of $E(D_2)$.

Lemma 2. Notation and hypotheses are as above. Let G be a 2-cactus with $\tau(G)=3$, $|V(\hat{D}_1)| \ge |V(\hat{D}_2)|$, and $E(D_2)=E_1(D_2)\cup E_2(D_2)$.

Then we have:

(i) If $e_1, e_2 \in E_1(D_2)$ then $(G - e_1, u_1) \doteq (G - e_2, u_1)$,

(ii) $0 \leq |E_1(D_2)| \leq 2$.

(iii) The length of D_2 is either 3 or 4.

Proof of Lemma 2. If $|E_1(D_2)| \ge 2$ then let $e_1, e_2 \in E_1(D_2), e_1 \ne e_2$. It is proven in e.g. [4] for i = 1, 2 that $\tau(G - e_i) = 1$ implies that the pendant trees in $G - e_i$ to D_1 at u_1 and u_3 , respectively, are root-isomorphic. But the pendant tree at u_3 remains unchanged from $G - e_1$ to $G - e_2$, therefore the pendant trees to D_1 at u_1 in $G - e_1$ and $G - e_2$, respectively, are root-isomorphic.

This proves (i).

We shall prove (ii) by showing that the root-isomorphism in (i) can occur for at most one pair of distinct edges in $E_1(D_2)$. For any pair of distinct edges e_1, e_2 in $E_1(D_2)$ the position of e_1 and D_2 will uniquely determine that of e_2 . This is because the deviation of u_1 w.r.t. S, $\delta_S(u_1) = \sum_{x \in V(S)} d(u_1, x)$, must by (i) remain the same integer whether S is the pendant tree rooted at u_1 in $G - e_1$ or in $G - e_2$. This proves that $|E_1(D_2)| \leq 2$ and (ii) is finished. By (ii) we have that $E_2(D_2) \neq \emptyset$. Let $f \in E_2(D_2)$, then by definition of $E_2(D_2)$ we have that $\tau(G - f) = 2$. Let T_1 and T_2 denote two nonisomorphic spanning trees for G - f, and hence also for G. If $|E(D_2)| \geq 5$ then we can by arguing as in the proof of Lemma 1 construct another two spanning trees T_3, T_4 for G such that their deviations satisfy $\delta(T_3) \neq \delta(T_4)$ and $\{\delta(T_1), \delta(T_2)\} \cap$ $\{\delta(T_3), \delta(T_4)\} = \emptyset$. Hence we have $\tau(G) \geq 4$, a contradiction.

This proves (iii) and Lemma 2 is proven.

We shall now demonstrate that not only D_2 but also D_1 has length 3 or 4.

We shall consider $E_1(D_2) \neq \emptyset$ and $E_1(D_2) = \emptyset$ separately. In both cases the main tools in our analysis will be (1)-(3) from the preliminaries.

Lemma 3. Notation and hypotheses are as above. Let G be a 2-cactus with $\tau(G)=3$, $|V(\hat{D}_1)| \ge |V(\hat{D}_2)|$, and $E(D_2)=E_1(D_2)\cup E_2(D_2)$.

If $E_1(D_2) \neq \emptyset$ then we have:

either (i) the length of D_1 is 3 and there exists an edge e on D_2 such that we can express G in the form: $G = D_1((A + e, u_1), (A, u_2), (A, u_3))$,

or (ii) the length of D_1 is 4 and there exists an edge e on D_2 such that we can express G in the form: $G = D_1((A + e, u_1), (B, u_2), (A, u_3), (B, u_4)), (A \cong B \text{ may occur}).$

Obviously, we have both in (i) and (ii) that $D_2 \subseteq A + e$, and we shall see below that we can choose any edge as e from $E_1(D_2)$.

Proof of Lemma 3. Since $E_1(D_2) \neq \emptyset$ there exist by Lemmas 1 and 2(ii) edges $e \in E_1(D_2)$ and $f \in E_2(D_2)$ such that $\tau(G-e) = 1$ and $\tau(G-f) = 2$. We shall compare the structure of G-e with that of G-f by help of (1)-(3).

If (1) and (2) hold for G-e and G-f, respectively, then by (2) the length of D_1 is a multiple of 3, and we must in fact have $|E(D_1)|=3$. Because, suppose otherwise $|E(D_1)| \ge 6$ and let U_i , $1 \le i \le m$, denote the rooted tree attached to D_1 at u_i in G-eand let U_1^* denote the rooted tree $U_1^*=U_1+e-f$ attached to D_1 at u_1 in G-f.

From (1) we obtain $U_1 \cong U_3$, $U_2 \cong U_4$ and from (2) we obtain $U_2 \cong U_3$, $U_1^* \cong U_4$. This yields $U_1 \cong U_1^*$, but obviously $\tau(G-e) \neq \tau(G-f)$ implies that $U_1 \cong U_1^*$. This contradiction proves that D_1 has length 3.

By (1) this implies that $U_1 \stackrel{.}{\cong} U_2 \stackrel{.}{\cong} U_3 \stackrel{.}{\cong} A$ and $G - e = D_1(A, A, A)$ or $G = D_1(A + e, A, A)$ as described in (i).

If (1) and (3) hold, then similarly we obtain (ii), because $|E(D_1)|$ must by (3) be a multiple of 4 and $|E(D_1)| \ge 8$ would for $e \in E_1(D_2)$, $f \in E_2(D_2)$ imply that $U_1 \cong U_3 \cong U_5$ by (1) and $U_1^* \cong U_5$ by (3) in contradiction to $U_1 \ncong U_1^*$. Thus $|E(D_1)| = 4$ and we have by (1) that $G - e = D_1(A, B, A, B)$ or $G = D_1(A + e, B, A, B)$ as desired in (ii). This proves Lemma 3. \Box

Lemma 4. Notation and hypotheses are as above. Let G be a 2-cactus with $\tau(G)=3$, $|V(\hat{D}_1)| \ge |V(\hat{D}_2)|$, and $E(D_2)=E_1(D_2)\cup E_2(D_2)$.

If $E_1(D_2) = \emptyset$ then:

(i) D_1 has length either 3 or 4

(ii) the trees attached to $D_1 = (u_1, u_2, ..., u_m)$ at u_2 and u_m are root-isomorphic to each other.

Proof of Lemma 4. Let $f_1, f_2 \in E_2(D_2)$ such that the two trees attached to D_1 at u_1 in $G-f_1, G-f_2$ respectively, are not \cong -isomorphic. This is for instance the case if f_1 , but not f_2 , is incident with v_1 .

For i=1,2 the graph $G-f_i$ consists of D_1 with trees attached in repeated series of length 3 or 4 as expressed in (2) or (3), respectively.

There can only be one sequence of 3 or 4 trees round D_1 because the tree attached to D_1 at u_1 otherwise would be repeated in the next sequence. But that would imply that the trees attached to D_1 at u_1 in $G-f_1$ and $G-f_2$, respectively, should be root-isomorphic and that contradicts the choice of f_1 , f_2 . Hence D_1 must have length 3 or 4. This proves (i).

We shall split the proof of (ii) into two cases.

Case 1: $|E(D_1)| = 3$.

Suppose (ii) is false, then we have from (2) that $U_2 \cong U_3$ for the trees U_2 , U_3 attached to D_1 to u_2 , u_3 , respectively, and also that the trees U_1 , U_1^* attached to D_1 at u_1 in $G-f_1$, $G-f_2$, respectively, must be pairwise root-isomorphic to U_2 and U_3 , say $U_1 \cong U_2$, $U_1^* \cong U_3$. But then we find that $G-f_1$ has two non-isomorphic spanning trees $T_1 = L(U_1, U_2, U_3)$ and $T_2 = L(U_1, U_3, U_2)$ and $G-f_2$ has two non-isomorphic spanning trees $T_3 = L(U_1^*, U_2, U_3)$ and $T_4 = L(U_1^*, U_3, U_2)$.

These four trees T_1, T_2, T_3, T_4 are, in fact, pairwise non-isomorphic. T_1 has the property that it contains two adjacent edges such that their deletion leaves the three connected components $U_1, U_2, U_3(U_1 \cong U_2)$ but neither in T_3 , nor in T_4 can such two adjacent edges be found. Hence $T_1 \cong T_3$ and $T_1 \cong T_4$. Analogously we can show that $T_2 \cong T_3$ and $T_2 \cong T_4$. This yields the contradiction that $\tau(G) \ge 4$ and we have proved that (ii) holds in Case 1.

Case 2: $|E(D_1)| = 4$.

Suppose (ii) is false, then we have $U_2 \not\cong U_4$ for the trees U_2 , U_4 attached to D_1 at u_2 , u_4 , respectively, and by (3) the tree U_3 attached to D_1 at u_3 must be root-isomorphic to the tree U_1 attached to D_1 at u_1 in the graph $G-f_1$, but U_3 must also be root-isomorphic to U_1^* , which is the tree attached to D_1 at u_1 in the graph $D-f_2$. This contradicts the choice of f_1 , f_2 and we proved that (ii) also holds in Case 2. This completes the proof of Lemma 4. \Box

Lemma 5. Notation and hypotheses are as above. Let G be a 2-cactus with $\tau(G)=3$, $|V(\hat{D}_1)| \ge |V(\hat{D}_2)|$, and $E(D_2)=E_1(D_2)\cup E_2(D_2)$. If $E_1(D_2)=\emptyset$ then either $|E(D_1)|=|E(D_2)|=3$ or $|E(D_1)|=|E(D_2)|=4$.

Proof of Lemma 5. The lengths of D_1 , D_2 must by Lemmas 2(iii) and 4(i) be either 3 or 4. We shall prove that the circuits cannot have different lengths. Suppose, say, that D_1 has length 4 and D_2 has length 3. The case of interchanged lengths can be treated analogously.

On D_2 choose edges f_1, f_2 such that f_1 is incident with v_1 but f_2 is not. Let U_1, U_1^* denote the trees rooted at u_1 in $G-f_1$ and $G-f_2$, respectively. Obviously $U_1 \stackrel{\scriptscriptstyle \perp}{\cong} U_1^*$.

From Lemma 4(ii) we have that the trees U_2 , U_4 attached to D_1 at u_2 , u_4 , respectively, satisfy $U_2 \cong U_4$ while U_3 , the tree attached to D_1 at u_3 , satisfies $U_3 \cong U_1$ and $U_3 \cong U_1^*$.

G has the four spanning trees:

$$\begin{split} T_1 &= L(U_1, U_2, U_3, U_4), \\ T_2 &= L(U_3, U_2, U_1, U_4), \\ T_3 &= L(U_1^*, U_2, U_3, U_4), \\ T_4 &= L(U_3, U_2, U_1^*, U_4), (U_2 \stackrel{.}{\simeq} U_4). \end{split}$$

248

We have from (3) that $T_1 \not\cong T_2$ and $T_3 \not\cong T_4$. We can prove that $T_1 \not\cong T_3$ and $T_1 \not\cong T_4$, and similarly that $T_2 \not\cong T_3$, $T_2 \not\cong T_4$, by deletion of edges analogously to the proof of Case 1 in Lemma 4. Thus we obtain the contradiction $\tau(G) \ge 4$ and Lemma 5 is proven. \Box

Lemma 6. Notation and hypothesis are as above. Let G be a 2-cactus with $\tau(G) = 3$, $|V(\hat{D}_1)| \ge |V(\hat{D}_2)|$, and $E(D_2) = E_1(D_2) \cup E_2(D_2)$.

If $E_1(D_2) = \emptyset$ then G is a symmetric cactus, i.e., G can be obtained either by Construction 3 or by Construction 4.

Proof of Lemma 6. Consider the following four spanning trees of G (see Fig. 5):

$$\begin{split} T_1 &= G - \{(u_1, u_2), (v_1, v_2)\}, \\ T_2 &= G - \{(u_2, u_3), (v_1, v_2)\}, \\ T_3 &= G - \{(u_1, u_2), (v_2, v_3)\}, \\ T_4 &= G - \{(u_2, u_3), (v_2, v_3)\}. \end{split}$$

We have from $(v_1, v_2) \in E_2(D_2)$ that $T_1 \ncong T_4$ and from $(v_2, v_3) \in E_2(D_2)$ that $T_3 \ncong T_4$. We have that $T_1 \ncong T_3$ and $T_2 \ncong T_4$ because T_1 and T_3 (resp. T_2 and T_4) have the same median but $\delta(T_1) > \delta(T_3)$ (resp. $\delta(T_2) > \delta(T_4)$).

We shall now prove that $T_1 \not\cong T_4$. We shall consider $|E(D_1)| = |E(D_2)| = 3$ and $|E(D_1)| = |E(D_2)| = 4$ separately.

Case 1: $|E(D_1)| = 3$.

 \hat{D}_1 is by Lemma 4(ii) symmetric w.r.t. u_1 , therefore $M(T_4) \cap \hat{D}_1 = \emptyset$ and by [8] the hypothesis $|V(\hat{D}_1)| \ge |V(\hat{D}_2)|$ implies that $M(T_4) \cap \hat{D}_2 = \emptyset$.

In T_4 we thus have that $M(T_4) \subseteq G - (\hat{D}_1 \cup \hat{D}_2)$, and in T_1 we can then easily show that $M(T_1)$ must be the corresponding same one vertex or two vertices because

Fig. 5. Four spanning trees of G. The common length of circuits D_1 , D_2 may be 3 or 4, this is indicated by a dot.

internal edge-exchanges within a weight branch do not affect the weight of a vertex. But now we have that $\delta(T_1) > \delta(T_4)$ and thus $T_1 \not\cong T_4$.

Case 2: $|E(D_1)| = 4$.

As in Case 1 it can be proved that in T_4 we have that $M(T_4) \subseteq G - (\hat{D}_1 \cup \hat{D}_2)$ if and only if in T_1 and T_4 we have that $M(T_1)$ and $M(T_4)$ are the corresponding same one or two vertices. We can then use $\delta(T_1) > \delta(T_4)$ to establish $T_1 \not\cong T_4$.

If $M(T_4 \not\subseteq G - (D_1 \cup D_2))$ then it is not difficult, but somewhat tedious, to show by case examination that we also obtain $T_1 \ncong T_4$. We thus have that T_1, T_2, T_4 are three pairwise non-isomorphic spanning trees for G. Since $\tau(G) = 3$ and $T_3 \ncong T_1, T_3 \ncong T_4$ it then follows that $T_2 \cong T_3$. This in turn will lead to the desired conclusion that G is symmetric.

We shall sketch the argument for $|E(D_1)|=3$, the case $|E(D_1)|=4$ can be treated similarly.

Suppose $|E(D_1)|=3$. By symmetry of u_2 , u_3 in T_2 we see that $M(T_2) \subseteq G - (\hat{D_1} \cup \hat{D_2})$. Therefore the medians of T_2 and T_3 are corresponding vertices and we can by comparison of connected components of $T_2 - M(T_2)$ and $T_3 - M(T_3)$ establish that G is symmetric as desired. This proves Lemma 6. \Box

The proof of the Theorem can now be concluded:

For $E_1(D_2) \neq \emptyset$ Lemmas 1-3 prove (I) and II(i) in the statements that G can be obtained by Construction 1 or 2. The proof of statement II(ii) concerning Constructions 1 and 2 is not difficult and is left to the reader.

For $E_1(D_2) = \emptyset$ the proof of the Theorem follows from Lemmas 4–6. This concludes the proof of the Theorem. \Box

References

- [1] R. Fischer, Über Graphen mit isomorphen Gerüsten, Monatsh. Math. 77 (1973) 24-30.
- [2] L. Friess, Graphen worin je zwei Gerüste isomorph sind, Math. Ann. 204 (1973) 65-71.
- [3] B.L. Hartnell, On graphs with exactly two isomorphism classes of spanning trees, Utilitas Math. 6 (1974) 121-137.
- [4] P.D. Vestergaard, Finite and infinite graphs whose spanning trees are pairwise isomorphic, Ann. Discrete Math. 41 (1989) 421-436.
- [5] P.D. Vestergaard, The least number of spanning trees in a cactus, to appear.
- [6] B. Zelinka, Medians and peripherians of trees, Arch. Math. Brno 4 (1968) 87-95.
- [7] B. Zelinka, Grafy, jejichž všechny kostry jsou spolu isomorfni, Časopis Pěst. Mat. 96 (1971) 33-40. (Title translated: Graphs, all of whose spanning trees are isomorphic to each other.)
- [8] B. Zelinka, The number of isomorphism classes of spanning trees of a graph, Math. Slovaca 28 (1978) 385-388.