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Abstract

Zelinka (1978) proved that the spanning trees of a 2-cactus partition into at least 3 isomorphism
classes. Here we examine the structure of these 2-cacti for which the spanning trees partition into
exactly 3 isomorphism classes.

1. Notation and preliminaries

A tree is a connected graph with no circuit. A rooted tree (T, v) is a tree T together
with a distinguished vertex v, the root. When it is clear which root v is intended, we
may for short write the rooted tree T.

A unicyclic graph is a connected graph G with exactly one circuit C. Let the vertices
on C be vy,v,,...,0, in that order, C=(vy,v,,...,0,). The connected components of
G—E(C) are trees Ty,T,,...,T, and we can choose notation such that v;e V(T;),
1<ign. We say that the rooted tree (7;,v;) is attached to C at v; and we write
G=C((Ty,v1),(T5,03),...,(Ty,v,)) or for short G=C(7y,T>,...,T,). L(Ty,T5,...,T,)
denotes the graph C(T, T5, ..., T,)—(v1,0,).

A cactus is a connected graph which contains at least one circuit and which has the
property that any pair of its circuits have at most a vertex in common. An n-cactus is
a cactus with exactly » circuits, n> 1.

Let G be a 2-cactus with the two circuits Dy =(uy,u,, ..., u,) and Dy =(v{,0;,...,0,)
where notation can be chosen such that u, and v, are the two vertices in D, and
D, respectively, having minimum distance in G, where u; =v, may occur. G contains
a connected graph H consisting of D,, D, and a path joining u; to v,. If u; =v, then
the path is that single vertex. The connected components of G— E(H) are trees. For
i=2,3,...,m denote by (U;,u;) that rooted tree which is a connected component of
G—E(H) and contains u;. We say that U; is attached to D; at u; or to H at u;.
Analogously we say that V,,V;,...,V, are trees attached to D,, or to H, at
U3,V3,...,U,, respectively.
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151 denotes that connected component of G—uy which contains D, —u,. Analo-
gously D, is that connected component of G—v, which contains D, —v;. G'~G"
means that the graphs G’ and G” are isomorphic. (G',v')=(G”,v") means that the
rooted graphs (G’,v’) and (G”,v") are root-isomorphic, i.e., there exists an isomor-
phism from G’ onto G” which maps ¢v" onto v”. If it is clear which roots are intended,
we may write G'2G" for short.

A spanning tree for G is a subgraph of G which is a tree and which contains all
vertices of G. For a connected graph G we denote by 7(G) the number of isomorphism
classes into which all the spanning trees of G partition.

The distance between two vertices x and y in a connected graph is denoted d(x, y).
The distance between two vertex-subsets 4 and B in a connected graph is
d(A,B)=min{d(x, y)|xe A, yeB}.

For a vertex x in a tree T we let

or(x)=0(x)= 3, d(x,y)
yev(T)
denote the deviation of x w.r.t. T. A vertex ¢ in T with minimum deviation is called
a median of T and 6(q)=4(T) is called the deviation of T.

In [6] it was proved that each tree has either exactly one median or exactly two
medians which are joined by an edge.

If vis a vertex of a tree T and e is an edge of T incident with v, then all vertices which
belong to paths from v with the first edge e form a subgraph which is called a branch of
T with the knag v. The branch of T with the knag v with the maximal number of
vertices is called a weight branch and its number of vertices is called the weight at v. In
[6] it was proved that a vertex of a tree has minimum weight, if and only if it is
a median of this tree.

Below in (1)—(3) we give adaptions of the characterization of graphs with exactly
one isomorphism class of spanning trees ([1,2,4,7]) and the characterization of
graphs with exactly two isomorphism classes of spanning trees ([3, Theorem 27]).

Let F denote a unicyclic graph obtained from a 2-cactus by the deletion of one edge.
We then have the following.

©(F)=1if and only if
(1) F=C(4,B; A,B,...;A,B)or F=C(A4,A4,...,A).
©(F)=2 if and only if
either (2) F=C(A,B,B;A,B,B;...;A,B,B;...;A B,B),A% B,
or (3) F=C(A,B,C,B;A,B,C,B;...;A,B,C,D;...;A,B,C,B),A % C.

2. Statement of Theorem

Theorem. The spanning trees of a 2-cactus G partition into exactly three isomorphism
classes if and only if G can be obtained by one of the following constructions:
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G =Dy (A, A, A) + e r——o—0

The three spanning
trees for G.

Fig. 1. Construction 1.

The three spanning trees for G

Fig. 2. Construction 2.

Construction 1 (see Fig. 1): (I} Let U be the unicyclic graph U=D,(A, A, A),
(IT) Add an edge e to one of the pendant trees A, such that:
(i) the circuit D, in A+e has length 3 or 4 and
(ii) the edges of D, partition into exactly two =-isomorphism classes in the

rooted graph (A + e, a), where the root a is the attachment-vertex of A to D, in
the graph U.

Construction 2 (see Fig. 2): (I} Let U be the unicyclic graph

U=Di((Ay,a1), (B1,by) (A2,a3), (B3,b3))
where

(Ay,a1)=(A;,a;) and (By,by)=(B,,b,).
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Symmetric 2~cactus with
circuit lenght 3.

The three spanning trees
for G.

Fig. 3. Construction 3.

(II) Add an edge e to one of the pendant trees, say A, such that:
(1) the circuit D, in Ay +e has length 3 or 4 and
(i) the edges of D, partition into exactly two =-isomorphism classes in the
rooted graph (A, +e,a,).

Construction 3 (see Fig. 3). Let H be a 2-cactus consisting of the two circuits
Dy=(uy,uy,u3), Dy=(vy,0,5,03) and a path joining u, to v,. Attach a copy of the rooted
tree (A,a) to H at each of the vertices u,,us,v,,05.

Attach symmetrically a rooted tree at each vertex of the u,v-path:

C19C2’C3a""ck’ck+l’cka---’C3’C2aC1
or
CI’CZaCS,--'ack—lacksckyck—la-'~aC3,C2’C1'

Construction 4 (see Fig. 4). Let H be a 2-cactus consisting of the two circuits
Dy =(uy,uy,us,uy),Dy=(v1,0,,03,04) and a path joining u, to vy. Attach a copy of the
rooted tree (A,a) to H at each of the vertices u,,uq,v4,04. Attach a copy of the rooted
tree (B,b) to H at each of the vertices us,vs.

Attach symmetrically a rooted tree at each vertex of the u,v,-path:

Cl’c2ac3!~-"ck’ck+lack’---,C3’C2’C1
or
C17C23C33"‘9Ck—1’cksck’ck—ls""C3ac23Cl'

Definition. We shall call a 2-cactus symmetric if it can be obtained by Construction
3or4
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A A
B B
C1 C2 C2 C1
A A
2 A
B B
Cl CZ C2 Cl
A
A
B B

Symmetric 2-cactus with A A

circuit length 4.
The three spanning

trees for G.

Fig. 4. Construction 4.

Remark. (ii) implies (i) in both of Constructions ! and 2: If the edges of a rooted circuit
partition into exactly two =-isomorphism classes then the circuit must have length
3 or 4. Further, (ii) implies that trees attached to the circuit equidistant from the root
(resp. a and a;) must be =-isomorphic.

3. Proof of the Theorem

If G has been obtained by Constructions 1, 2, 3 or 4, then it can be verified by
inspection that 7(G)=3. Conversely, let G be a 2-cactus with 7(G)=3. We shall then
prove that G can be obtained by one of Constructions 1,2,3 or 4.

Let for the remainder of this paper G denote a 2-cactus with t(G)=3 with circuits
Dy=(uy,u,,...,u,) and Dy=(vy,v,,...,0,). Let d(Dy, D, )=d(u,v,) and let D, (resp.
D,) denote that connected component of G—u, (resp. G—v;) which contains D; —u,
(resp. D, —v,). We may suppose | V(D,)|=| V(ﬁ2)|. This hypothesis implies by [8]
that for any spanning tree of G the intersection of its median with D, will be empty.

Lemma 1. With notation and hypotheses about G as above we have

YecE(D,):1(G—e)<2.

Proof of Lemma 1. Suppose that an edge ee E(D,) exists such that 1(G—e)>3. We
shall then prove that t(G)>4. Among all spanning trees of G — e choose one, say T, for
which the deviation, §( 7)), is maximum. If e¢ {(v,,v;), (v1,0,)} then the spanning tree
T*=T+e—(vy,v,) for G will have the same median, M(7*)=M(T), and therefore
O T*)>3(T), but then T* cannot be isomorphic to any spanning tree of G —e, and we
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have that t(G)=4. If ee{(vy,v;), (v1,0s)} then we may analogously obtain 7(G)=4
by considering a spanning tree 7 of G—e with minimum deviation and
T*=T+e—(v,,v3). In either case the hypothesis 7{G)=3 is contradicted, so
Lemma 1 is proven. O

For i=1,2 let E(D;)={ecE(D,)|1(G—e)=i}. Then E(D,)=E;(D;)UE(D,) is
a partitioning of E(D,).

LemAma 2. Notation and hypotheses are as above. Let G be a 2-cactus with 1(G)=3,
| V(D)= V(Dy)|, and E(D;)=E;(D;)UE(D;).
Then we have:;
(i) If ey, e2€E{(D3) then (G —eq,u)=(G—ey,uy),
(i) 0<|Ey (D)l <2
(iii) The length of D, is either 3 or 4.

Proof of Lemma 2. If |E,(D,)|>2 then let e;,e,€E{(D,), e; #¢,. It is proven in e.g.
[4] for i=1,2 that 1(G —e;)= 1 implies that the pendant trees in G—e; to D, at u; and
us, respectively, are root-isomorphic. But the pendant tree at u; remains unchanged
from G—e; to G—e,, therefore the pendant trees to D, at u; in G—e; and G—e,,
respectively, are root-isomorphic.

This proves (i).

We shall prove (ii) by showing that the root-isomorphism in (i) can occur for at
most one pair of distinct edges in E,(D,). For any pair of distinct edges ey, e; in
E,(D,) the position of e, and D, will uniquely determine that of e,. This is because the
deviation of u; w.rt. S, ds(u1)=Y, .y 5d(us,x), must by (i) remain the same integer
whether S is the pendant tree rooted at uy in G—e, or in G—e,. This proves that
| E{(D,)| <2 and (ii) is finished. By (ii) we have that E,(D,)#0. Let f€E,(D,), then by
definition of E,(D,) we have that 1(G—f)=2. Let T, and T, denote two non-
isomorphic spanning trees for G—f, and hence also for G. If | E(D;)|> 5 then we can
by arguing as in the proof of Lemma 1 construct another two spanning trees T3, T4
for G such that their deviations satisfy &(T3)#68(T,) and {8(Ty), 8(T2)}n
{6(T3), 5(T4)} =9. Hence we have t(G)>4, a contradiction.

This proves (iii) and Lemma 2 is proven. O

We shall now demonstrate that not only D, but also D; has length 3 or 4.
We shall consider E,(D,)#9 and E,(D,)=0 separately. In both cases the main
tools in our analysis will be (1)—(3) from the preliminaries.

Lemma 3. Notation and hypotheses are as above. Let G be a 2-cactus with 1(G)=3,
|V(D1)|>|V(D,)\, and E(D3)=E;(D2)UE;(Ds).

If E{(D;)#0 then we have:

either (i) the length of D, is 3 and there exists an edge e on D, such that we can
express G in the form: G=D,((A+e,uy), (4,u3), (A, us)),
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or (ii) the length of D, is 4 and there exists an edge e on D, such that we can express
G in the form: G=D((A+e,u;y), (B,us), (A, us), (B,us)), (A= B may occur).

Obviously, we have both in (i) and (ii) that D, = 4 +e¢, and we shall see below that
we can choose any edge as e from E,(D,).

Proof of Lemma 3. Since E,(D,)#® there exist by Lemmas 1 and 2(ii) edges
ecE (D;)and feE;(D,)such that 1(G—e)=1and 1(G—f)=2. We shall compare the
structure of G—e with that of G—f by help of (1)—(3).

If (1) and (2) hold for G—e and G —f, respectively, then by (2) the length of D, is
a multiple of 3, and we must in fact have [E(D,)|=3. Because, suppose otherwise
|E(D)| =6 and let U;, 1 <i<m, denote the rooted tree attached to D, at y; in G—e
and let U¥ denote the rooted tree Ut =U, +e—f attached to D, at u; in G—f.

From (1) we obtain U, ~Uj;, U,~U, and from (2) we obtain U,=U,;, U¥=U,.
This yields U, = U%, but obviously 1(G—e)#1t(G—f) implies that U, % U¥*. This
contradiction proves that D; has length 3.

By (1) this implies that U,xU,2Us;~A and G—e=D(4,4,4) or
G=D(A+e, A, A) as described in (i).

If (1) and (3) hold, then similarly we obtain (ii), because | E(D;)| must by (3) be
a multiple of 4 and |E(D,)|>8 would for ecE(D,), feE,(D,) imply that
U,2Us=Us by (1) and U¥=Us by (3) in contradiction to U, ¢ U*. Thus
|E(Dy)|=4 and we have by (1) that G—e=D(A4,B,A,B)or G=D,(A+e, B, A,B) as
desired in (ii). This proves Lemma 3. O

Lemma 4. Notation and hypotheses are as above. Let G be a 2-cactus with 1(G)=3,
|V(D1)|>|V(D,)|, and E(D;)=E;(D;)VE(D,).

If E\(D;)=0 then:

(i) Dy has length either 3 or 4

(i1) the trees attached to Dy =(uy,u,, ..., u,) at u, and u,, are root-isomorphic to each
other.

Proof of Lemma 4. Let f,, f,€E,(D>) such that the two trees attached to D, at u, in
G —f,, G—f, respectively, are not ~-isomorphic. This is for instance the case if f;, but
not f,, is incident with v, .

For i=1,2 the graph G —f; consists of D, with trees attached in repeated series of
length 3 or 4 as expressed in (2) or (3), respectively.

There can only be one sequence of 3 or 4 trees round D because the tree attached to
D, at u; otherwise would be repeated in the next sequence. But that would imply that
the trees attached to D; at u; in G—f; and G—f,, respectively, should be root-
isomorphic and that contradicts the choice of f;, f,. Hence D, must have length 3 or 4.
This proves (i).

We shall split the proof of (ii) into two cases.
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Case 1. |E(Dy)|=3.

Suppose (i) is false, then we have from (2) that U, 2% U, for the trees U,,
U, attached to D, to u,, u;, respectively, and also that the trees U,, U¥ attached to
D, atu, in G—f;, G ~—f,, respectively, must be pairwise root-isomorphic to U, and U,
say U, =U,, U¥=U,. But then we find that G —f; has two non-isomorphic spanning
trees Ty=L(U,,U,, Ujz)and T,=L(U,,U,,U,) and G—f, has two non-isomorphic
spanning trees T3=L(U¥,U,,Us) and T4=L(U%,Uj, U,).

These four trees Ty, T, T3, T, are, in fact, pairwise non-isomorphic. 7y has the
property that it contains two adjacent edges such that their deletion leaves the three
connected components U, U,, U3(U, = U,) but neither in T, nor in T, can such two
adjacent edges be found. Hence T; & T;and T, 2 T,. Analogously we can show that
T, % Tsand T, % T,. This yields the contradiction that 7(G)>4 and we have proved
that (ii) holds in Case 1.

Case 2: |E(Dy)|=4.

Suppose (ii) is false, then we have U, 2 U, for the trees U,, U, attached to D, at u,,
ug4, respectively, and by (3) the tree U ; attached to D, at uy must be root-isomorphic to
the tree U, attached to D, at u; in the graph G—f;, but Uj; must also be root-
isomorphic to U¥, which is the tree attached to D, at u, in the graph D-f5,. This
contradicts the choice of fi, f, and we proved that (ii) also holds in Case 2. This
completes the proof of Lemma 4. [T

Lemma 5. Notation and hypotheses are as above. Let G be a 2-cactus with t1(G)=3,
| V(D)= V(D,)|, and E(Dy)=E;(D;)VE,(D,).
If E{(D,)=0 then either | E(D,)|=|E(D,)|=3 or |E(D,)|=|E(D,)|=4.

Proof of Lemma 5. The lengths of D,, D, must by Lemmas 2(iii) and 4(i) be either 3
or 4. We shall prove that the circuits cannot have different lengths. Suppose, say, that
D, has length 4 and D, has length 3. The case of interchanged lengths can be treated
analogously.

On D, choose edges fi, f, such that f; is incident with v, but f; is not. Let U, U¥
denote the trees rooted at u; in G—f; and G —f,, respectively. Obviously U, & U*.

From Lemma 4(ii) we have that the trees U,, U, attached to D; at u,, u,,
respectively, satisfy U, = U, while Us, the tree attached to D, at us, satisfies U3 % U,
and U, & U

G has the four spanning trees:

Tl =L(U1, U2, U3, U4),
T2=L(U3, U2, U17 U4),
T3 :L(U’lka U29 U3a U4)5

T4=L(U3, U,, U’f, U4), (Uz g U4)‘
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We have from (3)that T, % T, and T, % T,. Wecan prove that Ty % T3 and T, % T,
and similarly that T, % T5, T, T,, by deletion of edges analogously to the proof of
Case 1 in Lemma 4. Thus we obtain the contradiction 7(G)=4 and Lemma 5 is
proven. [

Lemma 6. Notation and hypothesis are as above. Let G be a 2-cactus with 1(G)=3,
V(D) 2| V(D,)|, and E(D3)=E;(D;)UE,(Dy).

If E{(D,)=0 then G is a symmetric cactus, ie., G can be obtained either by
Construction 3 or by Construction 4.

Proof of Lemma 6. Consider the following four spanning trees of G (see Fig. 5).
Ty=G—{(uy,uz),(vy,02)},
Ty=G—{(uy,us), (vy,03)},
T3=G—{(u1,u2),(uz,v3)},
Ta=G~—{(uz,u3), (v2,03)}.

We have from (vy,v;)eE,(D,) that T, % T, and from (v,, v3)e€E,(D,) that T3 T,.
We have that Ty % T3 and T, % T, because T, and T (resp. T, and T,) have the same
median but 6(7y)>d(T3) (resp. 5(T5)>(Ty)).

We shall now prove that T, % T, We shall consider |E(D,)|=|E(D;)|=3 and
|E(Dy)|=|E(D,)|=4 separately.

Case 1: |E(Dy)|=3.

D, is by Lemma 4(ii) symmetric w.r.t. u;, therefore M(T4)~D; =0 and by [8] the
hypothesis | ¥(D,)|>|V(D,)| implies that M(T)nD,=0.

In T, we thus have that M(T,)< G—(D,uUD,), and in T; we can then easily show
that M(T,) must be the corresponding same one vertex or two vertices because

v " V2
u
2 T1 Y 2 | T3
u
u3 j—l— ooo—\l V3 u3 /1-—-00 Vi /VB
L) . . .
u, v, u, v,
T T
u 2 v 4
i
u3k‘>1— ooo—\l’>v3 uﬁ}‘- XY {/ Vg
* L] '] L]

Fig. 5. Four spanning trees of G. The common length of circuits Dy, D, may be 3 or 4, this is indicated
by a dot.
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internal edge-exchanges within a weight branch do not affect the weight of a vertex.
But now we have that 6(7,)>d(T,) and thus 7, &£ T,.

Case 2: |E(Dy)|=4.

As in Case 1 it can be proved that in 7, we have that M(T,)=G—(D,uD,) if and
only if in Ty and T, we have that M(Ty) and M(T,) are the corresponding same one
or two vertices. We can then use 6(7,)>d(T,) to establish T, & T,.

If M(T,¢G—(D,uD,) then it is not difficult, but somewhat tedious, to show by
case examination that we also obtain T, & T,. We thus have that T, T,, T, are three
pairwise non-isomorphic spanning trees for G. Since t1(G)=3 and T, Ty, T3 T, it
then follows that T, = T,. This in turn will lead to the desired conclusion that G is
symmetric.

We shall sketch the argument for | E(D,)|=3, the case | E(D,)|=4 can be treated
similarty.

Suppose | E(D,)|=3. By symmetry of u,, u3 in T, we see that M(T,)< G —(D,uD,).
Therefore the medians of T, and T, are corresponding vertices and we can by
comparison of connected components of 7, — M(T,) and T3 — M(T3) establish that
G is symmetric as desired. This proves Lemma 6. (]

The proof of the Theorem can now be concluded:

For E,(D,;)#9 Lemmas 1-3 prove (I) and II(i) in the statements that G can
be obtained by Construction 1 or 2. The proof of statement II{ii) concerning
Constructions 1 and 2 is not difficult and is left to the reader.

For E{(D;)=0 the proof of the Theorem follows from Lemmas 4—6.

This concludes the proof of the Theorem. O
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