Two-cacti with minimum number of spanning trees

Preben Dahl Vestergaard
Institut for Electronic Systems, Aalborg University, Fredrik Bajers Vej 7, DK-9220 Aalborg, Denmark

Received 2 June 1990
Revised 22 July 1991

Abstract

Zelinka (1978) proved that the spanning trees of a 2-cactus partition into at least 3 isomorphism classes. Here we examine the structure of these 2 -cacti for which the spanning trees partition into exactly 3 isomorphism classes.

1. Notation and preliminaries

A tree is a connected graph with no circuit. A rooted tree (T, v) is a tree T together with a distinguished vertex v, the root. When it is clear which root v is intended, we may for short write the rooted tree T.

A unicyclic graph is a connected graph G with exactly one circuit C. Let the vertices on C be $v_{1}, v_{2}, \ldots, v_{n}$ in that order, $C=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. The connected components of $G-E(C)$ are trees $T_{1}, T_{2}, \ldots, T_{n}$ and we can choose notation such that $v_{i} \in V\left(T_{i}\right)$, $1 \leqslant i \leqslant n$. We say that the rooted tree (T_{i}, v_{i}) is attached to C at v_{i} and we write $G=C\left(\left(T_{1}, v_{1}\right),\left(T_{2}, v_{2}\right), \ldots,\left(T_{n}, v_{n}\right)\right)$ or for short $G=C\left(T_{1}, T_{2}, \ldots, T_{n}\right) . L\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ denotes the graph $C\left(T_{1}, T_{2}, \ldots, T_{n}\right)-\left(v_{1}, v_{n}\right)$.

A cactus is a connected graph which contains at least one circuit and which has the property that any pair of its circuits have at most a vertex in common. An n-cactus is a cactus with exactly n circuits, $n \geqslant 1$.

Let G be a 2 -cactus with the two circuits $D_{1}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ and $D_{2}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where notation can be chosen such that u_{1} and v_{1} are the two vertices in D_{1} and D_{2} respectively, having minimum distance in G, where $u_{1}=v_{1}$ may occur. G contains a connected graph H consisting of D_{1}, D_{2} and a path joining u_{1} to v_{1}. If $u_{1}=v_{1}$ then the path is that single vertex. The connected components of $G-E(H)$ are trees. For $i=2,3, \ldots, m$ denote by $\left(U_{i}, u_{i}\right)$ that rooted tree which is a connected component of $G-E(H)$ and contains u_{i}. We say that U_{i} is attached to D_{1} at u_{i} or to H at u_{i}. Analogously we say that $V_{2}, V_{3}, \ldots, V_{n}$ are trees attached to D_{2}, or to H, at $v_{2}, v_{3}, \ldots, v_{n}$, respectively.
\hat{D}_{1} denotes that connected component of $G-u_{1}$ which contains $D_{1}-u_{1}$. Analogously \hat{D}_{2} is that connected component of $G-v_{1}$ which contains $D_{2}-v_{1} . G^{\prime} \cong G^{\prime \prime}$ means that the graphs G^{\prime} and $G^{\prime \prime}$ are isomorphic. $\left(G^{\prime}, v^{\prime}\right) \dot{\equiv}\left(G^{\prime \prime}, v^{\prime \prime}\right)$ means that the rooted graphs (G^{\prime}, v^{\prime}) and ($G^{\prime \prime}, v^{\prime \prime}$) are root-isomorphic, i.e., there exists an isomorphism from G^{\prime} onto $G^{\prime \prime}$ which maps v^{\prime} onto $v^{\prime \prime}$. If it is clear which roots are intended, we may write $G^{\prime} \dot{\equiv} G^{\prime \prime}$ for short.

A spanning tree for G is a subgraph of G which is a tree and which contains all vertices of G. For a connected graph G we denote by $\tau(G)$ the number of isomorphism classes into which all the spanning trees of G partition.

The distance between two vertices x and y in a connected graph is denoted $d(x, y)$. The distance between two vertex-subsets A and B in a connected graph is $d(A, B)=\min \{d(x, y) \mid x \in A, y \in B\}$.

For a vertex x in a tree T we let

$$
\delta_{T}(x)=\delta(x)=\sum_{y \in V(T)} d(x, y)
$$

denote the deviation of x w.r.t. T. A vertex q in T with minimum deviation is called a median of T and $\delta(q)=\delta(T)$ is called the deviation of T.

In [6] it was proved that each tree has either exactly one median or exactly two medians which are joined by an edge.

If v is a vertex of a tree T and e is an edge of T incident with v, then all vertices which belong to paths from v with the first edge e form a subgraph which is called a branch of T with the knag v. The branch of T with the knag v with the maximal number of vertices is called a weight branch and its number of vertices is called the weight at v. In [6] it was proved that a vertex of a tree has minimum weight, if and only if it is a median of this tree.

Below in (1)-(3) we give adaptions of the characterization of graphs with exactly one isomorphism class of spanning trees ($[1,2,4,7]$) and the characterization of graphs with exactly two isomorphism classes of spanning trees ([3, Theorem 2]).

Let F denote a unicyclic graph obtained from a 2-cactus by the deletion of one edge. We then have the following.

```
\(\tau(F)=1\) if and only if
    (1) \(F=C(A, B ; A, B, \ldots ; A, B)\) or \(F=C(A, A, \ldots, A)\).
\(\tau(F)=2\) if and only if
    either (2) \(F=C(A, B, B ; A, B, B ; \ldots ; A, B, B ; \ldots ; A, B, B), A \not \equiv B\),
    or (3) \(F=C(A, B, C, B ; A, B, C, B ; \ldots ; A, B, C, D ; \ldots ; A, B, C, B), A \not \equiv C\).
```


2. Statement of Theorem

Theorem. The spanning trees of a 2-cactus G partition into exactly three isomorphism classes if and only if G can be obtained by one of the following constructions:

Fig. 1. Construction 1.

$G=D_{1}(A, B, A, B)+e$

The three spanning trees for ϵ
Fig. 2. Construction 2.

Construction 1 (see Fig. 1): (I) Let U be the unicyclic graph $U=D_{1}(A, A, A)$,
(II) Add an edge e to one of the pendant trees A, such that:
(i) the circuit D_{2} in $A+e$ has length 3 or 4 and
(ii) the edges of D_{2} partition into exactly two $\grave{\underline{\doteq}}$-isomorphism classes in the rooted graph $(A+e, a)$, where the root a is the attachment-vertex of A to D_{1} in the graph U.
Construction 2 (see Fig. 2): (I) Let U be the unicyclic graph

$$
U=D_{1}\left(\left(A_{1}, a_{1}\right),\left(B_{1}, b_{1}\right)\left(A_{2}, a_{2}\right),\left(B_{2}, b_{2}\right)\right)
$$

where

$$
\left(A_{1}, a_{1}\right) \doteq\left(A_{2}, a_{2}\right) \text { and }\left(B_{1}, b_{1}\right) \dot{\cong}\left(B_{2}, b_{2}\right) \text {. }
$$

Fig. 3. Construction 3.
(II) Add an edge e to one of the pendant trees, say A_{1} such that:
(i) the circuit D_{2} in $A_{1}+e$ has length 3 or 4 and
(ii) the edges of D_{2} partition into exactly two $\dot{\cong}$-isomorphism classes in the rooted graph $\left(A_{1}+e, a_{1}\right)$.
Construction 3 (see Fig. 3): Let H be a 2-cactus consisting of the two circuits $D_{1}=\left(u_{1}, u_{2}, u_{3}\right), D_{2}=\left(v_{1}, v_{2}, v_{3}\right)$ and a path joining u_{1} to v_{1}. Attach a copy of the rooted tree (A, a) to H at each of the vertices $u_{2}, u_{3}, v_{2}, v_{3}$.

Attach symmetrically a rooted tree at each vertex of the $u_{1} v_{1}-$ path:

$$
C_{1}, C_{2}, C_{3}, \ldots, C_{k}, C_{k+1}, C_{k}, \ldots, C_{3}, C_{2}, C_{1}
$$

or

$$
C_{1}, C_{2}, C_{3}, \ldots, C_{k-1}, C_{k}, C_{k}, C_{k-1}, \ldots, C_{3}, C_{2}, C_{1}
$$

Construction 4 (see Fig. 4): Let H be a 2-cactus consisting of the two circuits $D_{1}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right), D_{2}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ and a path joining u_{1} to v_{1}. Attach a copy of the rooted tree (A, a) to H at each of the vertices $u_{2}, u_{4}, v_{2}, v_{4}$. Attach a copy of the rooted tree (B, b) to H at each of the vertices u_{3}, v_{3}.

Attach symmetrically a rooted tree at each vertex of the $u_{1} v_{1}$-path:

$$
C_{1}, C_{2}, C_{3}, \ldots, C_{k}, C_{k+1}, C_{k}, \ldots, C_{3}, C_{2}, C_{1}
$$

or

$$
C_{1}, C_{2}, C_{3}, \ldots, C_{k-1}, C_{k}, C_{k}, C_{k-1}, \ldots, C_{3}, C_{2}, C_{1}
$$

Definition. We shall call a 2-cactus symmetric if it can be obtained by Construction 3 or 4.

Fig. 4. Construction 4.

Remark. (ii) implies (i) in both of Constructions 1 and 2: If the edges of a rooted circuit partition into exactly two $\grave{\cong}$-isomorphism classes then the circuit must have length 3 or 4 . Further, (ii) implies that trees attached to the circuit equidistant from the root (resp. a and a_{1}) must be $\dot{\cong}$-isomorphic.

3. Proof of the Theorem

If G has been obtained by Constructions $1,2,3$ or 4 , then it can be verified by inspection that $\tau(G)=3$. Conversely, let G be a 2 -cactus with $\tau(G)=3$. We shall then prove that G can be obtained by one of Constructions $1,2,3$ or 4 .

Let for the remainder of this paper G denote a 2 -cactus with $\tau(G)=3$ with circuits $D_{1}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ and $D_{2}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Let $d\left(D_{1}, D_{2}\right)=d\left(u_{1}, v_{1}\right)$ and let $\hat{D_{1}}$ (resp. \hat{D}_{2}) denote that connected component of $G-u_{1}$ (resp. $G-v_{1}$) which contains $D_{1}-u_{1}$ (resp. $D_{2}-v_{1}$). We may suppose $\left|V\left(\hat{D}_{1}\right)\right| \geqslant\left|V\left(\hat{D}_{2}\right)\right|$. This hypothesis implies by [8] that for any spanning tree of G the intersection of its median with \hat{D}_{2} will be empty.

Lemma 1. With notation and hypotheses about G as above we have

$$
\forall e \in E\left(D_{2}\right): \tau(G-e) \leqslant 2 .
$$

Proof of Lemma 1. Suppose that an edge $e \in E\left(D_{2}\right)$ exists such that $\tau(G-e) \geqslant 3$. We shall then prove that $\tau(G) \geqslant 4$. Among all spanning trees of $G-e$ choose one, say T, for which the deviation, $\delta(T)$, is maximum. If $e \notin\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{n}\right)\right\}$ then the spanning tree $T^{*}=T+e-\left(v_{1}, v_{2}\right)$ for G will have the same median, $M\left(T^{*}\right)=M(T)$, and therefore $\delta\left(T^{*}\right)>\delta(T)$, but then T^{*} cannot be isomorphic to any spanning tree of $G-e$, and we
have that $\tau(G) \geqslant 4$. If $e \in\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{n}\right)\right\}$ then we may analogously obtain $\tau(G) \geqslant 4$ by considering a spanning tree T of $G-e$ with minimum deviation and $T^{*}=T+e-\left(v_{2}, v_{3}\right)$. In either case the hypothesis $\tau(G)=3$ is contradicted, so Lemma 1 is proven.

For $i=1,2$ let $E_{i}\left(D_{2}\right)=\left\{e \in E\left(D_{2}\right) \mid \tau(G-e)=i\right\}$. Then $E\left(D_{2}\right)=E_{1}\left(D_{2}\right) \cup E_{2}\left(D_{2}\right)$ is a partitioning of $E\left(D_{2}\right)$.

Lemma 2. Notation and hypotheses are as above. Let G be a 2 -cactus with $\tau(G)=3$, $\left|V\left(\hat{D}_{1}\right)\right| \geqslant\left|V\left(\hat{D}_{2}\right)\right|$, and $E\left(D_{2}\right)=E_{1}\left(D_{2}\right) \cup E_{2}\left(D_{2}\right)$.

Then we have:
(i) If $e_{1}, e_{2} \in E_{1}\left(D_{2}\right)$ then $\left(G-e_{1}, u_{1}\right) \dot{\cong}\left(G-e_{2}, u_{1}\right)$,
(ii) $0 \leqslant\left|E_{1}\left(D_{2}\right)\right| \leqslant 2$.
(iii) The length of D_{2} is either 3 or 4 .

Proof of Lemma 2. If $\left|E_{1}\left(D_{2}\right)\right| \geqslant 2$ then let $e_{1}, e_{2} \in E_{1}\left(D_{2}\right), e_{1} \neq e_{2}$. It is proven in e.g. [4] for $i=1,2$ that $\tau\left(G-e_{i}\right)=1$ implies that the pendant trees in $G-e_{i}$ to D_{1} at u_{1} and u_{3}, respectively, are root-isomorphic. But the pendant tree at u_{3} remains unchanged from $G-e_{1}$ to $G-e_{2}$, therefore the pendant trees to D_{1} at u_{1} in $G-e_{1}$ and $G-e_{2}$, respectively, are root-isomorphic.

This proves (i).
We shall prove (ii) by showing that the root-isomorphism in (i) can occur for at most one pair of distinct edges in $E_{1}\left(D_{2}\right)$. For any pair of distinct edges e_{1}, e_{2} in $E_{1}\left(D_{2}\right)$ the position of e_{1} and D_{2} will uniquely determine that of e_{2}. This is because the deviation of u_{1} w.r.t. $S, \delta_{S}\left(u_{1}\right)=\sum_{x \in V(S)} d\left(u_{1}, x\right)$, must by (i) remain the same integer whether S is the pendant tree rooted at u_{1} in $G-e_{1}$ or in $G-e_{2}$. This proves that $\left|E_{1}\left(D_{2}\right)\right| \leqslant 2$ and (ii) is finished. By (ii) we have that $E_{2}\left(D_{2}\right) \neq \emptyset$. Let $f \in E_{2}\left(D_{2}\right)$, then by definition of $E_{2}\left(D_{2}\right)$ we have that $\tau(G-f)=2$. Let T_{1} and T_{2} denote two nonisomorphic spanning trees for $G-f$, and hence also for G. If $\left|E\left(D_{2}\right)\right| \geqslant 5$ then we can by arguing as in the proof of Lemma 1 construct another two spanning trees T_{3}, T_{4} for G such that their deviations satisfy $\delta\left(T_{3}\right) \neq \delta\left(T_{4}\right)$ and $\left\{\delta\left(T_{1}\right), \delta\left(T_{2}\right)\right\} \cap$ $\left\{\delta\left(T_{3}\right), \delta\left(T_{4}\right)\right\}=\emptyset$. Hence we have $\tau(G) \geqslant 4$, a contradiction.

This proves (iii) and Lemma 2 is proven.
We shall now demonstrate that not only D_{2} but also D_{1} has length 3 or 4 .
We shall consider $E_{1}\left(D_{2}\right) \neq \emptyset$ and $E_{1}\left(D_{2}\right)=\emptyset$ separately. In both cases the main tools in our analysis will be (1)-(3) from the preliminaries.

Lemma 3. Notation and hypotheses are as above. Let G be a 2 -cactus with $\tau(G)=3$, $\left|V\left(\hat{D}_{1}\right)\right| \geqslant\left|V\left(\hat{D}_{2}\right)\right|$, and $E\left(D_{2}\right)=E_{1}\left(D_{2}\right) \cup E_{2}\left(D_{2}\right)$.

If $E_{1}\left(D_{2}\right) \neq \emptyset$ then we have:
either (i) the length of D_{1} is 3 and there exists an edge e on D_{2} such that we can express G in the form: $G=D_{1}\left(\left(A+e, u_{1}\right),\left(A, u_{2}\right),\left(A, u_{3}\right)\right)$,
or (ii) the length of D_{1} is 4 and there exists an edge e on D_{2} such that we can express G in the form: $G=D_{1}\left(\left(A+e, u_{1}\right),\left(B, u_{2}\right),\left(A, u_{3}\right),\left(B, u_{4}\right)\right),(A \dot{\cong} B$ may occur $)$.

Obviously, we have both in (i) and (ii) that $D_{2} \subseteq A+e$, and we shall see below that we can choose any edge as e from $E_{1}\left(D_{2}\right)$.

Proof of Lemma 3. Since $E_{1}\left(D_{2}\right) \neq \emptyset$ there exist by Lemmas 1 and 2(ii) edges $e \in E_{1}\left(D_{2}\right)$ and $f \in E_{2}\left(D_{2}\right)$ such that $\tau(G-e)=1$ and $\tau(G-f)=2$. We shall compare the structure of $G-e$ with that of $G-f$ by help of (1)-(3).

If (1) and (2) hold for $G-e$ and $G-f$, respectively, then by (2) the length of D_{1} is a multiple of 3 , and we must in fact have $\left|E\left(D_{1}\right)\right|=3$. Because, suppose otherwise $\left|E\left(D_{1}\right)\right| \geqslant 6$ and let $U_{i}, 1 \leqslant i \leqslant m$, denote the rooted tree attached to D_{1} at u_{i} in $G-e$ and let U_{1}^{*} denote the rooted tree $U_{1}^{*}=U_{1}+e-f$ attached to D_{1} at u_{1} in $G-f$.

From (1) we obtain $U_{1} \dot{\cong} U_{3}, U_{2} \cong U_{4}$ and from (2) we obtain $U_{2} \dot{\cong} U_{3}, U_{1}^{*} \dot{\cong} U_{4}$. This yields $U_{1} \doteq U_{1}^{*}$, but obviously $\tau(G-e) \neq \tau(G-f)$ implies that $U_{1} \nsupseteq U_{1}^{*}$. This contradiction proves that D_{1} has length 3 .

By (1) this implies that $U_{1} \dot{\cong} U_{2} \dot{\cong} U_{3} \dot{\cong} A$ and $G-e=D_{1}(A, A, A)$ or $G=D_{1}(A+e, A, A)$ as described in (i).

If (1) and (3) hold, then similarly we obtain (ii), because $\left|E\left(D_{1}\right)\right|$ must by (3) be a multiple of 4 and $\left|E\left(D_{1}\right)\right| \geqslant 8$ would for $e \in E_{1}\left(D_{2}\right), f \in E_{2}\left(D_{2}\right)$ imply that $U_{1} \cong U_{3} \dot{\cong} U_{5}$ by (1) and $U_{1}^{*} \dot{\cong} U_{5}$ by (3) in contradiction to $U_{1} \cong U_{1}^{*}$. Thus $\left|E\left(D_{1}\right)\right|=4$ and we have by (1) that $G-e=D_{1}(A, B, A, B)$ or $G=D_{1}(A+e, B, A, B)$ as desired in (ii). This proves Lemma 3.

Lemma 4. Notation and hypotheses are as above. Let G be a 2 -cactus with $\tau(G)=3$, $\left|V\left(\hat{D}_{1}\right)\right| \geqslant\left|V\left(\hat{D}_{2}\right)\right|$, and $E\left(D_{2}\right)=E_{1}\left(D_{2}\right) \cup E_{2}\left(D_{2}\right)$. If $E_{1}\left(D_{2}\right)=\emptyset$ then:
(i) D_{1} has length either 3 or 4
(ii) the trees attached to $D_{1}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ at u_{2} and u_{m} are root-isomorphic to each other.

Proof of Lemma 4. Let $f_{1}, f_{2} \in E_{2}\left(D_{2}\right)$ such that the two trees attached to D_{1} at u_{1} in $G-f_{1}, G-f_{2}$ respectively, are not $\underset{\cong}{\dot{-}}$-isomorphic. This is for instance the case if f_{1}, but not f_{2}, is incident with v_{1}.

For $i=1,2$ the graph $G-f_{i}$ consists of D_{1} with trees attached in repeated series of length 3 or 4 as expressed in (2) or (3), respectively.

There can only be one sequence of 3 or 4 trees round D_{1} because the tree attached to D_{1} at u_{1} otherwise would be repeated in the next sequence. But that would imply that the trees attached to D_{1} at u_{1} in $G-f_{1}$ and $G-f_{2}$, respectively, should be rootisomorphic and that contradicts the choice of f_{1}, f_{2}. Hence D_{1} must have length 3 or 4 . This proves (i).

We shall split the proof of (ii) into two cases.

Case 1: $\left|E\left(D_{1}\right)\right|=3$.
Suppose (ii) is false, then we have from (2) that $U_{2} \not \approx U_{3}$ for the trees U_{2}, U_{3} attached to D_{1} to u_{2}, u_{3}, respectively, and also that the trees U_{1}, U_{1}^{*} attached to D_{1} at u_{1} in $G-f_{1}, G-f_{2}$, respectively, must be pairwise root-isomorphic to U_{2} and U_{3}, say $U_{1} \cong U_{2}, U_{1}^{*} \cong U_{3}$. But then we find that $G-f_{1}$ has two non-isomorphic spanning trees $T_{1}=L\left(U_{1}, U_{2}, U_{3}\right)$ and $T_{2}=L\left(U_{1}, U_{3}, U_{2}\right)$ and $G-f_{2}$ has two non-isomorphic spanning trees $T_{3}=L\left(U_{1}^{*}, U_{2}, U_{3}\right)$ and $T_{4}=L\left(U_{1}^{*}, U_{3}, U_{2}\right)$.
These four trees $T_{1}, T_{2}, T_{3}, T_{4}$ are, in fact, pairwise non-isomorphic. T_{1} has the property that it contains two adjacent edges such that their deletion leaves the three connected components $U_{1}, U_{2}, U_{3}\left(U_{1} \dot{\cong} U_{2}\right)$ but neither in T_{3}, nor in T_{4} can such two adjacent edges be found. Hence $T_{1} \not \equiv T_{3}$ and $T_{1} \not \ddagger T_{4}$. Analogously we can show that $T_{2} \not \equiv T_{3}$ and $T_{2} \not \equiv T_{4}$. This yields the contradiction that $\tau(G) \geqslant 4$ and we have proved that (ii) holds in Case 1.

Case 2: $\left|E\left(D_{1}\right)\right|=4$.
Suppose (ii) is false, then we have $U_{2} \not \equiv U_{4}$ for the trees U_{2}, U_{4} attached to D_{1} at u_{2}, u_{4}, respectively, and by (3) the tree U_{3} attached to D_{1} at u_{3} must be root-isomorphic to the tree U_{1} attached to D_{1} at u_{1} in the graph $G-f_{1}$, but U_{3} must also be rootisomorphic to U_{1}^{*}, which is the tree attached to D_{1} at u_{1} in the graph $D-f_{2}$. This contradicts the choice of f_{1}, f_{2} and we proved that (ii) also holds in Case 2. This completes the proof of Lemma 4.

Lemma 5. Notation and hypotheses are as above. Let G be a 2 -cactus with $\tau(G)=3$, $\left|V\left(\hat{D}_{1}\right)\right| \geqslant\left|V\left(\hat{D}_{2}\right)\right|$, and $E\left(D_{2}\right)=E_{1}\left(D_{2}\right) \cup E_{2}\left(D_{2}\right)$.
If $E_{1}\left(D_{2}\right)=\emptyset$ then either $\left|E\left(D_{1}\right)\right|=\left|E\left(D_{2}\right)\right|=3$ or $\left|E\left(D_{1}\right)\right|=\left|E\left(D_{2}\right)\right|=4$.

Proof of Lemma 5. The lengths of D_{1}, D_{2} must by Lemmas 2(iii) and 4(i) be either 3 or 4 . We shall prove that the circuits cannot have different lengths. Suppose, say, that D_{1} has length 4 and D_{2} has length 3 . The case of interchanged lengths can be treated analogously.

On D_{2} choose edges f_{1}, f_{2} such that f_{1} is incident with v_{1} but f_{2} is not. Let U_{1}, U_{1}^{*} denote the trees rooted at u_{1} in $G-f_{1}$ and $G-f_{2}$, respectively. Obviously $U_{1} \not \equiv U_{1}^{*}$.

From Lemma 4(ii) we have that the trees U_{2}, U_{4} attached to D_{1} at u_{2}, u_{4}, respectively, satisfy $U_{2} \cong U_{4}$ while U_{3}, the tree attached to D_{1} at u_{3}, satisfies $U_{3} \nsupseteq U_{1}$ and $U_{3} \nsubseteq U_{1}^{*}$.
G has the four spanning trees:

$$
\begin{aligned}
& T_{1}=L\left(U_{1}, U_{2}, U_{3}, U_{4}\right), \\
& T_{2}=L\left(U_{3}, U_{2}, U_{1}, U_{4}\right), \\
& T_{3}=L\left(U_{1}^{*}, U_{2}, U_{3}, U_{4}\right), \\
& T_{4}=L\left(U_{3}, U_{2}, U_{1}^{*}, U_{4}\right),\left(U_{2} \dot{\cong} U_{4}\right) .
\end{aligned}
$$

We have from (3) that $T_{1} \not \not 二 T_{2}$ and $T_{3} \not \not T_{4}$. We can prove that $T_{1} \not \approx T_{3}$ and $T_{1} \not \neq T_{4}$, and similarly that $T_{2} \not \approx T_{3}, T_{2} \not \approx T_{4}$, by deletion of edges analogously to the proof of Case 1 in Lemma 4. Thus we obtain the contradiction $\tau(G) \geqslant 4$ and Lemma 5 is proven.

Lemma 6. Notation and hypothesis are as above. Let G be a 2-cactus with $\tau(G)=3$, $\left|V\left(\hat{D}_{1}\right)\right| \geqslant\left|V\left(\hat{D}_{2}\right)\right|$, and $E\left(D_{2}\right)=E_{1}\left(D_{2}\right) \cup E_{2}\left(D_{2}\right)$.

If $E_{1}\left(D_{2}\right)=\emptyset$ then G is a symmetric cactus, i.e., G can be obtained either by Construction 3 or by Construction 4.

Proof of Lemma 6. Consider the following four spanning trees of G (see Fig. 5):

$$
\begin{aligned}
& T_{1}=G-\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\}, \\
& T_{2}=G-\left\{\left(u_{2}, u_{3}\right),\left(v_{1}, v_{2}\right)\right\}, \\
& T_{3}=G-\left\{\left(u_{1}, u_{2}\right),\left(v_{2}, v_{3}\right)\right\}, \\
& T_{4}=G-\left\{\left(u_{2}, u_{3}\right),\left(v_{2}, v_{3}\right)\right\} .
\end{aligned}
$$

We have from $\left(v_{1}, v_{2}\right) \in E_{2}\left(D_{2}\right)$ that $T_{1} \not \approx T_{4}$ and from $\left(v_{2}, v_{3}\right) \in E_{2}\left(D_{2}\right)$ that $T_{3} \not \neq T_{4}$. We have that $T_{1} \not \not T_{3}$ and $T_{2} \not \approx T_{4}$ because T_{1} and T_{3} (resp. T_{2} and T_{4}) have the same median but $\delta\left(T_{1}\right)>\delta\left(T_{3}\right)$ (resp. $\delta\left(T_{2}\right)>\delta\left(T_{4}\right)$).

We shall now prove that $T_{1} \not \neq T_{4}$. We shall consider $\left|E\left(D_{1}\right)\right|=\left|E\left(D_{2}\right)\right|=3$ and $\left|E\left(D_{1}\right)\right|=\left|E\left(D_{2}\right)\right|=4$ separately.

Case 1: $\left|E\left(D_{1}\right)\right|=3$.
\hat{D}_{1} is by Lemma 4(ii) symmetric w.r.t. u_{1}, therefore $M\left(T_{4}\right) \cap \hat{D}_{1}=\emptyset$ and by [8] the hypothesis $\left|V\left(\hat{D}_{1}\right)\right| \geqslant\left|V\left(\hat{D}_{2}\right)\right|$ implies that $M\left(T_{4}\right) \cap \hat{D}_{2}=\emptyset$.

In T_{4} we thus have that $M\left(T_{4}\right) \subseteq G-\left(\hat{D}_{1} \cup \hat{D}_{2}\right)$, and in T_{1} we can then easily show that $M\left(T_{1}\right)$ must be the corresponding same one vertex or two vertices because

Fig. 5. Four spanning trees of G. The common length of circuits D_{1}, D_{2} may be 3 or 4 , this is indicated by a dot.
internal edge-exchanges within a weight branch do not affect the weight of a vertex. But now we have that $\delta\left(T_{1}\right)>\delta\left(T_{4}\right)$ and thus $T_{1} \neq T_{4}$.

Case 2: $\left|E\left(D_{1}\right)\right|=4$.
As in Case 1 it can be proved that in T_{4} we have that $M\left(T_{4}\right) \subseteq G-\left(\hat{D_{1}} \cup \hat{D_{2}}\right)$ if and only if in T_{1} and T_{4} we have that $M\left(T_{1}\right)$ and $M\left(T_{4}\right)$ are the corresponding same one or two vertices. We can then use $\delta\left(T_{1}\right)>\delta\left(T_{4}\right)$ to establish $T_{1} \not \approx T_{4}$.

If $M\left(T_{4} \not \ddagger G-\left(\hat{D_{1}} \cup \hat{D}_{2}\right)\right.$ then it is not difficult, but somewhat tedious, to show by case examination that we also obtain $T_{1} \not \neq T_{4}$. We thus have that T_{1}, T_{2}, T_{4} are three pairwise non-isomorphic spanning trees for G. Since $\tau(G)=3$ and $T_{3} \neq T_{1}, T_{3} \nsubseteq T_{4}$ it then follows that $T_{2} \cong T_{3}$. This in turn will lead to the desired conclusion that G is symmetric.

We shall sketch the argument for $\left|E\left(D_{1}\right)\right|=3$, the case $\left|E\left(D_{1}\right)\right|=4$ can be treated similarly.

Suppose $\left|E\left(D_{1}\right)\right|=3$. By symmetry of u_{2}, u_{3} in T_{2} we see that $M\left(T_{2}\right) \subseteq G-\left(\hat{D_{1}} \cup \hat{D_{2}}\right)$. Therefore the medians of T_{2} and T_{3} are corresponding vertices and we can by comparison of connected components of $T_{2}-M\left(T_{2}\right)$ and $T_{3}-M\left(T_{3}\right)$ establish that G is symmetric as desired. This proves Lemma 6.

The proof of the Theorem can now be concluded:
For $E_{1}\left(D_{2}\right) \neq \emptyset$ Lemmas $1-3$ prove (I) and II(i) in the statements that G can be obtained by Construction 1 or 2 . The proof of statement II(ii) concerning Constructions 1 and 2 is not difficult and is left to the reader.
For $E_{1}\left(D_{2}\right)=\emptyset$ the proof of the Theorem follows from Lemmas 4-6.
This concludes the proof of the Theorem.

References

[1] R. Fischer, Über Graphen mit isomorphen Gerüsten, Monatsh. Math. 77 (1973) 24-30.
[2] L. Friess, Graphen worin je zwei Gerüste isomorph sind, Math. Ann. 204 (1973) 65-71.
[3] B.L. Hartnell, On graphs with exactly two isomorphism classes of spanning trees, Utilitas Math. 6 (1974) 121-137.
[4] P.D. Vestergaard, Finite and infinite graphs whose spanning trees are pairwise isomorphic, Ann. Discrete Math. 41 (1989) 421-436.
[5] P.D. Vestergaard, The least number of spanning trees in a cactus, to appear.
[6] B. Zelinka, Medians and peripherians of trees, Arch. Math. Brno 4 (1968) 87-95.
[7] B. Zelinka, Grafy, jejichž všechny kostry jsou spolu isomorfni, Casopis Pěst. Mat. 96 (1971) 33-40. (Title translated: Graphs, all of whose spanning trees are isomorphic to each other.)
[8] B. Zelinka, The number of isomorphism classes of spanning trees of a graph, Math. Slovaca 28 (1978) 385-388.

