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Zelinka (1978) proved that the spanning trees of a 2-cactus partition into at least 3 isomorphism 

classes. Here we examine the structure of these 2-cacti for which the spanning trees partition into 

exactly 3 isomorphism classes. 

1. Notation and preliminaries 

A tree is a connected graph with no circuit. A rooted tree ( T, u) is a tree T together 

with a distinguished vertex u, the root. When it is clear which root u is intended, we 

may for short write the rooted tree T. 
A unicyclic graph is a connected graph G with exactly one circuit C. Let the vertices 

on C be u1,v2,..., v, in that order, C=(v1,v2, . . . . u,). The connected components of 

G--E(C) are trees T,, T2, . . . . T. and we can choose notation such that VIE V( T), 

1~ i<n. We say that the rooted tree (T, Ui) is attached to C at Di and we write 

G=C((T,,Q),(T,,U,), . . . . ( T,,, u,)) or for short G = C( T,, T2, . . . , T,). L( T,, T2, . . . , T,,) 
denotes the graph C(T1, T,, . . . , T,)-(ul,u,). 

A cactus is a connected graph which contains at least one circuit and which has the 

property that any pair of its circuits have at most a vertex in common. An n-cactus is 

a cactus with exactly n circuits, na 1. 

LetGbea2-cactuswiththetwocircuitsD,=(u,,u2,...,u,)andD2=(ul,u2,...,u,) 

where notation can be chosen such that ui and vi are the two vertices in D, and 

D2 respectively, having minimum distance in G, where u1 = ui may occur. G contains 

a connected graph H consisting of D1, D, and a path joining u1 to ui. If ur =ui then 

the path is that single vertex. The connected components of G-E(H) are trees. For 

i=2,3, . . . , m denote by (Ui, Ui) that rooted tree which is a connected component of 

G-E(H) and contains Ui. We say that Ui is attached to D1 at Ui or to H at ui. 

Analogously we say that Vz, I’,, . . . , Vn are trees attached to Dz, or to H, at 

v2, u3, . . . , v., respectively. 
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fil denotes that connected component of G-u1 which contains D, -ul. Analo- 

gously fiZ is that connected component of G-v1 which contains D, -ul. G’E G” 
means that the graphs G’ and G” are isomorphic. (G’, 0’) & (G”, 0”) means that the 

rooted graphs (G’, u’) and (G”, u”) are root-isomorphic, i.e., there exists an isomor- 

phism from G’ onto G” which maps u’ onto u”. If it is clear which roots are intended, 

we may write G’& G” for short. 

A spanning tree for G is a subgraph of G which is a tree and which contains all 

vertices of G. For a connected graph G we denote by z(G) the number of isomorphism 

classes into which all the spanning trees of G partition. 

The distance between two vertices x and y in a connected graph is denoted d( x, y). 
The distance between two vertex-subsets A and B in a connected graph is 

d(A,B)=min{d(x,y)lxeA,yEB). 

For a vertex x in a tree T we let 

&(x)=&x)= C d(x,y) 
YEV(T) 

denote the deviation of x w.r.t. T. A vertex q in T with minimum deviation is called 

a median of T and 6(q)= 6( T) is called the deviation of T. 
In [6] it was proved that each tree has either exactly one median or exactly two 

medians which are joined by an edge. 

If u is a vertex of a tree T and e is an edge of T incident with u, then all vertices which 

belong to paths from u with the first edge e form a subgraph which is called a branch of 

T with the knag u. The branch of T with the knag u with the maximal number of 

vertices is called a weight branch and its number of vertices is called the weight at u. In 

[6] it was proved that a vertex of a tree has minimum weight, if and only if it is 

a median of this tree. 

Below in (l)-(3) we give adaptions of the characterization of graphs with exactly 

one isomorphism class of spanning trees ([1,2,4,7]) and the characterization of 

graphs with exactly two isomorphism classes of spanning trees ([3, Theorem 21). 

Let F denote a unicyclic graph obtained from a 2-cactus by the deletion of one edge. 

We then have the following. 

z(F)= 1 ifund only if 
(1) F=C(A,B; A,B ,... ;A,B) or F=C(A,A ,..., A). 

z(F)=2 ifund only if 
either (2) F=C(A,B,B;A,B,B;...;A,B,B;...;A,B,B),A~ B, 
Or (3) F=C(A,B,C,B;A,B,C,B;...;A,B,C,D;...;A,B,C,B),A~ C. 

2. Statement of Theorem 

Theorem. The spanning trees of a 2-cactus G partition into exactly three isomorphism 
classes if and only lf G can be obtained by one of the following constructions: 
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G = Dl (A, A, A) + e 

A A A 
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The three spanning 

trees for G. 

Fig. 1. Construction 1. 
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G = D1 (A, B, A, B) + f The three spanning trees for c 

Fig. 2. Construction 2. 

Construction 1 (see Fig. 1): (I) Let U be the unicyclic graph U = D1(A, A, A), 

(II) Add an edge e to one of the pendant trees A, such that: 

(i) the circuit D2 in A+e has length 3 or 4 and 

(ii) the edges of Dz partition into exactly two &-isomorphism classes in the 

rooted graph (A + e, a), where the root a is the attachment-vertex of A to D 1 in 

the graph U. 

Construction 2 (see Fig. 2): (I) Let U be the unicyclic graph 

U=Dl((Al,al), (h,h) (&ad, (B2,b2)) 
where 

(A,,al)k(Az,az) and (B,,bl)k(&,b2). 
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Symmetric 2-cactus with 

circuit lenght 3. 

The three spanning trees 

for G. 

Fig. 3. Construction 3. 

(II) Add an edge e to one of the pendant trees, say A, such that: 

(i) the circuit Dz in AI +e has length 3 or 4 and 
(ii) the edges of Dz partition into exactly two &-isomorphism classes in the 

rooted graph (A, + e, al). 
Construction 3 (see Fig. 3): Let H be a 2-cactus consisting of the two circuits 

D, = (ul,uz,uJ), D2=(u1,u2,vJ) and a path joining u1 to ul. Attach a copy of the rooted 
tree (A,a) to H at each of the vertices uz,u3,vz,v3. 

Attach symmetrically a rooted tree at each vertex of the uIvI-path: 

or 

Cl,C,,C3,...,Ck,Ckfl,Ck ,... ,C3,CZ,Cl 

ClrC2,C3,..., G-l,G,G,G-I,..., CJ, cz> ct. 

Construction 4 (see Fig. 4): Let H be a 2-cactus consisting of the two circuits 

D1=(u1,u2,u3,u~),D2=(v1,v2,v3,vq) and apathjoining u1 to vl. Attach a copyofthe 
rooted tree (A, a) to H at each of the vertices u2, uq, v2, vq. Attach a copy of the rooted 
tree (B, b) to H at each of the vertices u3, vs. 

Attach symmetrically a rooted tree at each vertex of the u,vI-path: 

or 

Definition. We shall call a 2-cactus symmetric if it can be obtained by Construction 

3 or 4. 
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Symmetric 

Fig. 4. Construction 4. 

(ii) implies (i) in both of Constructions 1 and 2: If the edges of a rooted circuit 

partition into exactly two &-isomorphism classes then the circuit must have length 

3 or 4. Further, (ii) implies that trees attached to the circuit equidistant from the root 

(resp. a and ai) must be &-isomorphic. 

3. Proof of the Theorem 

If G has been obtained by Constructions 1, 2, 3 or 4, then it can be verified by 

inspection that z(G)= 3. Conversely, let G be a 2-cactus with T(G)=~. We shall then 

prove that G can be obtained by one of Constructions 1,2,3 or 4. 

Let for the remainder of this paper G denote a 2-cactus with z(G)= 3 with circuits 

Dr=(ul,u2,... ,u,)andD,=(u,,u,,... ,u,). Let d(Dr,D,)=d(u,,ui) and let 6i (resp. 

6,) denote that connected component of G - u1 (resp. G - v1 ) which contains D1 - u1 

(resp. D2-vi). We may suppose 1 V(o^,)l21 V(62)1. This hypothesis implies by [8] 

that for any spanning tree of G the intersection of its median with d, will be empty. 

Lemma 1. With notation and hypotheses about G as above we have 

VeEE(Dz):z(G-e)<2. 

Proof of Lemma 1. Suppose that an edge eEE(D,) exists such that t(G-e)>3. We 

shall then prove that t(G) > 4. Among all spanning trees of G-e choose one, say T, for 

which the deviation, 6( T), is maximum. If e$ { ( vi, vz), ( ul, un)} then the spanning tree 

r*= T+e-(vl,vl) for G will have the same median, M( T*)=M(T), and therefore 

6( T*) > 6( T), but then T* cannot be isomorphic to any spanning tree of G-e, and we 
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have that z(G)a4. If eE{(ul,uZ), ( ul, uJ) then we may analogously obtain z( G)>4 

by considering a spanning tree T of G-e with minimum deviation and 

T* = T+ e-(uz, us). In either case the hypothesis 7(G)= 3 is contradicted, so 

Lemma 1 is proven. 0 

For i=l,2 let Ei(D,)={eEE(D,)J7(G-e)=i}. Then E(D,)=E,(Dz)uEz(Dz) is 

a partitioning of E(D,). 

Lemma 2. Notation and hypotheses are as above. Let G be a 2-cactus with z(G)=3, 

I VfiJl2l U&)1, and ~(D~)=EI(WJMW. 
Then we have: 
(i) Zfei,e,EE1(Dz) then (G-e,,u,)%(G-e,,u,), 

(ii) O<IE1(Dz)Jd2. 
(iii) The length ojD, is either 3 or 4. 

Proof of Lemma 2. If IE1(D2)(>2 then let el,e,EEl(D,), el#ez. It is proven in e.g. 

[4] for i = 1,2 that T( G - ei) = 1 implies that the pendant trees in G - ei to D 1 at u1 and 

uJ, respectively, are root-isomorphic. But the pendant tree at uj remains unchanged 

from G-e1 to G-e2, therefore the pendant trees to D1 at u1 in G-e, and G-e2, 

respectively, are root-isomorphic. 

This proves (i). 

We shall prove (ii) by showing that the root-isomorphism in (i) can occur for at 

most one pair of distinct edges in E,(D,). For any pair of distinct edges e1,e2 in 

E, (D,) the position of e, and D, will uniquely determine that of e,. This is because the 

deviation of u1 w.r.t. S, Bs(ul)=~xsV~s~ d(ul,x), must by (i) remain the same integer 

whether S is the pendant tree rooted at u1 in G-e1 or in G-e2. This proves that 

IEl( $2 and (ii) is finished. By (ii) we have that E,(D,)#@ Let GEE,, then by 

definition of E,(D,) we have that 7( G-f)= 2. Let T1 and T2 denote two non- 

isomorphic spanning trees for G-f, and hence also for G. If I E(D,) I > 5 then we can 

by arguing as in the proof of Lemma 1 construct another two spanning trees Ts, T4 
for G such that their deviations satisfy 6( T,)#6( T,) and (6( T,), 6( T,)}n 

{d(T,), S(T,)}=‘& H ence we have ?(G)>4, a contradiction. 

This proves (iii) and Lemma 2 is proven. 0 

We shall now demonstrate that not only D, but also D1 has length 3 or 4. 

We shall consider E1(D2) #:8 and E,(D2)=@ separately. In both cases the main 

tools in our analysis will be (l)-(3) from the preliminaries. 

Lemma 3. Notation and hypotheses are as above. Let G be a 2-cactus with 7(G)= 3, 

I Vh)l2l U~2)ly and E(D2)=E1(D2~u&(D~). 
If E,(D,)#o then we have: 
either (i) the length oj”Dl is 3 and there exists an edge e on D2 such that we can 

express G in theform: G=D,((A+e,u,),(A,u,),(A,u,)), 
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or (ii) the length of D1 is 4 and there exists an edge e on Dz such that we can express 
G in the form: G=D,((A+e,uI), (B,uz), (A,+), (B,u,)), (A&B may occur). 

Obviously, we have both in (i) and (ii) that D, =z A + e, and we shall see below that 

we can choose any edge as e from E1(D2). 

Proof of Lemma 3. Since El (Dz) #8 there exist by Lemmas 1 and 2(ii) edges 

eeEI(D,) andf EE2(D2) such that r(G-e)= 1 and z(G-f)=2. We shall compare the 

structure of G-e with that of G-f by help of (l)-(3). 

If (1) and (2) hold for G-e and G-f respectively, then by (2) the length of D1 is 

a multiple of 3, and we must in fact have IE(D,)I =3. Because, suppose otherwise 

IE(D1)/>6 and let Ui, 1 <i<m, denote the rooted tree attached to D1 at Ui in G-e 

and let TJf denote the rooted tree Uf= Ul+e-f attached to D1 at ui in G-f: 

From (1) we obtain Ui & Us, Uz & U4 and from (2) we obtain Uz & U3, UT & U+ 
This yields U1 & UT, but obviously r( G-e) #z(G-f) implies that U1 $ U:. This 

contradiction proves that D1 has length 3. 

By (1) this implies that U1&UUzkUU3&A and G-e=D,(A,A,A) or 

G=D1(A+e, A, A) as described in (i). 

If (1) and (3) hold, then similarly we obtain (ii), because (E(D,)I must by (3) be 

a multiple of 4 and IE(D,)I 38 would for eEE,(D,), f eE,(D,) imply that 

U,& U,& U5 by (1) and UT& Us by (3) in contradiction to U1 $ UT. Thus 

IE(DI)l=4 and we have by (1) that G-e=D1(A, B, A, B) or G=D,(A+e, B, A, B) as 

desired in (ii). This proves Lemma 3. 0 

Lemma 4. Notation and hypotheses are as above. Let G be a 2-cactus with z(G) = 3, 

I v(&)lal V&)1, and E(Dz)=E~(D&JMDA. 
Zf E,(D,)=@ then: 
(i) D1 has length either 3 or 4 

(ii) the trees attached to D 1 = ( ul, u2, . . . , u,) at u2 and u, are root-isomorphic to each 
other. 

Proof of Lemma 4. Let fi, fieE,(D,) such that the two trees attached to D, at u1 in 

G-f,, G-f, respectively, are not &-isomorphic. This is for instance the case iffi, but 

not f2, is incident with ul. 

For i = 1,2 the graph G-f consists of D1 with trees attached in repeated series of 

length 3 or 4 as expressed in (2) or (3), respectively. 

There can only be one sequence of 3 or 4 trees round D1 because the tree attached to 

D1 at u1 otherwise would be repeated in the next sequence. But that would imply that 

the trees attached to D, at u1 in G-f, and G--f,, respectively, should be root- 

isomorphic and that contradicts the choice offi, fi. Hence D, must have length 3 or 4. 

This proves (i). 

We shall split the proof of (ii) into two cases. 
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Case 1: IE(D1)J=3. 
Suppose (ii) is false, then we have from (2) that Uz $ U3 for the trees Uiz, 

U3 attached to D1 to u2, us, respectively, and also that the trees U1, UT attached to 

D1 at ur in G -fi, G -fi, respectively, must be pairwise root-isomorphic to Uz and UJ, 

say U1 & Uz, Uf & US. But then we find that G -fi has two non-isomorphic spanning 

trees T1 = L( U,, Uz, U,) and T2 = L( U1, US, U,) and G-f2 has two non-isomorphic 

spanning trees T3 = L( Uf, Uz, U,) and T4= L( UT, US, U,). 
These four trees T1, T,, T3, T4 are, in fact, pairwise non-isomorphic. T1 has the 

property that it contains two adjacent edges such that their deletion leaves the three 

connected components U,, U2, U,( U, & U,) but neither in T3, nor in T, can such two 

adjacent edges be found. Hence T1 $k T, and T, $ T,. Analogously we can show that 

T, $ T, and T, g T,. This yields the contradiction that r(G) 2 4 and we have proved 

that (ii) holds in Case 1. 

Case 2: JE(D1)(=4. 

Suppose (ii) is false, then we have U, $? U, for the trees U,, U4 attached to D1 at u2, 

uq, respectively, and by (3) the tree U3 attached to D1 at u3 must be root-isomorphic to 

the tree U1 attached to D1 at u1 in the graph G-f,, but UJ must also be root- 

isomorphic to UT, which is the tree attached to D1 at ur in the graph D-fi. This 

contradicts the choice of fr, f2 and we proved that (ii) also holds in Case 2. This 

completes the proof of Lemma 4. 0 

Lemma 5. Notation and hypotheses are as above. Let G be a 2-cactus with z(G) = 3, 

I V~~I)I~I Vh)l, and E(W=EI(D+~AW. 
IfE,(D,)=o then either IE(D,)I=(E(D,)J=3 or IE(D,)j=IE(D,)I=4. 

Proof of Lemma 5. The lengths of D,, Dz must by Lemmas 2(iii) and 4(i) be either 3 

or 4. We shall prove that the circuits cannot have different lengths. Suppose, say, that 

D, has length 4 and D, has length 3. The case of interchanged lengths can be treated 

analogously. 

On D, choose edgesfr,f, such thatf, is incident with v1 butf, is not. Let U1, UT 

denote the trees rooted at u1 in G-f, and G-f,, respectively. Obviously U, $A UT. 
From Lemma 4(ii) we have that the trees Uz, U4 attached to D1 at u2, uq, 

respectively, satisfy Uz & U4 while UJ, the tree attached to D1 at u3, satisfies U3 $ U1 

and U3 $k UT. 
G has the four spanning trees: 

Z-1 =L( UI, Uz, Us, u,), 

T2 = L( U3, U2, U1, u,), 

T3 = L( UT=, U2, U3, U,), 

T4 = L( U3, U2, W, U,), KJ, b U,). 



Two-cacti with minimum number of spanning frees 249 

We have from (3) that T, $ T, and T3 $ T,. We can prove that T, $k T, and T, $ T4, 
and similarly that T2 $ T3, Tz $ T4, by deletion of edges analogously to the proof of 
Case 1 in Lemma 4. Thus we obtain the contradiction r(G)>4 and Lemma 5 is 
proven. 0 

Lemma 6. Notation and hypothesis are as above. Let G be a 2-cactus with 2(G) = 3, 

lV(h)l~lV(&)L and ~(&)=~I(~AJMW 
If E,(D,)=@ then G is a symmetric cactus, i.e., G can be obtained either by 

Construction 3 or by Construction 4. 

Proof of Lemma 6. Consider the following four spanning trees of G (see Fig. 5): 

T,=G-{(u,,u,),(u,,u,)}, 

T,=G-{(u,,u,),(u,,v,)}. 

We have from (ur, uz)~Ez(D,) that T, $ T4 and from (uz, uS)~EZ(D2) that T, $ T4. 
We have that T, $ T3 and Tz $ T4 because T, and T3 (resp. T, and T4) have the same 
median but 6(Tl)>6(T,) (resp. b(T,)>d(T,)). 

We shall now prove that T1 $ T,. We shall consider I E(D,) I = I E(D,) I = 3 and 
IE(D,)I=IE(D,)I=4 separately. 

Case 1: JE(D1)I=3. 
fil is by Lemma 4(ii) symmetric w.r.t. u 1, therefore M( T,)nD^, =0 and by [S] the 

hypothesis ( V(fil) ( >) V(b,) ( implies that M( T,)nfi, =0. 
In T4 we thus have that M( T,) E G-(D^,ufi,), and in T1 we can then easily show 

that M( Tl) must be the corresponding same one vertex or two vertices because 

Fig. 5. Four spanning trees of G. The common length of circuits D t, D2 may be 3 or 4, this is indicated 

by a dot. 
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internal edge-exchanges within a weight branch do not affect the weight of a vertex. 

But now we have that 6( T,)>6( r,) and thus T, $ T4. 

Case 2: (E(Dr)l=4. 

As in Case 1 it can be proved that in T4 we have that M( T4)s G-(fi,ul?,) if and 

only if in T, and T, we have that M( T,) and M( T4) are the corresponding same one 

or two vertices. We can then use 6( T,)> 6( T4) to establish T, $2 Tb 

If M( T, $2 G -( B1 ~6~) then it is not difficult, but somewhat tedious, to show by 

case examination that we also obtain T, $ T,. We thus have that T,, T,, T4 are three 

pairwise non-isomorphic spanning trees for G. Since z(G) = 3 and T, $ T1, T, $ T4 it 

then follows that T22 TJ. This in turn will lead to the desired conclusion that G is 

symmetric. 

We shall sketch the argument for IE(Dl)l=3, the case IE(Dl)l=4 can be treated 

similarly. 

Suppose JE(D,)I=3. By symmetry of u2, u3 in T2 we see that M(T,)cG-(6,u&). 

Therefore the medians of T, and T3 are corresponding vertices and we can by 

comparison of connected components of T2 - M( T,) and T3 - M( T,) establish that 

G is symmetric as desired. This proves Lemma 6. q 

The proof of the Theorem can now be concluded: 

For E,(L),) #O Lemmas l-3 prove (I) and II(i) in the statements that G can 

be obtained by Construction 1 or 2. The proof of statement II concerning 

Constructions 1 and 2 is not difficult and is left to the reader. 

For E,(D,) =@ the proof of the Theorem follows from Lemmas 4-6. 

This concludes the proof of the Theorem. 0 
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