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Abstract

In this historical perspective the principal numerical approaches to continuation methods are outlined in the framework of
the mathematical sources that contributed to their development, notably homotopy and degree theory, simplicial complexes
and mappings, submanifolds de�ned by submersions, and singularity and foldpoint theory. c© 2000 Elsevier Science B.V.
All rights reserved.

1. Introduction

The term numerical continuation methods, as it is typically used, covers a variety of topics which
— while related — exhibit also considerable di�erences. This is already reected in some of the
alternate terminology that has been used, such as imbedding methods, homotopy methods, parameter
variation methods, or incremental methods, just to name a few.
In order to provide an overview from a historical viewpoint, it appears that the general structure

of the area is illuminated best by focusing �rst on the principal underlying mathematical sources
that have contributed to its development. Accordingly, in the �rst two sections we concentrate on (i)
homotopy and degree theory, (ii) simplicial complexes and mappings, (iii) submanifolds de�ned by
submersions, and (iv) singularity and foldpoint theory. Then the subsequent sections address some of
the numerical approaches growing out of this theoretical basis. Since methods based on (ii) above;
that is, notably, the piecewise linear methods, are covered in another article [5] in this volume, this
area will not be addressed here any further. Clearly, in a brief article as this one, only the bare
outlines of the theoretical and computational topics can be sketched and many aspects had to be left
out. An e�ort was made to give references to sources that provide not only further details but also
relevant bibliographic data to the large literature in the area.
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2. Theoretical sources: homotopies

An important task in many applications is the solution of nonlinear equations de�ned on �nite-
or in�nite-dimensional spaces. In order to avoid technical details we restrict here the discussion to
the �nite-dimensional case

F(y) = 0; F : Rm → Rm: (1)

The computational approximation of a solution y∗∈Rm of (1) typically requires the application of
some iterative process. However, except in rare circumstances, such a process will converge to y∗

only when started from a point (or points) in a neighborhood of the desired — but, of course,
unknown — point y∗. In other words, for an e�ective overall solution process we need tools for
localizing the area of the expected solution and for constructing acceptable starting data for the
iteration.
Evidently, localization requires the determination of a suitably small domain which is guaranteed

to contain a solution — hopefully the one we are interested in. This represents a problem about the
existence of solutions of (1). Among the many approaches for addressing it, an important one —
dating back to the second half of the 19th century — is the use of homotopies.

2.1. Homotopies and Brouwer degree

Let 
 ∈ Rm be a given open set and C( �
) the set of all continuous mappings from the closure
�
 into Rm. Two members F0; F1 ∈ C( �
) are homotopic if there exists a continuous mapping

H : �
 × [0; 1]→ Rm (2)

such that H (y; 0)=F0(y); H (y; 1)=F1(y) for all y∈ �
. This introduces an equivalence relation on
C( �
). The topic of homotopy theory is the study of properties of the functions in C( �
) that are
preserved under this equivalence relation.
Among the properties of interest is, of course, the solvability of Eq. (1) de�ned by homotopic

members of C( �
). An important tool is here the concept of the degree of a mapping. Without
entering into historical details we mention only that the concept of a local degree; that is, a degree
with respect to a neighborhood of an isolated solution, was introduced by L. Kronecker in 1869.
The extension of this local concept to a degree in the large was given by L. Brouwer in 1912. Then,
in 1934, the seminal work of J. Leray and J. Schauder opened up the generalization to mappings on
in�nite-dimensional spaces. We refer, e.g., to [2,33,26] for some details and references.
The Brouwer degree is by nature a topological concept but it can also be de�ned analytically.

We sketch only the general idea. For any C1-map F from some open set of Rn into Rm a vector
z ∈ Rm is called a regular value of F if DF(y) has maximal rank min(n; m) for all y ∈ F−1(z). Let

 be a bounded set and consider a mapping F ∈C( �
) ∩ C1(
) and some regular value z ∈ Rm of
F . Then the cardinality of F−1(z) must be �nite and the degree of F with respect to 
 and y can
be de�ned as

deg(F;
; z) :=
∑
�

sign det(DF(y�)); (3)
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where the sum is taken over all y� ∈ F−1(z). Now, appropriately de�ned approximations can be
used to obtain an extended de�nition of the degree for any F ∈ C( �
) and b 6∈ F(@
). For the
details we refer, e.g., to [33] or [26].
The following result lists some relevant properties of the Brouwer degree.

Theorem 1 (Homotopy invariance). Let 
⊂Rm be bounded and open.
(i) If deg(F;
; z) 6= 0 for F ∈ C( �
) and z 6∈ F(�
) then F(y) = z has a solution in 
.
(ii) If for some mapping (2) the restricted mappings Ht :=H (·; t) are in C( �
) for each t ∈ [0; 1]

and

z 6∈ Ht(@
); ∀t ∈ [0; 1]; (4)

then deg(Ht; 
; z) is constant for t ∈ [0; 1].

These results show that we can deduce solvability properties for a map F1 from corresponding
known facts about another homotopic map F0. This represents a powerful tool for the establishment
of existence results and for the development of computational methods. In that connection, we note
that condition (4) is indeed essential as the following example shows:

H : [− 1; 1]× [0; 1]→ R1; H (y; t) :=y2 − 1
2 + t; z = 0: (5)

Here H0(y)=0 has two distinct roots in [− 1; 1] while H1(y)=0 has none. Theorem 1(ii) does not
hold because 0 ∈ H1(@
).

2.2. Simplicial approximations

The above homotopy results constitute a theoretical source of an important subclass of continuation
methods, the so-called piecewise linear methods. In order to see this we begin with a summary of
some basic de�nitions.
An k-dimensional simplex (or simply k-simplex), �k in Rn; n¿k¿0, is the closed, convex hull,

�k = co(u0; : : : ; uk), of k + 1 points u0; : : : ; uk ∈ Rn that are not contained in any a�ne subspace of
dimension less than k. These points form the vertex set vert(�k)={u0; : : : ; uk} of �k . The barycenter
of �k is the point x = [1=(k + 1)](u0 + · · · + uk) and the diameter of �k is de�ned as diam(�k) =
max{||uj − ui||2: i; j=0; : : : ; k}. An l-simplex �l ∈ Rn is an l-face of �k if vert(�l)⊂ vert(�k). The
unique k-face is �k itself and the 0-faces are the vertices.
A (�nite) simplicial complex of dimension k is a �nite set S of k-simplices1 in Rn with the two

properties

(a) If � ∈ S then all its faces belong to S as well,
(b) for �1; �2 ∈ S; �1 ∩ �2 is either empty or a common face.
For a simplicial complex S, the carrier is the set |S| = {x ∈ Rn: x ∈ � for some � ∈ S}, and
vert(S)= {x ∈ Rn: x ∈ vert(�) for some � ∈ S} is the vertex set. Since S is assumed to be �nite,
the carrier |S| must be a compact subset of Rn and the diameter diam(S) is well de�ned as the
largest diameter of the simplices of S.

1 We exclude here complexes of simplices with di�erent dimensions, usually permitted in topology.
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Let S and T be two simplicial complexes of Rn (not necessarily of the same dimension). A
mapping K : S → T is a simplicial map if it maps every simplex of S a�nely onto a simplex
of T. Since an a�ne map of a simplex is fully de�ned by the images of its vertices, it follows
that a simplicial map K : S → T is fully de�ned by specifying the image K(x) ∈ vert(T) of
every x ∈ vert(S). Note that the images of di�erent vertices of S need not be distinct. Clearly a
simplicial map K :S → T induces a continuous mapping from |S| to |T|.
A simplicial complex T is a subdivision of the simplicial complex S if |S| = |T| and each

simplex of T is contained in a simplex of S. A subdivision of S is fully speci�ed once subdivisions
of each of its simplices are provided. For example, let vert(�k) = {u0; : : : ; uk} be the vertex set of a
k-simplex �k and u∗ its barycenter. Then, for each j; 06j6k, the k-simplex �(k; j) with the vertex
set (vert(�k) \ uj)∪ u∗ is contained in �k and the collection of the k+1 simplices �(k; j); j=0; : : : ; k,
forms a subdivision of �k , the so-called barycentric subdivision. Evidently, by repeated barycentric
subdivision, complexes with arbitrarily small diameter can be generated. This holds also for various
other types of subdivisions (see, e.g., [37]).
The following basic result about approximations of continuous mappings by simplicial mappings

is proved, e.g., in [2]. It provides the intended connection with the results of the previous subsection.

Theorem 2. Let S and T be simplicial complexes of Rn and Rm, respectively, and suppose that
{Sr}∞r=1 is a sequence of successive subdivisions of S for which the diameter tends to zero when
r → ∞. If F : |S| → |T| is a continuous mapping, then, for any �¿ 0, there exists a su�ciently
large r and a simplicial map Kr :Sr → T such that

max
x∈|S|

||F(x)− Kr(x)||26�:

Moreover, there is a continuous homotopy H : |S|×[0; 1]→ Rm such that H (x; 0)=Kr(x); H (x; 1)=
F(x).

In other words, a continuous mapping F between the carries of the complexes S and T can
be approximated arbitrarily closely by a simplicial mapping between these complexes which, at the
same time, is homotopic to F . Hence, in particular, Theorem 1 can be applied here. This represents,
in essence, the theoretical basis of the mentioned piecewise linear continuation methods.

3. Theoretical sources: manifolds

In applications nonlinear equations (1) typically arise as models of physical systems which almost
always involve various parameters. While some of these parameters can be �xed, for others we
often may know only a possible range. Then interest centers in detecting any signi�cant changes in
the behavior of the solutions when these parameters are varied, as for instance, when a mechanical
structure buckles.
Problems of this type require the changeable parameters to be incorporated in the speci�cation of

the equations. In other words, in place of (1), we have to consider now equations of the form

F(y; �) = 0; F : Rm × Rd → Rm; d¿ 0; (6)
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where y ∈ Rm typically represents a state vector and � ∈ Rd is the parameter vector. In working
with such systems, it is often desirable to combine the vectors y and � into a single vector x ∈ Rn
of dimension n= m+ d. This means that (6) is written in the form

F(x) = 0; F : Rn → Rm (7)

and that the parameter splitting

Rn = Rm × Rd; x = (y; �); y ∈ Rm; � ∈ Rd (8)

is disregarded.
For equations of form (7) (as well as (6)) it rarely makes sense to focus on the determination of a

speci�c solution x ∈ F−1(0). Instead, as noted, interest centers on analyzing the properties of relevant
parts of the solution set M = F−1(0). In most cases, this set has the structure of a di�erentiable
submanifold of Rn. In the study of equilibrium problems in engineering this is often reected by
the use of the term ‘equilibrium surface’, although, rarely, any mathematical characterization of the
manifold structure of M is provided.

3.1. Submanifolds of Rn

In this section we summarize some relevant de�nitions and results about manifold and refer for
details, e.g., to [1]. Here the dimensions n; m are assumed to be given such that n= m+ d, d¿ 0,
and � denotes a positive integer or ∞.
When F : Rn → Rm is of class C� on a open set 
⊂Rn, then F is an immersion or submersion

at a point x0 ∈ 
 if its �rst derivative DF(x0) ∈ L(Rn;Rm) is a one-to-one mapping or a mapping
onto Rm, respectively. More generally, F is an immersion or submersion on a subset 
0⊂
 if it
has that property at each point of 
0.
We use the following characterization of submanifolds of Rn.

De�nition 3. A subset M⊂Rn is a d-dimensional C�-submanifold of Rn if M is nonempty and for
every x0 ∈ M there exists an open neighborhood U of x0 in Rn and a submersion F : U 7→ Rm of
class C� such that M ∩U= F−1(0).

An equivalent de�nition utilizes the concept of a local parametrization:

De�nition 4. Let M be a nonempty subset of Rn. A local d-dimensional C� parametrization of M
is a pair (U; �) where U⊂Rd is a nonempty open set and � : U 7→ Rm a mapping of class C�
such that

(i) �(U) is an open subset of M (under the induced topology of Rn) and � is a homeomorphism
of U onto �(U),

(ii) � is an immersion on U.

If x0 ∈ M and (U; �) is a local d-dimensional C� parametrization of M such that x0 ∈ �(U), then
(U; �) is called a local d-dimensional C� parametrization of M near x0.
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Theorem 5. A nonempty subset M⊂Rn is a C�-submanifold of Rn of dimension d if and only if
for every x0 ∈ M there exists a local d-dimensional C� parametrization of M near x0. When M
is a d-dimensional C�-submanifold of Rn then any local C� parametrization of M is necessarily
d-dimensional.

The following result is central to our discussion.

Theorem 6 (Submersion Theorem). Suppose that, for the C� mapping F : Rn → Rm on the open
set 
, the set M=F−1(0) is not empty and F is a submersion on M. Then M is a d-dimensional
C�-submanifold of Rn.

In our setting we can de�ne tangent spaces of submanifolds of Rn as follows:

De�nition 7. Let M be a d-dimensional C�-submanifold of Rn. For any x0 ∈ M the tangent space
Tx0M of M at x0 is the d-dimensional linear subspace of Rn de�ned by

Tx0M := rge D�(�−1(x0)); (9)

where (U; �) is any local C� parametrization of M near x0. The subset TM =
⋃
x∈M [{x} × TxM]

of Rn × Rn is the tangent bundle of M.

This de�nition is independent of the choice of the local parametrization. In the setting of the
Submersion Theorem 6 this follows directly from the fact that then Tx0M=kerDF(x0). The following
result provides a basis for the computational evaluation of local parametrizations.

Theorem 8. Under the conditions of the submersion theorem on the mapping F let U ∈ L(Rd;Rn)
be an isomorphism from Rd onto a d-dimensional linear subspace T ⊂Rn. Then the mapping

K : Rn → Rk × Rd; K(x) := (F(x); U Tx); ∀x ∈ Rn; (10)

is a local di�eomorphism on an open neighborhood of xc ∈ M in Rn if and only if

TxcM ∩ T⊥ = {0}: (11)

Let j : Rd → Rn × Rd denote the canonical injection that maps Rd isomorphically to {0} × Rd. If
(11) holds at xc then there exists an open set Ud of Rd such that the pair (Ud; �), de�ned with
the mapping �= K−1 ◦ j : Ud → Rn, is a local parametrization of M near xc.

We call a d-dimensional linear subspace T ⊂Rn a coordinate subspace of M at xc ∈ M if (11)
holds. At any point xc ∈ M an obvious choice for a coordinate subspace is T =TxcM, the tangential
coordinate space of M at that point. When we work with equations of the form (6); that, is when
the parameter splitting (8) is available, then the parameter space T = {0} × Rd is another possible
choice of coordinate subspace. In that case, the point xc where (11) fails to hold often have special
signi�cance.
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A frequent approach in the study of the solution manifold M=F−1(0) of Eq. (7) is to work with
suitable paths on M. Such a path may be speci�ed by means of an augmented system

G(x) = 0; G(x) :=
(
F(x)
�(x)

)
; � : Rn → Rd−1 (12)

of n − 1 equations and n variables. If G is of class C� on the open set 
 and a submersion on
the solution set G−1(0), then this set is indeed a one-dimensional submanifold of M provided, of
course, it is not empty. Thus, (12) is a problem of form (7) with d= 1.
Here there is certainly some similarity with the homotopy mappings (2). But the geometric mean-

ing is very di�erent. In fact, (2) relates the two mappings H0 :=H (·; 0) and H1 :=H (·; 1), each with
their own solution set, and the t-variable does have a very speci�c meaning. On the other hand,
(12) de�nes a path that connects certain points of M; that is, solutions of (7). Moreover, unless the
augmenting mapping � in (12) is suitably chosen, no component of x can be singled out in any way.
Of course, in many cases � does have a special form. For instance, when the parameter splitting (8)
is available then we may use, �(y; �) := (�1 − �01; : : : ; �k−1 − �0k−1; �k+1 − �0k+1; : : : ; �d − �0d)T, whence
only the parameter component � = �k remains variable and we may reduce (12) to an equation

G̃(y; �) = 0; G̃ : Rm × R1 → Rm: (13)

3.2. Singularities

When in example (5) the subspace of the parameter t is used to de�ne a local parametrization,
then condition (11) requires that y = 0. In other words, the t-parametrization fails at the point
(0; 12 ) where the two t-parametrized solution paths (±

√
1
2 − t; t) meet; that is, where the number of

solutions of the form y = y(t) of (5) reduces to one.
This is the simplest example of a bifurcation phenomenon. Loosely speaking, in this setting,

bifurcation theory concerns the study of parametrized equations with multiple solutions and, in
particular, the study of changes in the number of solutions when a parameter varies. Typically,
such equations arise in applications modeling the equilibrium behavior of physical systems and then
bifurcations signify a critical change in the system such as the, already mentioned, collapse of
a mechanical structure. Accordingly, during the past several decades, the literature on bifurcation
theory and the computation of bifurcation points has grown rapidly. It is beyond the framework of
this presentation to enter into any details of the wide range of results.
As shown in [17,18] an important approach to bifurcation studies is via the more general study of

singularities of stable mappings. In essence, for equations of form (13) involving a scalar parameter,
the theory addresses problems of the following type: (i) The identi�cation of (usually simpler) equa-
tions that are in a certain sense equivalent to the original one with the aim of recognizing equations
of a particular qualitative type, (ii) the enumeration of all qualitatively di�erent perturbations of a
given equation, in particular, in terms of a so-called universal unfolding, (iii) the classi�cation of
qualitatively di�erent equations that may occur, e.g., by considering the codimension; that is, the
number of parameters needed in the universal unfolding.
In problems involving submanifolds that are de�ned as the solution set M :=F−1(0) of a (smooth)

submersion F :Rn → Rm; n=m+ d, bifurcation phenomena are closely related to the occurrence of
certain foldpoints. Generally, a point xc ∈ M is a foldpoint with respect to a given d-dimensional
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coordinate subspace T ⊂Rn of M if condition (11) fails at that point. When the parameter splitting
(8) is available, the parameter space may be used as the coordinate subspace and, typically in
applications, it turns out that the corresponding foldpoints are exactly the points where the solution
behaviour shows drastic changes. Moreover, these points can be shown to be bifurcation points in
the sense of the above-mentioned theory.
A general study and classi�cation of foldpoints was given in [16]. This led to applications in

various settings. In particular, in [27] a connection with the second fundamental tensor of the mani-
fold was established and used for the computations of certain types of foldpoints. In [13] a di�erent
approach led to a new method for a particular subclass of foldpoints and in [19] this method was
extended to problems with symmetries.
There is also a close connection between foldpoints and the general sensitivity problem for pa-

rameterized equations. If for Eq. (13) with a scalar parameter � the solution can be written in the
form (y(�); �) then, traditionally, the derivative Dy(�) is de�ned as a measure of the sensitivity of
the solution with respect to the parameter. In [30] it was shown that this concept can be generalized
to submanifolds M :=F−1(0) de�ned by a (smooth) submersion F :Rn → Rm; n = m + d; d¿1.
For a given local parametrization near a point x0 ∈ M speci�ed by the coordinate space T ⊂Rn the
sensitivity is a linear mapping �T from Rd into Rm. We will not give the details but note that in
the above special case �T reduces to Dy(�). Moreover, as shown in [30] the Euclidean norm of �T
satis�es

||�T ||2 = dist(T; Tx0M)

[1− dist(T; Tx0M)]1=2
; (14)

where, as usual, the distance dist(S1; S2) between any two, equi-dimensional linear subspaces S1 and
S2 of Rn is the norm-di�erence ||P1 − P2||2 of the orthogonal projections Pj of Rn onto Sj; j= 1; 2:
Eq. (14) shows that, in essence, the sensitivity �T at x0 ∈ M represents a measure of the distance
between the local coordinate space T and the tangent space Tx0M. In other words, ||�T ||2 speci�es
how close X 0 is to the nearest foldpoint of M with respect to the local basis de�ned by T . This
has been shown to be an valuable tool for identifying computationally the location of foldpoints.

4. Parametrized methods

The title of this section is intended to refer broadly to numerical methods for equations involving
a scalar parameters. This includes the equations H (y; t) = 0 de�ned by any homotopy mapping (2)
as well as those of the form (6) with a one-dimensional parameter � ∈ R1. The emphasis will be on
methods that do not utilize explicitly any manifold structure of the solution set even if that structure
exists.

4.1. Incremental methods

For the equation H (y; t) = 0 de�ned by a continuous homotopy mapping (2), the Homotopy
Invariance Theorem 1 provides information about the existence of solutions (y; t) for any given
t ∈ [0; 1] but not about, say, the continuous dependence of y upon t. For that we require additional
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conditions on H . Let

H :
 ×J → Rm; 
⊂Rm; J⊂R1; (15)

be a C�; �¿2, mapping on the product of an open set D and an open interval J. Then, for any
solution (y0; t0) ∈ 
 × J where DyH (y0; t0) is nonsingular, the implicit function theorem ensures
the existence of a C�−1 mapping � :J → 
 on some interval J0⊂J containing t0 such that
H (�(t); t) = 0 for t ∈ J0. Moreover, by shrinking J0 if needed, DyH (�(t); t) will be nonsingular
for t in that interval.
By repeating the process with di�erent points in the t-intervals, we obtain ultimately a solution

curve � :J∗ → 
 on an open interval J∗ ⊂J that is maximal under set-inclusion. At the endpoints
of this maximal interval the process stops either because the derivative DyH becomes singular (as
in the example (5)) or the curve leaves the set D.
Various iterative processes can be used to compute any point �(t) for given t ∈ J∗ on the solution

curve. For instance, Newton’s method

uj+1 = uj − [DyH (uj; t)]−1H (uj; t); j = 0; 1; : : : ; (16)

converges to �(t) if only ||u0 − �(t)|| is su�ciently small. This can be guaranteed by proceeding
in small t-steps along the curve. In other words, we start say from a known point (y0; t0) and, for
i = 1; 2; : : : ; compute a sequence (yi; ti) of approximations of (�(ti); ti); ti ∈ J∗, with su�ciently
small t-steps hi = ti − ti−1. Once (yi; ti) is available, (16) can be started, for instance, with u0 = yi
and t= ti+1 := ti+hi+1. Alternately, some extrapolation of the prior computed points can be generated
as a starting point.
This is the basic concept of the so-called incremental methods which date back at least to the

work of Lahaye [22]. Over the years numerous variations of these processes have been proposed.
This includes the use of a wide variety of iterative methods besides (16) and of numerous im-
proved algorithms for the starting points. We refer here only to the extensive literature cited, e.g.,
in [26,20,3,4,32].

4.2. Continuation by di�erentiation

Consider again a mapping (15) under the same conditions as stated there. Suppose that there exists
a continuous mapping � : J∗ → 
 which is at least C1 on some interval J∗ ⊂J and satis�es

H (�(t); t) = 0; ∀t ∈ J∗: (17)

Then, with y0 = �(t0) for given t0 ∈ J∗, it follows that y = �(t) is a solution of the initial value
problem

DyH (y; t)ẏ + DtH (y; t) = 0; y(t0) = y0: (18)

Conversely, for any solution y=�(t) of (18) on an interval J∗ ⊂J such that t0 ∈ J∗ and H (y0; t0)=
0, the integral mean value theorem implies that (17) holds.
In a lengthy list of papers during a decade starting about 1952, D. Davidenko utilized the ODE

(18) for the solution of a wide variety of problems including, not only nonlinear equations, but
also integral equations, matrix inversion problems, determinant evaluations, and matrix eigenvalue
problems (see [26] for some references). This has led occasionally to the use of the term ‘Davidenko
equation’ for (18).
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Evidently, if DyH (y; t) is nonsingular for all (y; t) ∈ 
×J, then the classical theory of explicit
ODEs ensures the existence of solutions of (18) through any point (y0; t0) in this domain for which
H (y0; t0) = 0. Moreover, these solutions are known to terminate only at boundary points of the set

×J. But, if the derivative DyH (y; t) is allowed to become singular at certain points of the domain,
then (18) becomes an implicit ODE and the standard ODE theory no longer applies in general.
However, if we assume now that rank DH (y; t)=m (whence H−1(0) has a manifold structure) then
(18) turns out to be equivalent with an explicit ODE. Of course, its solutions can no longer be
written globally as functions of t. For ease of notation, in the following result from [28] we drop
the explicit t-representation and hence introduce again the combined vector x=(y; t) ∈ Rn; n=m+1.

Theorem 9. Suppose that F :D → Rn−1 is C1 on some open set D⊂Rn and that rankDF(x) =
n− 1; ∀x ∈ D. Then, for each x ∈ D there exists a unique ux ∈ Rn such that

DF(x)ux = 0; ||ux||2 = 1; det

(
DF(x)

uTx

)
¿ 0 (19)

and the mapping

	 :D 7→ Rn; 	(x) = ux; ∀x ∈ D (20)

is locally Lipschitz on D.

The mapping G of (20) de�nes the autonomous initial value problem

d
d�
x =	(x); x(0) = x0 ∈ D: (21)

By the local Lipschitz continuity of 	, standard ODE theory guarantees that (21) has for any x0 ∈ D
a unique C1-solution x :J → D which is de�ned on an open interval J with 0 ∈ J that is maximal
with respect to set inclusion. Moreover, if s ∈ @J is �nite then x(�) → @D or ||x(�)||2 → ∞ as
� → s; � ∈ J. Any solution x = x(�) of (21) satis�es DF(x(�))ẋ(�) = DF(x(�))	(x(�)) = 0 which
implies, as before, that F(x(�)) = F(x0) for � ∈ J.
Clearly, this is a more general result than the earlier one for (18). It can be combined with

condition (4) of the homotopy invariance theorem 1 to avoid ‘degeneracies’ in the solution path of
a given homotopy. The basis for this is the so-called Sard theorem and its generalizations covered,
e.g., in some detail in [1]. The following result represents a very speci�ed case:

Theorem 10. Let Dn⊂Rn and Dk ⊂Rk be open sets and F : Dn × Dk → Rm; n¿m, a C∞-map
which has z ∈ Rm as regular value. Then for almost all u ∈ Dk (in the sense of Lebesgue measure)
the restricted map Fu :=F(· ; u) :Dn → Rm has z as regular value.

As an application we sketch an example that follows results of Chow et al., [12]. For a bounded
map G ∈ C∞(
) ∩ C( �
), where 
⊂Rm is a bounded, open set, assume that 0 ∈ Rm is a regular
value. With u ∈ 
 consider the homotopy mapping

Ĥ : 
 × 
 × R1 → Rm; Ĥ (y; u; t) :=y − u− t(G(y)− u):
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Then, clearly, rank DĤ (y; u; t) = m on the domain of Ĥ ; that is, 0 ∈ Rm is a regular value of Ĥ .
Hence, for almost all u ∈ 
, the restricted map

H : 
 × R→ Rm; H (y; t) := Ĥ (y; u; t)

has 0 as regular value. By Theorem 9 this implies that there exists a unique solution � ∈ J 7→
(y(�); t(�)) ∈ 
 × R of H (y; t) = 0 which satis�es (y(0); t(0)) = (u; 0) and is de�ned on some
maximal open interval J containing the origin. We consider the solution path in the cylindrical
domain D := �
×[0; 1]. From (19) it follows that at the starting point (u; 0) the path is not tangential
to Rm × {0} and enters D. Hence, it can terminate only on @D. Since H (y; 0) = 0 has only the
solution (u; 0), we see that the path cannot return to Rm × {0} and hence must reach the set
( �
 × {1}) ∪ (@
 × (0; 1)). Now suppose that condition (4) of the homotopy invariance theorem 1
holds. Then we obtain that the solution path must reach the set �
×{1} at a �xed point of G in 
.
In line with the title of [12] the concept underlying this approach has been generally called

the probability-one homotopy paradigm. It constitutes the principal theoretical foundation of the
extensive and widely used HOMPACK package which incorporates many of the solution procedures
indicated here. The curve tracing algorithms of this package were described in [39] and for the latest
version we refer to [40] where also other relevant references are included.
In a sense the topological degree arguments of Theorem 1 are here replaced by analytic arguments

involving inverse images of points in the range of the mapping under consideration. There exists
an extensive literature centered on this idea. It includes in particular, various results on numerically
implementable �xed point theorems. For an overview and comprehensive bibliography we refer
to [3].

5. Manifold methods

As in Section 3 let F : Rn → Rm; n = m + d, be a C� mapping, �¿1, on the open set 
⊂Rn
and suppose that the set M = F−1(0) is not empty and F is a submersion of M. Hence M is a
d-dimensional C�-submanifold of Rn.
The computational tasks involved with such an implicitly de�ned manifold di�er considerably

from those arising in connection with manifolds de�ned in explicit, parametric form as they occur,
e.g., in computational graphics. In fact, unlike in the latter case, for implicitly de�ned manifolds
the algorithms for determining local parametrizations and their derivatives still need to be made
available. A collection of algorithms was given in [31] for performing a range of essential tasks on
general, implicitly speci�ed submanifolds of a �nite-dimensional space. This includes algorithms for
determining local parametrizations and their derivatives, and for evaluating quantities related to the
curvature and to sensitivity measures. The methods were implemented as a FORTRAN 77 package,
called MANPAK. We discuss here only briey one of these algorithms, namely, for the computation
of local parametrizations.
Theorem 8 readily becomes a computational procedure for local parametrizations by the intro-

duction of bases. Suppose that on Rn and Rd the canonical bases are used and that the vectors
u1; : : : ; ud ∈ Rn form an orthonormal basis of the given coordinate subspace T of M at xc. Then the
matrix representation of the mapping U is the n×d matrix, denoted by Uc, with the vectors u1; : : : ; ud



240 W.C. Rheinboldt / Journal of Computational and Applied Mathematics 124 (2000) 229–244

Table 1
Algorithm GPHI

Input: {y; xc; Uc; DK(xc); tolerances}
x := xc + Ucy;
while: ‘iterates do not meet tolerances’
evaluate F(x);

solve DK(xc)w =

(
F(x)
0

)
for w ∈ Rn;

x := x − w;
if ‘divergence detected’ then return fail;

endwhile
Output: {�(y) := x}.

as columns. It is advantageous to shift the open set Ud such that �(0) = xc. Now, componentwise,
the nonlinear mapping K of (10) assumes the form

K : Rn → Rn; K(x) =

(
F(x)

U T
c (x − xc)

)
; ∀x ∈ 
⊂Rn: (22)

By de�nition of � we have K(�(y)) = jy for all y ∈ Ud, thus, the evaluation of x= �(y) requires
�nding zeroes of the nonlinear mapping Ky(x) :=K(x)− jy. For this a chord Newton method works
well in practice. With the special choice x0 = xc + Ucy, the iterates satisfy 0 = U T

c (x
k − xc) − y =

U T
c (x

k − x0) which implies that the process can be applied in the form

xk+1 := xk − DK(xc)−1
(
F(xk)

0

)
; x0 = xc + Ucy; (23)

with a y-dependence only at the starting point. By standard results, it follows that, for any y near
the origin of Rd, the algorithm of Table 1 produces the point x= �(y) in the local parametrization
(Ud; �) near xc de�ned by Theorem 8. For further methods related to local parametrizations and for
determining bases of suitable coordinate spaces we refer to [31].
As a special case suppose now that d=1 and hence that M is a one-dimensional C�-submanifold

of Rn. Note that M may well have several connected component. The continuation methods for
the computation of M begin from a given point x0 on M and then produce a sequence of points
xk ; k = 0; 1; 2; : : : , on or near M. In principle, the step from xk to xk+1 involves the construction
of a local parametrization of M and the selection of a predicted point w from which a local
parametrization algorithm, such as GPHI in Table 1, converges to the desired next point xk+1 on M.
For the local parametrization at xk we require a nonzero vector vk ∈ Rn such that (11) holds which
here means that

vk 6∈ rgeDF(xk)T: (24)

It is natural to call TxM⊥ = NxM the normal space of M at x (under the natural inner product of
Rn). Thus (24) means that vk should not be a normal vector of M at xk . Once vk is available, the
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local parametrization algorithm GPHI requires the solution of the augmented system(
Fx

(vk)T(x − xk)− y

)
= 0; (25)

for given local coordinates y ∈ R1.
In summary then, three major choices are involved in the design of a continuation process of this

type, namely,

(i) the coordinate direction vk at each step,
(ii) the predicted point zk at each step,
(iii) the corrector process for solving system (25).

In most cases a linear predictor y=xk+hv is chosen, whence (ii) subdivides into the choice (ii-a)
of the predictor-direction vr ∈ Rn, and (ii-b) of the steplength h. The so-called pseudo-arclength
method (see [20]) uses for u and v the (normalized) direction of the tangent of M at xk while
in the PITCON code (see [11]), only the prediction v is along the tangent direction while u is a
suitable natural basis vector of Rn. The local iterative process (iii); that is, the corrector, usually
is a chord Newton method with the Jacobian evaluated at xk or y as the iteration matrix. Other
correctors include update methods as well as certain multigrid approaches (see e.g. the PLTMG
package described in [8] and the references given there).

6. Simplicial approximations of manifolds

As before suppose that F : Rn 7→ Rm; n = m + d; d¿1, is a C� map, �¿1, and a submersion
on M :=F−1(0). Then M is a d-dimensional C� submanifold of Rn or the empty set, which is
excluded. Obviously, for d¿2 we can apply continuation methods to compute paths on M, but, it is
certainly not easy to develop a good picture of a multi-dimensional manifold solely from information
along some paths on it. This has led in recent years to the development of methods for a more direct
approximation of implicitly de�ned manifolds of dimension exceeding one.
The case of implicitly de�ned manifolds has been addressed only fairly recently. The earliest work

appears to be due to Allgower and Schmidt [6] (see also [7]) and uses a piecewise-linear continuation
algorithm to construct a simplicial complex in the ambient space Rn that encloses the implicitly given
d-dimensional manifold M. In other words, this piecewise linear approach does not generate directly
a simplicial approximation of M in the sense of Section 2.2. But, of course, such an approximation
can be obtained from it. In fact, by using linear programming tools, points on the intersection of the
n-simplices with the manifold can be computed. These points form polytopes which, in turn, can be
subdivided to generate d-simplices that form the desired simplicial approximation. A disadvantage
of this approach appears to be that the computational complexity is only acceptable for low ambient
dimensions n. In fact, the method was mainly intended for surface and volume approximations.
A �rst method for the direct computation of a d-dimensional simplicial complex approximating

an implicitly de�ned manifold M in a neighborhood of a given point of M was developed in
[29]. There standardized patches of triangulations of the tangent spaces TxM of M are projected
onto the manifold by smoothly varying projections constructed by a moving frame algorithm. An
implementation of a globalized version of the method for the case d = 2 is described in [32] and
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Brodzik [10] extended this global algorithm to the case of dimensions larger than two. In [10] also
various applications are discussed and a general survey of methods in this area is provided.
A di�erent method was developed in [24] which does not aim at the explicit construction of a

simplicial complex on the implicitly de�ned, two-dimensional manifold, but on tessellating it by a
cell-complex. This complex is formed by nonoverlapping cells with piecewise curved boundaries
that are obtained by tracing a �sh-scale pattern of one-dimensional paths on the manifold. Hence
this approach appears to be intrinsically restricted to two-dimensional manifolds.

7. Further topics

There are a number of topics relating to the general area of continuation methods which, in view
of space limitations, could not be addressed here.
While we restricted attention to problem in �nite-dimensional spaces, many of the results can be

extended to an in�nite-dimensional setting. But, in that case various additional questions arise. For
instance, typically in applications, the nonlinear equations (1) or (6) represent parametrized boundary
value problems which must be discretized before we can apply any of the computational procedures.
This raises the question how to de�ne and estimate the discretization error. For parametrized equa-
tions already the de�nition of such errors is nontrivial; in fact, the development of a rigorous theory
of discretization errors for parametrized nonlinear boundary value problems is of fairly recent origin.
The case of a scalar parameter was �rst studied in the three-part work [9]. There mildly nonlinear
boundary value problems were considered and the three parts concerned estimates at di�erent types
of points on the solution path. In particular, Part I addressed the case when � can be used as local
variable, while in Parts II and III estimates at simple limit points and simple bifurcation points are
presented, respectively. Of course, a principal aspect of the latter two cases is the development of
suitable local parametrizations.
For certain discretizations of equations de�ned by Fredholm operators on Hilbert spaces that

involve a �nite-dimensional parameter vector, a general theory of discretization errors was developed
in [15]. Some applications of this theory to boundary value problems of certain quasilinear partial
di�erential equations and �nite-element discretizations are given in [38].
In Sections 4 and 5 we considered only general smooth maps. For more special systems it is,

of course, possible to develop further re�nements of the methods. In particular, for polynomial
systems an extensive literature exists on homotopy methods for computing all zeros (in principle).
For references see, e.g., [25,4], as well as the discussion in [41] of a very sophisticated code for
polynomial systems that exploits their structure. It may be noted that — except for some early work
— these results on polynomial systems formulate the problem in the complex projective space CPn.
As in other areas of computational mathematics, complexity studies have also become a topic

of increasing interest in connection with continuation methods. In a series of �ve articles Shub and
Smale developed a theory on the complexity of Bezout’s theorem which concerns homotopy methods
for computing all solutions of a system of polynomial equations. As an introduction to the results,
we cite here the survey article [35] and, for further references, the �fth part [36] of the series.
Besides our brief comments about bifurcations in Section 3.2, we had to exclude any further

discussion of the numerous results on computational methods for bifurcation problems. For some
introduction and references see, e.g., [21,3,4]. A survey of methods for computing the simplest type
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of these points — the so-called limit points — was given in [23]. Methods for these and also
the simple bifurcation points are incorporated in several of the existing packages for continuation
problems, including, e.g., ALCON written by Deuhard, Fiedler, and Kunkel [14], and BIFPACK
by Seydel [34].

References

[1] R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd ed., Springer, New York,
1988.

[2] P. Alexandro�, H. Hopf, Topologie, Chelsea, New York, 1965 (original edition, Berlin, Germany, 1935).
[3] E.L. Allgower, K. Georg, Numerical Continuation Methods, Series in Computers and Mathematics, Vol. 13, Springer,

New York, 1990.
[4] E.L. Allgower, K. Georg, Numerical path following, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical

Analysis, Vol. V, North-Holland, Amsterdam, 1997, pp. 3–207.
[5] E.L. Allgower, K. Georg, Piecewise linear methods for nonlinear equations and optimization, J. Comput. Appl. Math.

124 (2000) 245–261, this issue.
[6] E.L. Allgower, P.H. Schmidt, An algorithm for piecewise linear approximation of an implicitly de�ned manifold,

SIAM J. Numer. Anal. 22 (1985) 322–346.
[7] E.L. Allgower, S. Gnutzmann, Simplicial pivoting for mesh generation of implicitly de�ned surfaces, Comput. Aided

Geom. Design 8 (1991) 305–325.
[8] R.E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Di�erential Equations, Frontiers in Applied

Mathematics, Vol. 15, SIAM, Philadelphia, PA, 1994.
[9] F. Brezzi, J. Rappaz, P.A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of

nonsingular solutions, Numer. Math. 36 (1981) 1–25; Part II: Limit points, Numer. Math. 37 (1981) 1–28; Part III:
Simple bifurcation points, Numer. Math. 38 (1981) 1–30.

[10] M.L. Brodzik, Numerical approximation of manifolds and applications, Ph.D. Thesis, Department of Mathematics,
University of Pittsburgh, Pittsburgh, PA, 1996.

[11] J. Burkardt, W.C. Rheinboldt, A locally parametrized continuation process, ACM Trans. Math. Software 9 (1983)
215–235.

[12] S.N. Chow, J. Mallett-Paret, J.A. Yorke, Finding zeros of maps: Homotopy applications to continuation methods,
Math. Comput. 32 (1978) 887–899.

[13] R.X. Dai, W.C. Rheinboldt, On the computation of manifolds of foldpoints for parameter-dependent problems, SIAM
J. Numer. Anal. 27 (1990) 437–446.

[14] P. Deuhard, B. Fiedler, P. Kunkel, E�cient numerical path-following beyond critical points, SIAM J. Numer. Anal.
24 (1987) 912–927.

[15] J.P. Fink, W.C. Rheinboldt, On the discretization error of parametrized nonlinear equations, SIAM J. Numer. Anal.
20 (1983) 732–746.

[16] J.P. Fink, W.C. Rheinboldt, A geometric framework for the numerical study of singular points, SIAM J. Numer.
Anal. 24 (1987) 618–633.

[17] M. Golubitzky, D.G. Schae�er, Singularities and Groups in Bifurcation Theory, Vol. I, Springer, New York, 1985.
[18] M. Golubitzky, I. Stewart, D.G. Schae�er, Singularities and Groups in Bifurcation Theory, Vol. II, Springer, New

York, 1988.
[19] B. Hong, Computational methods for bifurcation problems with symmetries on the manifold, Ph.D. Thesis, University

of Pittsburgh, Department of Mathematics, Pittsburgh, PA, 1991.
[20] H.B. Keller, Global homotopies and Newton methods, in: C. de Boor, G.H. Golub (Eds.), Recent Advances in

Numerical Analysis, Academic Press, New York, 1978, pp. 73–94.
[21] H.B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Springer, New York, 1987.
[22] E. Lahaye, Une m�ethode de r�esolution d’une cat�egorie d’�equations transcendentes, C.R. Acad. Sci. Paris 198 (1934)

1840–1942.



244 W.C. Rheinboldt / Journal of Computational and Applied Mathematics 124 (2000) 229–244

[23] R. Melhem, W.C. Rheinboldt, A comparison of methods for determining turning points of nonlinear equations,
Computing 29 (1982) 201–226.

[24] R. Melville, S. Mackey, A new algorithm for two-dimensional continuation, Comput. Math. Appl. 30 (1995) 31–46.
[25] A.P. Morgan, Solving Polynomial Systems using Continuation for Engineering and Scienti�c Problems, Prentice-Hall,

Englewood Cli�s, NJ, 1987.
[26] J.M. Ortega, W.C. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New

York, 1970.
[27] P.J. Rabier, W.C. Rheinboldt, On a computational method for the second fundamental tensor and its application to

bifurcation problems, Numer. Math. 57 (1990) 681–694.
[28] W.C. Rheinboldt, Solution �elds of nonlinear equations and continuation methods, SIAM J. Numer. Anal. 17 (1980)

221–237.
[29] W.C. Rheinboldt, On the computation of multi-dimensional solution manifolds of parametrized equations, Numer.

Math. 53 (1988) 165–181.
[30] W.C. Rheinboldt, On the sensitivity of parametrized equations, SIAM J. Numer. Anal. 30 (1993) 305–320.
[31] W.C. Rheinboldt, MANPACK: a set of algorithms for computations on implicitly de�ned manifolds, Comput. Math.

Appl. 27 (1996) 15–28.
[32] W.C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, SIAM, Philadelphia, PA, 1998.
[33] J. Schwartz, Nonlinear functional analysis (1963=64), Courant Institute of Mathematics and Science, New York,

1964.
[34] R. Seydel, BIFPACK: a program package for continuation, bifurcation, and stability analysis, Technical Report

Version 2:3+, University of Ulm, Germany, 1991.
[35] M. Shub, Some remarks on Bezout’s theorem and complexity theory, in: M.W. Hirsch, J.E. Marsden, M. Shub

(Eds.), From Topology to Computation, Springer, Berlin, 1993, pp. 443–455.
[36] M. Shub, S. Smale, Complexity of Bezout’s theorem, Part V. Polynomial time, Theoret. Comput. Sci. 133 (1994)

141–164.
[37] M.J. Todd, The Computation of Fixed Points and Applications, Lecture Notes in Economics and Mathematical

Systems, Vol. 124, Springer, New York, 1976.
[38] T. Tsuchiya, A priori and a posteriori error estimates of �nite element solutions of parametrized nonlinear equations,

Ph.D. Thesis, Department of Mathematics, University of Maryland, College Park, MD, 1990.
[39] L.T. Watson, S.C. Billups, A.P. Morgan, Algorithm 652: HOMPACK: a suite of codes for globally convergent

homotopy algorithms, ACM Trans. Math. Software 13 (1987) 281–310.
[40] L.T. Watson, M. Sosonkina, R.C. Melville, A.P. Morgan, H.F. Walker, Algorithm 777: HOMPACK90: a suite of

FORTRAN 90 codes for globally convergent homotopy algorithms, ACM Trans. Math. Software 23 (1997) 514–549.
[41] S.M. Wise, A.J. Sommese, L.T. Watson, POLSYS PLP: a partitioned linear product homotopy code for solving

polynomial systems of equations, ACM Trans. Math. Software, to appear.


