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Abstract 

Making investment decisions in general is a decision-making problem under uncertainty. How well an actual investment portfolio 
performs depends on the future evolution of economic and financial variables such as interest rates, asset returns and inflation 
rates. The future evolution of these risk drivers is traditionally modelled using time series models, and it is assumed that 
historical data are relevant for assessing future risk and return. However, opinions vary about the extent to which all forward-
looking information can be derived from historical data. Consequently, a framework for combining views and model-based 
(density) forecasts is indispensable. We present a concrete example of how views can consistently be combined with model-
based (density) forecasts and how this affects investment decisions. 
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1. Combining views and models 

Making investment decisions is a decision-making problem under uncertainty and is, especially for institutional 
investors, part of the risk management process. In general, the risk management process is characterised by three 
phases. In the first phase, there is an assessment of the risk and return trade-off, taking account of the stakeholders' 
objectives, constraints and the assumptions on various asset classes and risk drivers; this phase then leads to a 
strategic asset allocation. In the second phase, called portfolio construction, the strategic asset allocation is translated 

 

 
* Corresponding author. Tel.: +310107005432; fax: +31 (0)10 700 50 01. 

E-mail address: martin.vanderschans@ortec-finance.com 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of Organizing and Steering Committee of Fifth Joint BIS/World Bank Public Investors Conference

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82123653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/S2212-5671(15)01117-X&domain=pdf


123 Martin van der Schans and Hens Steehouwer  /  Procedia Economics and Finance   29  ( 2015 )  122 – 134 

into an actual investment portfolio. In the third phase, monitoring takes place to ensure that the assumptions 
contributing to the strategic asset allocation remain valid and that the implementation indeed conforms to the 
strategic asset allocation. 

 
How well an actual investment portfolio will perform in terms of the objectives and constraints of the 

stakeholders will depend on the future evolution of economic and financial risk drivers such as interest rates, asset 
returns and inflation rates. The uncertainty about the future evolution of these risk drivers is traditionally modelled 
using time series models; see Campbell and Viceira (2002) for an example. A fundamental assumption underlying 
these time series modelling approaches is that there is relevance in historical data for assessing future risk and return. 
Although there are many arguments to support this claim, it is debatable whether all relevant forward-looking 
information can actually be derived from historical data. An obvious topical example in today's world is the impact 
of unprecedented central bank interventions on interest rate levels, and the expected speed of normalisation. 
Consequently, in practical applications, a framework for combining views and model-based (density) forecasts is 
indispensable. 

 
Consistently combining expert views with model-based (density) forecasts is not at all straightforward. The 

difficulty is threefold: first, views are typically not formulated for financial variables, but rather in terms of 
macroeconomic variables such as economic growth and inflation; second, views are usually not formulated for the 
full investment horizon; and third, even when views are formulated in terms of certain financial variables – say, 
equity returns – on the full investment horizon, it is unclear how these views should impact other financial variables, 
e.g., bond returns. Especially when the number of views and number of assets in the investment portfolio is large, it 
is all the more important to apply a modelling approach to resolve these difficulties. 

 
In this paper, we show how to consistently combine expert views with model-based (density) forecasts and 

outline how this can impact investment decisions. First, we present a model that is both realistic and simple enough 
to serve as an example and work out the methodology for this model. Then, we estimate the model on data and give 
a concrete example of how the views influence the forecast. Finally, we discuss the impact of the views on 
investment decisions using portfolio optimization. 

 

2. Dynamic factor models 

A realistic modelling application supporting the investment decision process typically involves forecasting the 
joint behaviour of a large number of financial and economic variables. Not all models are suited for this task, as 
estimating high dimensional models is usually difficult. The widely used Dynamic Factor Model (DFM) does not 
have this drawback and is very efficient in forecasting the joint behaviour of a large number of time series. The 
underlying assumption that validates the use of a DFM is that the simultaneous behaviour can be described by only a 
small number of (usually unobservable) factors. See Sargent and Sims (1977), Geweke (1977) and Stock and 
Watson (2002) for more details on DFMs. 

 
A well-known example is the factor model presented in Stock and Watson (2002, 2011). In this type of DFM, the 

historical time series of the factors are estimated from a dataset containing 108 economic and financial time series 
for the United States by a principal component analysis (PCA). A common choice is to use the first four to 10 
principal components. These principal components, and consequently the factors, explain a large part of the variance 
and correlation structure of the whole dataset. 

 
The specific DFM used in this paper is based on the factor model presented in Stock and Watson (2012b) and has 

the following form: 
 

, (1a) 
, (1b) 
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where ,  is a vector containing the factors,  is a vector of economic and financial variables regressed 
on the factors,  is a vector with correlated normally distributed error terms,  is a vector with uncorrelated 
normally distributed error terms,  and  are matrices with regression coefficients, and  and  are vectors with 
regression constants. In this particular example, the vector  of variables regressed on the factors consists of US 
equity returns (SP500), US 90-day treasury bill returns (TBILL), US government bond returns (BGOV), commodity 
returns in USD (COMM), US economic growth (GDP) and US price inflation (CPI). Although this factor model has 
its limitations, it is nonetheless realistic and simple enough to serve as an example of how factor model-based 
(density) forecasts can be combined consistently with views on the economy. Moreover, the methodology presented 
here works equally well with more complex factor models. 

 

3. Views 

Equation (1) gives us a method that, based entirely on historical data and model assumptions, produces a density 
forecast for the future evolution of the modelled asset classes and macroeconomic variables. As noted, in practical 
applications, it is necessary to combine (density) forecasts based on historical data with views on the economy that 
are assumed to contain forward-looking information that cannot be derived from historical data. A traditional 
approach to do this, although not in a time-dependent setting, is the method of Black and Litterman (1992). The 
Black-Litterman method uses a Bayesian framework in which views are specified by parameterising the density 
forecast to be combined with views and assuming distributions for these parameters. The classical Black-Litterman 
method assumes a multivariate normal distribution parameterised by a mean and covariance matrix, and assumes a 
normal distribution for the parameter representing the mean. Since the Black-Litterman method does not make use of 
any underlying model assumptions that are used to produce these forecasts, we believe that improvement is possible 
if the model structure at hand is used. 

 
Given the importance of the topic from a practical point of view, it is striking that the number of publications that 

improve or build upon the Black-Litterman method is so modest. Among those worth noting are the following: an 
extension of the Black-Litterman method to non-normally distributed markets is presented in Meucci (2006); an 
extension of the Black-Litterman method that allows for the formulation of views in terms of underlying risk factors 
is presented in Meucci (2009); and entropy-based methods, which extend the Black-Litterman method to non-normal 
distributions and more general views, are presented in Pezier (2007) and Meucci (2008). 

 
A less general approach not based on the Black-Litterman method is presented in Nogueira (2010). Here, a PCA 

is used to impose views on yield curve forecasts. 
 
The method presented in this paper is particularly targeted at combining DFMs with views in a time-dependent 

setting. Technically, the methodology can be applied to any DFM. However, since the method presented uses a least 
squares-based method (see also Step 2 below), we assume, for consistency, that the DFM is estimated using ordinary 
least squares (OLS) as well. This assumption is realistic, being, for high dimensional models, the most simple and 
robust way to estimate these models. 

 
The method for combining views with model-based (density) forecasts presented here consists of four steps: 

definition of the views; translation of the views to adjusted factors; extension of the views to the entire investment 
horizon (if necessary); and translation of adjusted factors to all non-view variables. These steps are discussed in 
detail below. 

 

3.1. Step 1: Define the views 

The first step is to define views in terms of expected values for a selected number of so-called view variables, 
denoted by view. It is sufficient to define the views for the first part of the horizon, i.e., up to some . 
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Note that if the factor model includes stochastic volatility, it is also possible to formulate views on volatilities. In our 
example, US economic growth and US inflation will be the view variables and the views will be denoted by 

 

, . 

 
The difference between the views and the model-based expected values will be referred to as the set of required 
adjustments and will be denoted by 

, . 

 

3.2. Step 2: Translate the views into adjusted factors 

Next, we translate the set of required adjustments into corresponding adjustments of the expected value of the 
factors. The underlying idea is that equation (1b) implicitly defines a relation between the variables  regressed on 
the factors because all of these variables depend on the same set of factors. Therefore, if we adjust the (expected 
value of the density) forecast of the factors such that this yields the correct expected value of the view variables, the 
view automatically translates to all variables regressed on the factors. 

 
The main difficulty is that the number of factors can be different from the number of view variables. When there 

are more factors than view variables, there are multiple solutions. When there are fewer factors than view variables, 
it is in general not possible to replicate the desired view exactly by changing the forecast of the factors. As a 
solution, we adjust the expected value of the factors such that the following conditions are satisfied: 

 
1. the required view is attained or approximated as well as possible for the view variables; 
2. the expected value of the factors is adjusted as little as possible if there are multiple solutions. 
 

These conditions result in a procedure that seeks to keep historical relations between the view variables and the 
factors intact and that is in line with basic intuition on how the methodology should work. For example, if a view is 
formulated on interest rates and interest rates are mainly driven by the first factor, then, as expected, mainly the 
expected value of the first factor will be adjusted. 

 
Additionally, we want these conditions to be in line with the method used to estimate the models at hand. 

Therefore, when there is a single solution, Condition 1 translates, at each time period for which a view is defined, 
into the following minimisation problem: 

 
 (2a) 

 (2b) 
 

Here, ,  denotes the squared sum over the component of a vector, and equation (2b) corresponds 
to the part of equation (1b) that corresponds to the view variables. When there are multiple solutions, i.e., when 
Condition 2 applies, we obtain the following constrained minimisation problem for : 

 
, (3a) 

, (3b) 
E view view viewE view, (3c) 
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where . In the case of the factor model at hand, these optimisation problems can be solved 
analytically with standard techniques. The solution is given by: 
 

E view E view, (4a) 
view view, (4b) 

 
where  is the pseudo-inverse of . More information on the pseudo inverse can be found in standard linear 
algebra textbooks. Moreover, algorithms to calculate the pseudo inverse of a matrix are standard in numerical 
software packages. 

 

3.3. Step 3: Extend the views over the horizon 

In the case where the view is formulated for only the first part of the investment or decision-making horizon, i.e., 
if , the adjusted factors are, currently, only determined for the first part of the horizon. Since the views only 
impact the expected value of the factors, we use factor model equation (1a) to extend the view to the entire horizon 
in a way that is consistent with the factor model, i.e., for  the adjusted factors satisfy: 

 
E view E view. (5) 

 
The intuition here is that, if possible, we want to stay close to the model structure and thus let the expected value of 
the factors evolve as prescribed by equation (1a). 
 

3.4. Step 4: Analyse the impact of the views 

Because the factors are now adjusted and contain both the views and the historical information, all variables 
driven by these factors will be adjusted accordingly. The basic idea behind the methodology is that we adjust the 
factors (in expectation), while keeping the (factor) relation between the variables as defined by equation (1b) intact. 
The impact of the views on any economic or financial variable can now be analysed.  

 
When the number of factors is smaller than the number of view variables, the view can generically not be 

replicated exactly. In such a case, it is also worthwhile checking to what extent the formulated views are replicated. 
The difference between the views and their replication can be seen as a measure of to what extent the views are 
consistent with the (historical) DFM structure. 

 
In all these steps, the (estimated) historical relationship between variables as captured by the factor model plays a 

fundamental role. In this sense, the (historical) relationships between variables as contained in the DFM serve as the 
"dictionary" for translating the views for the view variables to other variables in the model. 

 

3.5. Extensions 

We list three extensions of this methodology that are worth noting at this point, not least because some of them 
are only left out for simplicity’s sake. 

 
The first extension is to not only adjust the factors (in expectation), but to also adjust the error terms  (in 

expectation) to replicate the view. This especially makes sense if the view variables are poorly explained by the 
factors and the standard deviation of the error terms is relatively high. These error terms represent the idiosyncratic 
part of the volatility of a variable. 
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The second extension is the possibility to specify an uncertainty or level of confidence for a view. Although this 
extension might seem essential from an academic point of view, we believe that in practical situations the actual 
formulation of such an uncertainty is difficult since formulating views for "only" expected values is already difficult 
enough. 

 
A third extension is the formulation of views on the volatility of the forecast, e.g., a view on the future evolution 

of the volatility of equity returns. This extension can be reached by including volatility state variables in the DFM 
and using these state variables to drive the (conditional) volatility of the corresponding asset returns. What is 
essential for the methodology, as currently presented, is how the view variables depend on the factors. There are no 
requirements on how other variables in the model depend on the view variables and factors. Hence, a view on 
volatility can be formulated as a view on the expected value of the volatility state variable. 

 

3.6. Relation to Black-Litterman 

The method presented here differs in several ways from the Black-Litterman method and its extensions. The most 
important difference is the time-dependent setting: the classical Black-Litterman combines a one-period density 
forecast with views and the method here combines a time-dependent density forecast with time-dependent views. 
Although it is possible to indicate some differences underlying the methodology, a real comparison cannot be made 
without an extension of the Black-Litterman method to a time-dependent setting, which is beyond the scope of this 
paper.  

 
Step 2 of the approach presented is where the views and the model-based (density) forecast are combined with a 

least squares criterion that tries to keep the dynamics of the factor model intact. In the Black-Litterman and related 
approaches, the forecasted distribution, parameterised by a mean and covariance matrix, itself is used to combine the 
view with the forecast, i.e., a statistical criterion. As a result, the Black-Litterman method also updates the 
covariance matrix of the forecast combined with the views. In summary, the difference between the method here and 
the Black-Litterman method is twofold: a time-dependent setting versus a one-period setting, and a least squares 
criterion to stay close to the model structure versus a statistical criterion to stay close to the forecasted distribution. 

 

4. Data description 

Now that we have discussed the DFM and our approach for combining them with views, we are ready to work 
out an example and investigate the impact of views on optimal asset allocations. As a first step, we turn to the data. 
We estimate factor model (1a) on an extension of the Stock and Watson dataset presented in Stock and Watson 
(2012a, 2012b). The default Stock and Watson dataset consists of quarterly observations from 1959 till the end of 
2008 of 108 US-related time series of the following major categories: economic growth, industrial production, 
employment-related time series, housing prices, interest rates, credit and money market-related time series, 
consumer prices and inflation, commodity prices, equity returns and exchange rates. For better forecasting accuracy 
of bond returns, the dataset has been extended to include not only (quarterly) interest rate changes, but also interest 
rate levels. Data processing and outlier corrections are performed as in Stock and Watson (2012a, 2012b). 

 
The dataset of time series regressed on the principal components (see equation (1b)) consists of the log returns of 

the following indices also contained in the Stock Watson dataset: a US inflation index (CPI), a US economic growth 
index (GDP), a commodity price index (COMM) and the S&P 500 Index (SP500). Additionally, our dataset also 
contains a total return index for 90-day treasury bills (TBILL) and a total return index for government bonds 
(BGOV). These two bond indices are available on Global Financial Data (2013), which in turn based these indices 
on Homer and Sylla (2005) and data from the Federal Reserve. 
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5. Model estimation 

Given the historical data and the model structure, we estimate the model using a three-step approach. In the first 
step, principal components are estimated from standardised time series of the Stock and Watson dataset. Based on 
the well-known elbow rule, which goes back to Thorndike (1953), we select the first seven principal components to 
serve as historical time series for the factors. The historical time series of the factors components are standardised to 
have zero mean and a standard deviation of one. In the second step, the model, as given by (1), is estimated on 
historical data using ordinary least squares. 

 

     Table 1. Imposed long-term expected annual nominal log returns based on long-term expected values in 2009; see CBO 
(2009), Dimson et. al. (2009) and Keating and O’Sullivan (2009). 

Time series Long-term expectation 

GDP 2.2% 

CPI 2.4% 

COMM 2.4% 

SP500 8.0% 

TBILL 3.2% 

BGOV 4.3% 

 
In the final step, the expected value of the long-term unconditional distribution is adjusted to yield realistic (long-
term) forward-looking values. This step is especially important  for optimal asset allocation, as unrealistic long-term 
forward-looking values will lead to unrealistic portfolios for long-term investors. Since this adjustment merely 
impacts the long-term forecast, this should not be confused with the view methodology discussed earlier. By 
adjusting the constant  in equation (1b), the long-term expected returns on treasury bills, government bonds, 
equity, commodity prices, inflation and economic growth are as given in Table 1.  
 

6. Results 

Now that we have described the model, the data, the estimation procedure and the methodology for combining 
model-based (density) forecasts with views, we will look at an explicit application. We will first discuss the 
(unadjusted density) forecast of the model as estimated on the dataset described in Section 4 containing data till the 
end of 2008. Then, we will build the adjusted (density) forecast of the model by combining the model with a view 
using the methodology introduced in Section 3, and we will discuss the differences with the unadjusted forecast. 
Finally, we will show how the view impacts optimal asset allocations for various investment horizons. These 
optimal asset allocations are affected by the expected future returns (with and without views) as well as the volatility 
of these future returns and the future correlation between asset classes. 
 

6.1. Density forecasts 

Figure 1 shows the deciles of the unadjusted density forecast of model (1) in quarterly log returns, i.e., the 
forecast of the model as estimated on the dataset described in Section 4 containing data till the end of 2008. From 
2009 onwards, the thin black lines are the deciles of the unadjusted density forecast (the outer black lines denote the 
1st percentile and 99th percentile). Until the end of 2008, the thin black lines are the approximation of the original 
data by the first seven principal components. The thick black lines in Figure 1 correspond to historical data. Since 
the start date of the simulation is end-2008, the unadjusted density forecast can be compared with the realisation,  
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(a) GDP (b) CPI (c) TBILL 

 
(d) BGOV (e) SP500 (f) COMM 

 

Fig. 1. Deciles (thin black lines) of the density forecast without view and realisation (thick black lines) in quarterly log returns. 

i.e., an out of sample comparison with new data not used to estimate the model. As noted, the DFM used is both 
realistic and simple enough to serve as an example of how views and DFMs can be combined in a consistent 
framework, but the model has its limitations. This is also reflected in the forecast and its comparison with the 
realisation. Since, a priori, the probability that the realisation will end up between two subsequent deciles is 10%, 
the overall impression from Figure 1 is that the density forecast from model (1) performs quite well in terms of the 
accuracy of the marginal distributions except for treasury bills (TBILL). Although negative treasury bill yields are 
not impossible, the deciles indicate unrealistically large probabilities of negative yields. Since our focus is on 
combining factor model-based density forecasts with economic views and analysing the impact on optimal asset 
allocations, we take this limitation for granted. 

 

6.2. Views 

The next step is to formulate the views to combine with the (density) forecast of our DFM and to arrive at the 
adjusted (density) forecast. For this purpose, we selected the forecast for GDP and CPI from the IMF World 
Economic Outlook of April 2009; see IMF (2009). These views are readily available on the IMF website every 
quarter. Table 2 shows the IMF forecast (views) together with the unadjusted (expected value of the density) 
forecast from the DFM, as also shown in Figure 1. 
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     Table 2. Unadjusted forecast from DFM and views based on IMF (2009) in annual log returns. 

 GDP  CPI  

 IMF Model IMF Model 

2009 -2.8% 2.4% -0.9% -7.1% 

2010 -0.1% 4.7% -0.1% -2.4% 

2011 3.5% 3.1% 0.7% 0.2% 

2012 3.6% 2.7% 1.7% 1.0% 

2013 3.3% 2.6% 2.1% 1.3% 

2014 2.5% 2.6% 2.2% 1.6% 

 
Compared with the expected value of the forecast of the DFM, these views can be summarised as follows: lower 

economic growth in the years 2009-2011 and a higher inflation in the years 2009-2014. Note that these views are not 
formulated for the entire simulation horizon, but can be extended to the entire simulation horizon using equation (5). 

 
Of course, one could also use other views or argue that IMF views might also be model-based, i.e., they might be 

produced by using a different DFM. Nevertheless, the purpose of the views here is to serve as an example. In 
practice, there are many types of reasoning that can lead to a formulation of a view, including: central bank 
interventions and the impact on expected interest rate levels; a macroeconomic department having an explicit view 
on certain countries or regions; and an investment committee with an explicit view on the risk premiums of certain 
asset classes. 

 
A key characteristic of the view, however, should be that it can be explained by the factor structure that is based 

on historical relations. Note that, if this is not the case, e.g., when contradictory views are used for two variables that 
historically showed similar behaviour, it also does not make sense to use a historical data-based method to combine 
the views with the unadjusted forecast. 

 

6.3. Impact of views on the (density) forecast 

In Figure 2, the unadjusted (density) forecast is compared with the adjusted forecast (in expectation). Figures 2a 
and 2b show the unadjusted (expected value of the density) forecast and the IMF view for GDP and CPI extended to 
the whole simulation horizon using the DFM. Again, it can be seen that the IMF view can roughly be summarised as 
one of lower economic growth and higher inflation when compared with the DFM, which is mainly based on 
historical data. Figures 2c to 2f show the impact of the view on the (expected value of the density) forecast of the 
other variables. Each of these responses makes sense economically given the nature of the view for GDP and CPI. 

 
First, Figure 2c shows that the view leads to higher expected TBILL returns, which is consistent with the higher 

expected inflation in the view. Second, Figure 2d shows that the view leads to lower expected bond returns (and, 
implicitly, higher bond yields) on short horizons, which is also consistent with the higher expected inflation included 
in the view. For longer horizons, the impact is smaller, probably due to the dampening effect of higher expected 
(implicit) bond yields. Third, Figure 2e shows that the view leads to lower equity returns, which is consistent with 
the lower expected growth in the view. Finally, Figure 4f shows that the impact of the view on expected commodity 
returns is limited. This can be due to the following offsetting effects: on the one hand, the lower expected growth in 
the view leads to lower expected commodity returns due to lower demand and, on the other hand, the higher 
expected inflation in the view leads to higher expected commodity returns because of their inflation sensitivity 
(some of the commodity prices may even contribute to the inflation itself). 

 
(a) GDP (b) CPI (c) TBILL 
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(d) BGOV (e) SP500 (f) COMM 

 

Fig. 2. Expected value of the (density) forecast with and without the IMF view in quarterly log returns. 

 

6.4. Impact of views on the optimal asset allocation 

So far, we have only discussed the expected impact on individual asset classes. Investors, however, are not only 
interested in individual asset classes, as their main interest lies in the entire portfolio. Therefore, we analyse the 
impact that views can have on investment decisions by comparing optimal portfolios constructed from the 
unadjusted and adjusted (density) forecast including the view. Optimal portfolios not only depend on expected 
returns, which are influenced by the view, but also on the correlations between the asset classes, which are not 
influenced by the view. Therefore, constructing optimal portfolios can also be seen as a way of analysing the impact 
on multivariate aspects of the forecast and not only on the marginal distributions. 

 
To construct optimal portfolios from the (un)adjusted forecast several steps must be taken. First, the conditional 

distributions of the 1-period (quarterly) log returns of model (1) must be cumulated over the horizon to obtain the 
distribution of the cumulated log return over the horizon. By writing the cumulated log returns as a sum of 
independent random variables, i.e., assuming a random walk for the returns, they are annualised by dividing both the 
mean and the covariance matrix by the number of years in the horizon. Note that this does not mean that the  
1-period returns as described by the DFM are independent. The random walk method is simply a way of annualising 
the distribution of the cumulative returns. Second, we want to perform the portfolio optimisation on the cumulated 
annualised returns rather than the cumulated annualised log returns. When the cumulated annualised log returns  
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(a) Standard deviation (b) Correlation 

 

Fig. 3. Horizon dependence (term structure) of volatilities and correlations of cumulated annualised returns. 

 
 have a normal distribution with mean  and covariance matrix , the cumulated annualised returns 

 have a shifted log-normal distribution. 
 
Figure 3 shows the volatilities and correlations of the cumulated annualised returns, as obtained after the first two 

steps. From Figure 3a, it can be seen that the annualised volatility of the cumulated returns of the asset class 
converge to plausible values and that they also have a logical ordering (equities more volatile than commodities 
etc.). Note that for portfolio optimisation, not only the expected value, but also the volatility and correlation 
structure plays a role. Figure 3b shows how the correlations between the cumulated annualised returns of the asset 
classes depend on the investment horizon. The combination of Figure 3 with the plot of the dependence of 
annualised return on the investment horizon is called the term structure of risk and return, i.e., of how risk and return 
can vary with the investment horizon. 

 
The third step in our optimal portfolio construction is a simple mean-variance optimisation per horizon over four 

asset classes: US equities (SP500), US 90-day treasuries (TBILL), US government bonds (BGOV) and commodities 
(COMM). To obtain realistic portfolios, we impose the restriction that asset weights in the portfolio can only be 
positive. For each horizon, this results in an entire efficient frontier of portfolios. 

 
In the fourth and final step, we show how the optimal portfolios depend on the investment horizon and how this 

dependence is influenced by the view. We select a specific portfolio on each of these efficient frontiers and plot this 
against the horizon. There are various choices to do this such as: a minimum variance portfolio, a maximum utility 
portfolio or a minimum value-at-risk portfolio. Here, we select the so-called tangent portfolio: the portfolio with the 
highest excess return (compared with the risk-free rate) per unit risk (here per unit of volatility). Figure 4 shows the 
term structure of the risk-free rate we use to select this tangent portfolio. This term structure is obtained as a least 
squares fit of a Nelson-Siegel-Svensson curve through the US treasury zero coupon yields of 31 December 2008, 
i.e., the start of the investment horizon in our case. 

 
Figure 5 shows the portfolio weights of the tangent portfolio as a function of the horizon. Based on the IMF view 

(lower economic growth and higher inflation) and the adjusted expected values shown in Figure 2, we expect that 
when the IMF view is included, the optimal tangent portfolios will contain less equity and more treasury bills on 
short horizons. From Figure 5, we conclude that this is indeed the case. Additionally, commodities appear in the 
tangent portfolio on longer investment horizons. This can be understood from the fact that the expected returns on 
equities are more negatively affected by the view than the expected returns on commodities. 

 
 
 



133 Martin van der Schans and Hens Steehouwer  /  Procedia Economics and Finance   29  ( 2015 )  122 – 134 

 

Fig. 4. Risk-free rate based on US treasury zero coupon yields of 31 December 2008. 

 

7. Conclusion 

We have described a methodology for consistently combining views on economies and financial markets with 
factor models. We have shown how this methodology can be applied in a relatively easy but realistic example: a 
factor model estimated on the Stock and Watson dataset combined with IMF views. This example illustrates the 
impact that views can have on optimal asset allocations across the investment horizon. Here, we have focused on 
translating views on macroeconomic variables such as GDP and CPI into the consequences for the expected returns 
on various asset classes. The example presented here and also in other experiments (see, e.g., van der Schans and 
Steehouwer (2012)) shows that working with views on a subset of asset classes has a substantial impact on other 
asset classes. 

 
Given the impact of views on optimal portfolios, the results in this paper illustrate the importance of taking views 

into account in a consistent way in the investment decision process. In general, combining views with dynamic 
factor models can also have other applications such as in analysing, understanding and improving the dynamics of a 
specific factor model and constructing stress scenarios. 

 
We emphasise again that a fundamental assumption underlying the presented methodology to translate views into 

other asset classes and economic variables is the validity of the estimated historical relation as captured by the factor 
model, i.e., the historical relationship should be able to describe the view appropriately. In this sense, the (historical) 
relationship between variables as contained in the factor model serves as the "dictionary" for translating the views 
from the view variables to other variables in the model.  

 
There are several useful directions for extending the proposed methodology, such as including the idiosyncratic 

part of the volatility when translating the views, taking into account the uncertainty of the views and allowing for 
views on volatility. We leave these extensions for future research. 
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(a) No view (b) IMF view 

 

Fig. 5. Portfolio weights of the optimal tangent portfolios across the investment horizon, with and without the IMF view. 
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