Absolute matrix summability methods

H.S. Özarslan *, T. Ari

Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey

Abstract

In this paper, a general theorem dealing with the \(\varphi - |A; \delta|_k \) summability method has been proved. This theorem also includes some known results.

1. Introduction

Let \(\sum a_n \) be a given infinite series with the partial sums \((s_n) \). Let \((p_n) \) be a sequence of positive numbers such that

\[
P_n = \sum_{v=0}^{n} p_v \to \infty \quad \text{as} \quad (n \to \infty), \quad (p_{-i} = p_{-i} = 0, \ i \geq 1).
\]

The sequence-to-sequence transformation

\[
t_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v
\]

defines the sequence \((t_n) \) of the Riesz means of the sequence \((s_n) \), generated by the sequence of coefficients \((p_n) \) (see [1]). The series \(\sum a_n \) is said to be summable \(|R, p_n|_k \), \(k \geq 1 \), if (see [2])

\[
\sum_{n=1}^{\infty} n^{k-1} |t_n - t_{n-1}|^k < \infty.
\]

Let \(A = (a_{mv}) \) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then \(A \) defines the sequence-to-sequence transformation, mapping the sequence \(s = (s_n) \) to \(As = (A_n(s)) \), where

\[
A_n(s) = \sum_{v=0}^{n} a_{mv} s_v, \quad n = 0, 1, \ldots.
\]

The series \(\sum a_n \) is said to be summable \(|A|_k \), \(k \geq 1 \), if (see [3])

\[
\sum_{n=1}^{\infty} n^{k-1} |\Delta A_n(s)|^k < \infty.
\]
where
\[\tilde{A}_n(s) = A_n(s) - A_{n-1}(s). \]

If we take \(a_{nv} = \frac{p_n}{q_n} \), then \(|A|_k \) summability is the same as \(|R, p_n|_k \) summability.

Let \((\phi_n) \) be a sequence of positive real numbers. We say that the series \(\sum a_n \) is summable \(\varphi - |A; \delta|_k \), \(k \geq 1 \) and \(\delta \geq 0 \), if
\[
\sum_{n=1}^{\infty} \phi_n^{k+1} |\tilde{A}_n(s)|^k < \infty. \tag{6}
\]

If we take \(\delta = 0 \) and \(\phi_n = n \) for all values of \(n \), then \(\varphi - |A; \delta|_k \) summability is the same as \(|A|_k \) summability.

Before stating the main theorem we must first introduce some further notations.

Given an normal matrix \(A = (a_{nv}) \), we associate two lower semimatrices \(\bar{A} = (\bar{a}_{nv}) \) and \(\hat{A} = (\hat{a}_{nv}) \) as follows:
\[
\bar{a}_{nv} = \begin{cases} n - v & \text{if } n = 0, v = 0, 1, \ldots \\ a_{nv} & \text{if } n, v = 1, 2, \ldots. \end{cases}
\]

and
\[
\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \quad n = 1, 2, \ldots, \tag{8}
\]

It may be noted that \(\bar{A} \) and \(\hat{A} \) are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have
\[
A_n(s) = \sum_{v=0}^{n} a_{nv} s^v = \sum_{v=0}^{n} \bar{a}_{nv} a_v \tag{9}
\]

and
\[
\tilde{A}_n(s) = \sum_{v=0}^{n} \hat{a}_{nv} a_v. \tag{10}
\]

If \(A \) is a normal matrix, then \(A' = (a'_{nv}) \) will denote the inverse of \(A \). Clearly if \(A \) is normal then, \(\hat{A} = (\hat{a}_{nv}) \) is normal and it has two-sided inverse \(\hat{A}' = (\hat{a}'_{nv}) \), which is also normal (see [4]).

The following result dealing with the relative strength of two absolute summability methods was given by Bor [2].

Theorem A. Let \(k > 1 \). In order that
\[
|R, p_n|_k \Rightarrow |R, q_n|_k \tag{11}
\]

it is necessary that
\[
\frac{q_n}{p_n} \frac{P_n}{Q_n} = O(1). \tag{12}
\]

If we suppose that
\[
\sum_{n=1}^{\infty} n^{k-1} q_n^k \frac{Q_n}{Q_{n-1}} = O \left(\frac{q^k \cdot Q^{-1}}{Q^k} \right) \tag{13}
\]

then (12) is also sufficient.

Remark. If we take \(k = 1 \), then condition (13) is obvious.

2. **Main theorem**

The aim of this paper is to generalize Theorem A for the \(\varphi - |A; \delta|_k \) and \(\varphi - |B; \delta|_k \) summabilities. Therefore we shall prove the following theorem.

Theorem. Let \(k > 1 \), \(A = (a_{nv}) \) and \(B = (b_{nv}) \) be two positive normal matrices. In order that
\[
\varphi - |A; \delta|_k \Rightarrow \varphi - |B; \delta|_k \tag{14}
\]

it is necessary that
\[
b_{nm} = O(a_{nm}). \tag{15}
\]
If we suppose that
\[b_{n-1,v} \geq b_{nv}, \quad \text{for } n \geq v + 1, \] \tag{16}
\[\bar{a}_{n0} = 1, \quad \tilde{b}_{n0} = 1, \quad n = 0, 1, 2, \ldots, \]
\[a_{nv} - a_{v+1,v} = O(a_{nv} a_{v+1,v+1}), \]
\[\sum_{v=1}^{n-1} (b_{nv} \tilde{b}_{n,v+1}) = O(b_{nn}), \] \tag{19}
\[\sum_{n=v+1}^{m+1} \varphi_n^{\delta k-k-1} b_{nm} \tilde{b}_{n,v+1} = O(\varphi_v^{\delta k-k-1} b_{nv}^{k-1}), \] \tag{20}
\[\sum_{n=v+1}^{m+1} \varphi_n^{\delta k-k-1} a_{nm}^{k-1} |\Delta_v \tilde{b}_{nv}| = O(\varphi_v^{\delta k-k-1} b_{nv}^k), \] \tag{21}
\[\sum_{v=r+2}^{n} b_{nv} |\tilde{a}_{vr}'| = O(\tilde{b}_{n,r+1}), \] \tag{22}
then (15) is also sufficient.

It should be noted that if we take \(\delta = 0, a_{nv} = \frac{a_v}{a_v}, b_{nv} = \frac{b_v}{b_v} \) and \(\varphi_v = n \) for all values of \(n \) in this theorem, then we get Theorem A.

We need the following lemma for the proof of our theorem.

Lemma ([2]). Let \(k \geq 1 \) and let \(A = (a_{nv}) \) be an infinite matrix. In order that \(A \in (\hat{f}; \hat{f}) \) it is necessary that
\[a_{nv} = O(1) \quad (\text{all } n, v). \] \tag{23}

3. Proof of the theorem

Necessity. Now, let \((x_n) \) and \((y_n) \) be denote the A-transform and B-transform of the series \(\sum a_n \), respectively. Then we have, by (9) and (10)
\[\tilde{\Delta}x_n = \sum a_{nv} \bar{a}_v \quad \text{and} \quad \tilde{\Delta}y_n = \sum \hat{b}_{nv} \hat{a}_v, \]
which implies that
\[a_v = \sum_{r=0}^{v} \hat{a}_{vr}' \tilde{\Delta}x_r. \] \tag{24}

In this case
\[\tilde{\Delta}y_n = \sum_{v=0}^{n} \hat{b}_{nv} \bar{a}_v = \sum_{v=0}^{n} \hat{b}_{nv} \sum_{r=0}^{v} \hat{a}_{vr}' \tilde{\Delta}x_r. \]

On the other hand, since
\[\hat{b}_{n0} = \hat{b}_{n0} - \hat{b}_{n-1,0} \]
by (17), we have that
\[\tilde{\Delta}y_n = \sum_{r=0}^{n} \hat{b}_{nr} \left(\sum_{v=0}^{r} \hat{a}_{vr}' \tilde{\Delta}x_r \right) \]
\[= \sum_{v=0}^{n} \hat{b}_{nv} \hat{a}_v \tilde{\Delta}x_v + \sum_{v=1}^{n} \hat{b}_{nv} \hat{a}_{v-1} \tilde{\Delta}x_{v-1} + \sum_{v=0}^{n-2} \hat{b}_{nv} \hat{a}_v \tilde{\Delta}x_r \]
\[= \hat{b}_{nn} \hat{a}'_{nn} \tilde{\Delta}x_n + \sum_{r=1}^{n-1} (\hat{b}_{nv} \hat{a}'_{vr} + \hat{b}_{n,v+1} \hat{a}'_{v+1,r}) \tilde{\Delta}x_r + \sum_{r=0}^{n-2} \tilde{\Delta}x_r \sum_{v=r+2}^{n} \hat{b}_{nv} \hat{a}_{vr}' \] \tag{25}
by considering the equality
\[\sum_{k=v}^{n} \hat{a}_{nk}' \hat{a}_{kv} = \delta_{nv}, \]
where δ_{m} is the Kronecker delta, we have that
\[
\hat{b}_{m,v} \hat{a}_{v} + \hat{b}_{n,v+1} \hat{a}_{v+1} = \hat{b}_{m,v} + \hat{b}_{n,v+1} \left(-\frac{\hat{a}_{v+1,v}}{\hat{a}_{v+1,v+1}} \right)
\]
\[
= \Delta_{v} \hat{b}_{m,v} + \hat{b}_{n,v+1} \frac{a_{v+1,v}}{a_{v+1,v+1}} - a_{v+1,v+1}
\]
and so
\[
\Delta_{y_{n}} = \frac{b_{m,n}}{a_{n,m}} \Delta_{x_{n}} + \sum_{v=1}^{n-1} \frac{\Delta_{v} \hat{b}_{m,v}}{a_{n,m}} \Delta_{x_{v}} + \sum_{v=1}^{n-1} \hat{b}_{n,v+1} \frac{a_{v+1,v}}{a_{v+1,v+1}} \Delta_{x_{v}} + \sum_{v=1}^{n-2} \Delta_{x_{v}} \sum_{v+1}^{n} \hat{b}_{n,v} \hat{a}_{v+1}
\]
= $T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}$, say.

Now, from (23) we can write down the matrix transforming $(\varphi_{n+\frac{1}{2}} \Delta x_{n})$ into $(\varphi_{n+\frac{1}{2}} \Delta y_{n})$. The assertion (14) is equivalent to the assertion that this matrix $\epsilon (\hat{\delta} ; \hat{\Phi})$. Hence, by the lemma, a necessary condition for (14) is that the elements of this matrix should be bounded, and this gives the result that (15) is necessary.

Sufficiency. Suppose the conditions are satisfied. Then, since
\[
|T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}|^{k} \leq 4^{k} (|T_{n,1}|^{k} + |T_{n,2}|^{k} + |T_{n,3}|^{k} + |T_{n,4}|^{k})
\]
to complete the proof of the theorem, it is sufficient to show that
\[
\sum_{n=1}^{\infty} \varphi_{n}^{k} |T_{n,i}|^{k} < \infty \quad \text{for } i = 1, 2, 3, 4.
\]

Firstly, we have
\[
\sum_{n=1}^{m} \varphi_{n}^{k} |T_{n,i}|^{k} = \sum_{n=1}^{m} \varphi_{n}^{k} \left| \frac{b_{m,n}}{a_{n,m}} \Delta_{x_{n}} \right|^{k}
\]
\[
= O(1) \sum_{n=1}^{m} \varphi_{n}^{k} \Delta_{x_{n}}^{k}
\]
\[
= O(1) \text{ as } m \to \infty,
\]
in view of the hypotheses of the theorem.

Applying Hölder’s inequality with indices k and k', where $k > 1$ and $\frac{1}{k} + \frac{1}{k'} = 1$, we have that
\[
\sum_{n=1}^{m+1} \varphi_{n}^{k} |T_{n,2}|^{k} = O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k} \left(\sum_{v=1}^{n-1} \frac{|\Delta_{v} \hat{b}_{m,v}|}{a_{v,m}} \right)^{k-1}
\]
\[
= O(1) \sum_{n=2}^{m+1} \frac{|\Delta_{x_{v}}|^{k}}{a_{v,m}} \sum_{v=1}^{m+1} \varphi_{n}^{k} \frac{b_{m,v}}{a_{v,m}} \left| \Delta_{x_{v}} \right|^{k}
\]
\[
= O(1) \sum_{v=1}^{m} \frac{|\Delta_{x_{v}}|^{k}}{a_{v,m}} \left(\frac{\hat{b}_{v,v}}{a_{v,v}} \right)^{k} \left| \Delta_{x_{v}} \right|^{k}
\]
\[
= O(1) \text{ as } m \to \infty,
\]
by virtue of the hypotheses of the theorem.

Also
\[
\sum_{n=1}^{m+1} \varphi_{n}^{k} |T_{n,3}|^{k} = O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k} \left(\sum_{v=1}^{n-1} \hat{b}_{n,v+1} |\Delta_{x_{v}}| \right)^{k}
\]
\[
= O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k} \left(\sum_{v=1}^{n-1} \hat{b}_{n,v+1} |\Delta_{x_{v}}| \hat{b}_{v,v+1} \right)^{k-1}
\]
\[
= O(1) \text{ as } m \to \infty,
\]
\[
\begin{align*}
&= O(1) \sum_{n=2}^{m+1} \psi_n^{\delta k + k - 1} b_{mn}^{k-1} \sum_{v=1}^{n-1} \hat{b}_{n,v+1} \bar{x}_v^k b_{vv}^{1-k} \\
&= O(1) \sum_{v=1}^{m} b_{vv}^{1-k} |\bar{x}_v|^k \sum_{n=v+1}^{m} \psi_n^{\delta k + k - 1} b_{mn}^{k-1} \hat{b}_{n,v+1} \\
&= O(1) \sum_{v=1}^{m} \psi_n^{\delta k + k - 1} |\bar{x}_v|^k \\
&= O(1) \quad \text{as} \quad m \to \infty,
\end{align*}
\]

by virtue of the hypotheses of the theorem.

Finally, as in \(T_{n,3}\), we have that

\[
\begin{align*}
\sum_{n=2}^{m+1} \psi_n^{\delta k + k - 1} |T_{n,4}|^k &= O(1) \sum_{n=2}^{m+1} \psi_n^{\delta k + k - 1} \left\{ \sum_{r=0}^{n-2} |\bar{x}_r| \sum_{v=r+2}^{n} \hat{b}_{nv} |\hat{a}'_v| \right\}^k \\
&= O(1) \sum_{n=2}^{m+1} \psi_n^{\delta k + k - 1} \left\{ \sum_{r=0}^{n-2} |\bar{x}_r| \hat{b}_{r,r+1} \right\}^k \\
&= O(1) \quad \text{as} \quad m \to \infty,
\end{align*}
\]

by virtue of the hypotheses of the theorem.

Therefore, we have that

\[
\sum_{n=1}^{m} \psi_n^{\delta k + k - 1} |T_{n,i}|^k = O(1) \quad \text{as} \quad m \to \infty, \quad \text{for} \quad i = 1, 2, 3, 4.
\]

This completes the proof of the theorem.

References