

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 323 (2006) 33-41

www.elsevier.com/locate/jmaa

The crossed product by a partial endomorphism and the covariance algebra

Danilo Royer¹

Departamento de Matemática, Universidade Federal de Santa Catarina, 88040-900, Florianópolis SC, Brazil

Received 23 May 2005

Available online 10 November 2005

Submitted by R. Curto

Abstract

Given a local homeomorphism $\sigma: U \to X$ where $U \subseteq X$ is clopen and X is a compact and Hausdorff topological space, we obtain the possible transfer operators L_{ρ} which may occur for $\alpha: C(X) \to C(U)$ given by $\alpha(f) = f \circ \sigma$. We obtain examples of partial dynamical systems (X_A, σ_A) such that the construction of the covariance algebra $C^*(X_A, \sigma_A)$, proposed by B.K. Kwasniewski, and the crossed product by a partial endomorphism $\mathcal{O}(X_A, \alpha, L)$, recently introduced by the author and R. Exel, associated to this system are not equivalent, in the sense that there does not exist an invertible function $\rho \in C(U)$ such that $\mathcal{O}(X_A, \alpha, L_\rho) \cong C^*(X_A, \sigma_A)$.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Partial endomorphism; Crossed product; Covariance algebra

1. Introduction

We begin with a summary of the construction of the crossed product by a partial endomorphism. Details may be seen in [3]. A partial C^* -dynamical system (A, α, L) consists of a (closed) ideal I of a C^* -algebra A, an idempotent self-adjoint ideal J of I (not necessarily closed), a *-homomorphism $\alpha : A \to M(I)$, where M(I) is the multiplier algebra of I, and a linear positive map (which preserves *) $L: J \to A$ such that $L(a\alpha(b)) = L(a)b$ for each $a \in J$ and $b \in A$. The map L is called *transfer operator*, as in [2]. Define in J an inner product

0022-247X/\$ – see front matter $\,$ © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2005.10.030

E-mail address: royer@mtm.ufsc.br.

¹ Supported by Cnpq.

(which may be degenerated) by $(x, y) = L(x^*y)$. Then we obtain an inner product \langle,\rangle in the quotient $J_0 = J/\{x \in J: L(x^*x) = 0\}$ defined by $\langle \tilde{x}, \tilde{y} \rangle = L(x^*y)$, which induces a norm || ||. Define $M = \overline{J_0}^{|| ||}$, which is a right Hilbert A-module and also a left A-module, where the left multiplication is defined by the *-homomorphism $\varphi: A \to L(M)$ (the adjointable operators in M), where $\varphi(a)(\tilde{x}) = \tilde{a}\tilde{x}$ for each $x \in J$. The Toeplitz algebra associated to (A, α, L) is the universal C^* -algebra $\mathcal{T}(A, \alpha, L)$ generated by $A \cup M$ with the relations of A, of M, the bi-module products and $m^*n = \langle m, n \rangle$. A redundancy in $\mathcal{T}(A, \alpha, L)$ is a pair $(a, k) \in A \times \widehat{K_1}$, $(\widehat{K_1} = \overline{\text{span}}\{mn^*, m, n \in M\})$, such that am = km for every $m \in M$. The Crossed Product by a Partial Endomorphism $\mathcal{O}(A, \alpha, L)$ is the quotient of $\mathcal{T}(A, \alpha, L)$ by the ideal generated by all the elements (a - k) where (a, k) is a redundancy and $a \in \ker(\varphi)^{\perp} \cap \varphi^{-1}(K(M))$. The algebra $\mathcal{O}(A, \alpha, L)$ is the Cuntz–Pimsner algebra associated to the C^* -correspondence $\varphi: A \to L(M)$.

In [3] it was introduced the crossed product by a partial endomorphism $\mathcal{O}(X, \alpha, L)$ associated to the C^* -dynamical system ($C(X), \alpha, L$). This system is induced by a local homeomorphism $\sigma: U \to X$, where U is an open subset of a compact topological Hausdorff space X. More specifically,

$$\begin{aligned} \alpha \colon C(X) \to C^b(U), \\ f \mapsto f \circ \sigma, \end{aligned}$$

where $C^b(U)$ is the space of all continuous bounded functions in U and $L: C_c(U) \to C(X)$ ($C_c(U)$) is the set of the continuous functions with compact support in U) is defined by

$$L(f)(x) = \begin{cases} \sum_{y \in \sigma^{-1}(x)} f(y) & \text{if } x \in \sigma(U), \\ 0 & \text{otherwise,} \end{cases}$$

for every $x \in X$ and $f \in C_c(U)$.

In [4] it was defined the algebra $C^*(X, \alpha)$, called covariance algebra. This algebra is also constructed from a partial dynamical system, that is, a continuous map $\sigma: U \to X$ where X is a topological compact Hausdorff space, U is a clopen subset of X and $\sigma(U)$ is open.

If we suppose that $\sigma: U \to X$ is a local homeomorphism, U clopen (and so $\sigma(U)$ is always open) then (X, σ) gives rise to two C*-algebras, the covariance algebra $C^*(X, \sigma)$, proposed in [4], and the crossed product by a partial endomorphism $\mathcal{O}(X, \alpha, L)$, proposed in [3].

In this paper we identify the transfer operators L_{ρ} which may occur for α . Moreover, we show that the constructions of the covariance algebra and the crossed product by a partial endomorphism are not equivalent in the following sense: we obtain examples of partial dynamical systems (X_A, σ_A) such that there does not exist an invertible function ρ such that $\mathcal{O}(X_A, \alpha, L_{\rho}) \cong C^*(X, \alpha)$.

2. Transfer operators of *X* for α

Let $\sigma: U \to X$ be a local homeomorphism and U an open subset of the compact Hausdorff space X. This local homeomorphism induces the *-homomorphism

$$\begin{aligned} \alpha \colon C(X) \to C^b(U), \\ f \mapsto f \circ \sigma. \end{aligned}$$

Given a positive function $\rho \in C(U)$, for all $f \in C_c(U)$ we may define

$$L_{\rho}(f)(x) = \begin{cases} \sum_{y \in \sigma^{-1}(x)} \rho(y) f(y) & \text{if } x \in \sigma(U), \\ 0 & \text{otherwise,} \end{cases}$$

for each $x \in X$. Note that $L_{\rho}(f) = L(\rho f)$, and since $\rho f \in C_{c}(U)$ and $L(\rho f) \in C(X)$ (see [3]) then $L_{\rho}(f)$ in fact is an element of C(X). In this way we may define the map $L_{\rho}: C_{c}(U) \to C(X)$, which is linear and positive (by the fact that ρ is positive). It is easy to see that $L_{\rho}(f\alpha(g)) = L_{\rho}(f)g$ for each $f \in C_{c}(U)$ and $g \in C(X)$. The following proposition shows that if U is clopen in X then every transfer operator for α is of the form L_{ρ} for some $\rho \in C(U)$.

Proposition 2.1. Let $L: C_c(U) \to C(X)$ (U clopen in X) be a transfer operator for α , that is, L is linear, positive, preserves *, and $L(g\alpha(f)) = L(g)f$ for each $f \in C(X)$ and $g \in C_c(U)$. Then there exists $\rho \in C(U)$ such that $L = L_{\rho}$.

Proof. Let $\{V_i\}_{i=1}^n$ be an open cover of U such that $\sigma|_{V_i}$ is a homeomorphism (such a cover exists because U is compact and σ is a local homeomorphism). For each i take an open subset $U_i \subseteq V_i$ such that $\overline{U_i} \subseteq V_i$ and $\{U_i\}_i$ is also a cover for U. Consider the partition of unity $\{\varphi_i\}_i$ subordinated to $\{U_i\}_i$ and define $\xi_i = \sqrt{\varphi_i}$. Since ξ_i is positive for each i then $L(\xi_i)$ is a positive function. Define $\rho = \sum_{i=1}^n \alpha(L(\xi_i))\xi_i$ which is also positive. Given $f \in C_c(U)$ define for each i,

$$g_i(x) = \begin{cases} \xi_i(\sigma^{-1}(x)) f(\sigma^{-1}(x)), & x \in \sigma(V_i), \\ 0 & \text{otherwise.} \end{cases}$$

Claim 1. $g_i \in C(X)$ for all *i*.

Let $x_j \to x$. Suppose $x \in \sigma(V_i)$. Since $\sigma(V_i)$ is open we may suppose that $x_j \in \sigma(V_i)$ for each *j*. Since $\sigma|_{V_i}$ is a homeomorphism then $\sigma^{-1}(x_j) \to \sigma^{-1}(x)$ in V_i and so $g_i(x_j) = (\xi_i f)(\sigma^{-1}(x_j)) \to (\xi_i f)(\sigma^{-1}(x)) = g_i(x)$. If $x \notin \sigma(V_i)$ then $x \notin \sigma(\overline{U_i})$, which is closed. Therefore we may suppose that $x_j \notin \sigma(\overline{U_i})$ and so $g_i(x_j) = 0 = g_i(x)$.

Claim 2. $\xi_i \alpha(g_i) = \varphi_i f$.

If $x \notin U_i$ then $(\xi_i \alpha(g_i))(x) = 0 = (\varphi_i f)(x)$. If $x \in U_i$ then $\alpha(g_i)(x) = g_i(\sigma(x)) = \xi_i(x)f(x)$ and so $\xi_i(x)\alpha(g_i)(x) = \xi^2(x)f(x) = \varphi(x)f(x)$.

Since φ is a partition of unity then $f = \sum_{i=1}^{n} \varphi_i f = \sum_{i=1}^{n} \xi_i \alpha(g_i)$, where the last equality follows by Claim 2. Then

$$L(f) = \sum_{i=1}^{n} L(\xi_i \alpha(g_i)) = \sum_{i=1}^{n} L(\xi_i) g_i.$$

We show that $L = L_{\rho}$. If $x \notin \sigma(U)$ then $L_{\rho}(f)(x) = 0 = L(f)(x)$ by definition.

Given $x \in \sigma(U)$,

$$L_{\rho}(f)(x) = \sum_{y \in \sigma^{-1}(x)} \rho(y) f(y) = \sum_{y \in \sigma^{-1}(x)} \sum_{i=1}^{n} \alpha \left(L(\xi_i) \right)(y) \xi_i(y) f(y)$$
$$= \sum_{y \in \sigma^{-1}(x)} \sum_{i: y \in U_i} L(\xi_i)(x) \xi_i(y) f(y).$$

On the other hand,

$$L(f)(x) = \sum_{i=1}^{n} L(\xi_i)(x)g_i(x) = \sum_{i: x \in \sigma(U_i)} L(\xi_i)(x)\xi_i(\sigma^{-1}(x))f(\sigma^{-1}(x)).$$

To see that

$$\sum_{y \in \sigma^{-1}(x)} \sum_{i: y \in U_i} L(\xi_i)(x)\xi_i(y)f(y) = \sum_{i: x \in \sigma(U_i)} L(\xi_i)(x)\xi_i(\sigma^{-1}(x))f(\sigma^{-1}(x))$$

note that summands of each side are the same. \Box

Denote by M_{ρ} the Hilbert bi-module generated by $C_c(U)$ with the inner product given by L_{ρ} and by $\widehat{K_{1\rho}}$ the algebra generated by nm^* in $\mathcal{T}(X, \alpha, L_{\rho})$. Moreover, denote by $\varphi_{\rho}: C(X) \to L(M_{\rho})$ the *-homomorphism given by the left product of A by M_{ρ} .

Lemma 2.2. Let $\rho, \rho' \in C(U)$ positive functions. If $\ker(\rho) = \ker(\rho')$ then $\ker(\varphi_{\rho}) = \ker(\varphi_{\rho'})$.

Proof. Let $f \in C(X)$. Then $f \in \ker(\varphi_{\rho})$ if and only if fm = 0 for each $m \in M_{\rho}$, if and only if $\widetilde{fg} = f\widetilde{g} = 0$ for each $g \in C_c(U)$. It is easy to check that $\widetilde{fg} = 0$ in M_{ρ} if and only if $\rho fg = 0$. Then $f \in \ker(\varphi_{\rho})$ if and only if $\rho fg = 0$ for each $g \in C_c(U)$. In the same way, $f \in \ker(\varphi'_{\rho})$ if and only if $\rho' fg = 0$ for each $g \in C_c(U)$. Since $\ker(\rho) = \ker(\rho')$ then $\rho fg = 0$ if and only if $\rho' fg = 0$ for each $g \in C_c(U)$. \Box

Proposition 2.3. If ρ and ρ' are elements of C(U) such that there exists a positive function $r \in C(U)$ such that $r(x) \neq 0$ for each $x \in U$ and $\rho = r\rho'$ then $\mathcal{O}(X, \alpha, L_{\rho})$ and $\mathcal{O}(X, \alpha, L_{\rho'})$ are *-isomorphic.

Proof. Let us define a *-homomorphism from $\mathcal{O}(X, \alpha, L_{\rho})$ to $\mathcal{O}(X, \alpha, L_{\rho'})$. Define

$$\psi_1 \colon C(X) \to \mathcal{T}(X, \alpha, L_{\rho'})$$
$$f \mapsto f.$$

Let $\xi = \sqrt{r}$, and note that for each $g \in C_c(U)$,

$$\|\tilde{g}\|_{\rho}^{2} = \|L_{\rho}(g^{*}g)\| = \|L(\rho g^{*}g)\| = \|L(r\rho' g^{*}g)\| = \|L_{\rho'}(\xi g)^{*}g^{*}g^{*}\| = \|\tilde{\xi}g\|_{\rho'}^{2},$$

where $\| \|_{\rho}$ is the norm in M_{ρ} . So we may define $\psi_2 : M_{\rho} \to \mathcal{T}(X, \alpha, L_{\rho'})$ by $\psi_2(\tilde{g}) = \tilde{\xi}\tilde{g}$. Let $\psi_3 = \psi_1 \cup \psi_2$. We show that ψ_3 extends to $\mathcal{T}(X, \alpha, L_{\rho})$. For each $f \in C(X)$ and $g \in C_c(U)$ we have

$$\psi_3(f)\psi_3(\tilde{g}) = f\tilde{\xi}\tilde{g} = \tilde{\xi}\tilde{f}g = \psi_3(\tilde{f}g)$$

and

$$\psi_3(\tilde{g})\psi_3(f) = \widetilde{\xi g}f = \widetilde{\xi g\alpha(f)} = \psi_3(\widetilde{g\alpha f})$$

Moreover, if $h \in C_c(U)$ then

$$\psi_{3}(\tilde{g})^{*}\psi_{3}(\tilde{h}) = \xi \tilde{g}^{*}\xi \tilde{h} = L_{\rho'}((\xi g)^{*}\xi h) = L_{\rho'r}(g^{*}h) = L_{\rho}(g^{*}h) = \psi_{3}(L_{\rho}(g^{*}h)).$$

So ψ_3 extends to $\mathcal{T}(X, \alpha, L_{\rho})$. Let $(f, k) \in C(X) \times \widehat{K_{1\rho}}$ a redundancy with $f \in \ker(\varphi_{\rho})^{\perp} \cap \varphi_{\rho}^{-1}(K(M_{\rho}))$. Since $\psi_3(M_{\rho}) \subseteq M_{\rho'}$ it follows that $\psi_3(k) \in \widehat{K_{1\rho'}}$ and so $(\psi_3(f), \psi_3(k)) \in C(X) \times \widehat{K_{1\rho'}}$. Moreover, given $g \in C_c(U)$ then $\xi^{-1}g \in C_c(U)$ and $\psi_3(\widehat{\xi^{-1}g}) = \widetilde{g}$ from where $\psi_3(M_{\rho})$ is dense in $M_{\rho'}$, and so, since fm = km for each $m \in M_{\rho}$ then $\psi_3(f)n = \psi_3(k)n$ for every $n \in M_{\rho'}$. Therefore $(\psi_3(f), \psi_3(k))$ is a redundancy. Since $f \in \ker(\varphi_{\rho})^{\perp}$, by the previous lemma, $\psi_3(f) \in \ker(\varphi_{\rho'})^{\perp}$. Then, since $(\psi_3(f), \psi_3(k))$ is a redundancy of $\mathcal{T}(X, \alpha, L)$ then by

[3, 2.6], $\psi_3(f) \in \varphi^{-1}(K(M_{\rho'}))$. So $\psi_3(f) \in \ker(\varphi_{\rho'})^{\perp} \cap \varphi_{\rho'}^{-1}(K(M_{\rho'}))$. This shows that if ϕ is the quotient *-homomorphism from $\mathcal{T}(X, \alpha, L)$ in $\mathcal{O}(X, \alpha, L)$ then $\phi \circ \psi_3 : \mathcal{T}(X, \alpha, L_{\rho}) \to \mathcal{O}(X, \alpha, L)$ is a homomorphism which vanishes on all the elements of the form (a - k) where (a, k) is a redundancy and $a \in \varphi_{\rho}^{-1}(K(M_{\rho})) \cap \ker(\varphi_{\rho})^{\perp}$. So we obtain a *-homomorphism

$$\begin{split} \psi : \mathcal{O}(X, \alpha, L_{\rho}) &\to \mathcal{O}(X, \alpha, L_{\rho'}), \\ f &\mapsto f, \\ \tilde{g} &\mapsto \tilde{\xi} \tilde{g}. \end{split}$$

In the same way we may define the *-homomorphism

$$\psi_0 \colon \mathcal{O}(X, \alpha, L_{\rho'}) \to \mathcal{O}(X, \alpha, L_{\rho}),$$

$$f \mapsto f,$$

$$\widetilde{g} \mapsto \overbrace{\xi^{-1}g}^{f}.$$

Note that ψ_0 is the inverse of ψ , showing that the algebras are *-isomorphic. \Box

Corollary 2.4. If $\rho \in C(U)$ is a positive function such that $\rho(x) \neq 0$ for all $x \in U$ then $\mathcal{O}(X, \alpha, L_{\rho})$ is *-isomorphic to $\mathcal{O}(X, \alpha, L)$.

Proof. Note that the transfer operator *L* associated to the algebra $\mathcal{O}(X, \alpha, L)$ is the operator L_{1_U} . Since $\rho = 1_U$ is invertible, taking $r = \rho^{-1}$, by the previous proposition follows the corollary. \Box

3. Relationship between the covariance algebra and the crossed product by a partial endomorphism

We show here that given a partial dynamical system $\sigma: U \to X$, where U is clopen, there exists another partial dynamical system $\tilde{\sigma}: \tilde{U} \to \tilde{X}$ (called in [4] the σ -extension of X) such that $C^*(X, \sigma) \cong \mathcal{O}(\tilde{X}, \alpha, L)$. Moreover, if σ is injective then $C^*(X, \sigma) \cong \mathcal{O}(X, \alpha, L)$.

3.1. The covariance algebra as a crossed product by a partial endomorphism

Let us start with a summary of the construction of the covariance algebra. Let $\sigma : U \to X$ be a continuous map, $U \subseteq X$ clopen, X compact Hausdorff and $\sigma(U)$ open. Denote $\sigma(U) = U_{-1}$. Consider the space $X \cup \{0\}$, where $\{0\}$ is a symbol, which we define to be clopen. So $X \cup \{0\}$ is a compact and Hausdorff space.

Define $\widetilde{X} \subset \prod_{i=0}^{\infty} X \cup \{0\},\$

$$\widetilde{X} = \bigcup_{N=0}^{\infty} X_N \cup X_{\infty},$$

where

$$X_N = \{(x_0, x_1, \dots, x_N, 0, 0, \dots): \sigma(x_i) = x_{i-1} \text{ and } x_N \notin U_{-1}\}$$

and

$$X_{\infty} = \{(x_0, x_1, \ldots): \sigma(x_i) = x_{i-1}\}.$$

In \widetilde{X} we consider the product topology induced from $\prod_{i=0}^{\infty} X \cup \{0\}$.

By [4, 2.2], \tilde{X} is compact. Define

$$\Phi: \widetilde{X} \to X,$$
$$(x_0, x_1, x_2, \ldots) \mapsto x_0,$$

which is continuous and surjective. Consider the clopen subsets $\widetilde{U} = \Phi^{-1}(U)$ and $\widetilde{U_{-1}} = \Phi^{-1}(U_{-1})$ and the continuous map

$$\widetilde{\sigma}: \widetilde{U} \to \widetilde{U_{-1}},$$

$$(x_0, x_1, x_2, \ldots) \mapsto (\sigma(x_0), x_0, x_1, \ldots).$$

Those maps satisfies the relation

$$\Phi\big(\tilde{\sigma}(\tilde{x})\big) = \sigma\big(\Phi(\tilde{x})\big).$$

Note that $\tilde{\sigma}$ is in fact a homeomorphism. This homeomorphism induces the *-isomorphism

$$\begin{array}{rcl} \theta: C(\widetilde{U_{-1}}) \to \ C(\widetilde{U}), \\ f \mapsto \ f \circ \widetilde{\sigma}. \end{array}$$

So we may consider the partial crossed product $C(\widetilde{X}) \rtimes_{\theta} \mathbb{Z}$ (see [1]).

Definition 3.1. [4, 4.2] The covariance algebra associated to the partial dynamical system (X, σ) is the algebra $C(\widetilde{X}) \rtimes_{\theta} \mathbb{Z}$ and will be denoted $C^*(X, \sigma)$.

Lemma 3.2. If $\sigma : U \to X$ is injective, U clopen and U_{-1} open then $C(X) \rtimes_{\theta} \mathbb{Z} \cong \mathcal{O}(X, \alpha, L)$, where $\theta : C(U_{-1}) \to C(U)$ is given by $\theta(f) = f \circ \sigma$.

Proof. Define $\psi_1: C(X) \cup M \to C(X) \rtimes_{\theta} \mathbb{Z}$ by $\psi_1(f) = f\delta_0$ and $\psi_1(\widetilde{1}_U) = 1_U\delta_1$. It is easy to check that ψ_1 extends to $\mathcal{T}(X, \alpha, L)$. We show that Ψ_1 vanishes on the redundancies. Let (f, k) be a redundancy with $f \in \ker(\varphi)^{\perp} \cap \varphi^{-1}(K(M))$. By [3, 2.6], $f \in C(U)$. Then $\psi_1(\widetilde{f})\psi_1(\widetilde{1}_U)^* = f\delta_1 1_{U-1}\delta_{-1} = \theta(\theta^{-1}(f)1_{U-1})\delta_0 = \psi_1(f)$. Take $(k_n)_n \subseteq \widehat{K_1}, k_n = \sum_i m_{ni} l_{ni}^*$ where $m_{ni}, l_{ni} \in M$. Then

$$(\psi_1(f) - \psi(k)) (\psi_1(f) - \psi(k))^* = (\psi_1(f) - \psi_1(k)) \psi_1(f - k) = \psi_1(f - k) (\psi_1(\tilde{f} \widetilde{1_U}^*) - \psi_1(k))^* = \psi(f - k) (\widetilde{1_U} \tilde{f}^* - k) = \lim_{n \to \infty} \psi(f - k) (\widetilde{1_U} \tilde{f}^* - k_n) = 0.$$

The last equality follows by the fact that (f - k)m = 0 for each $m \in M$. So, by passage to the quotient we may consider $\psi : \mathcal{O}(X, \alpha, L) \to C(X) \rtimes_{\theta} \mathbb{Z}$. On the other hand, define

$$\psi_0 \colon C(X) \to \mathcal{O}(X, \alpha, L),$$

$$f \mapsto f,$$

which is a *-homomorphism. Note that for each $f \in C(U_{-1})$,

$$\widetilde{\mathbf{1}_U}\psi_0(f)\widetilde{\mathbf{1}_U}^* = \widetilde{\mathbf{1}_U}\alpha(f)\widetilde{\mathbf{1}_U}^* = \mathbf{1}_U\alpha(f) = \theta(f) = \psi_0(\theta(f))$$

and moreover $\widetilde{1_U}$ is a partial isometry such that $\widetilde{1_U}\widetilde{1_U}^* = 1_U$ and $\widetilde{1_U}^*\widetilde{1_U} = 1_{U-1}$. Then, since $(\psi_0, \widetilde{1_U})$ is a covariant representation of C(X) in $\mathcal{O}(X, \alpha, L)$, there exists a *-homomorphism $\psi': C(X) \rtimes_{\theta} \mathbb{Z} \to \mathcal{O}(X, \alpha, L)$ such that $\psi'(f\delta_n) = f\widetilde{1_U}^n$ (see [1, 5]). The *-homomorphisms ψ and ψ' are inverses of each other, and so the algebras are *-isomorphic. \Box

Corollary 3.3. $C^*(X, \sigma) \cong \mathcal{O}(\widetilde{X}, \alpha, L).$

Proof. Follows by the definition of covariance algebras and by the previous lemma. \Box

By the following proposition, if σ is injective then the constructions of covariance algebra and crossed product by a partial endomorphism are equivalent.

Proposition 3.4. If $\sigma: U \to X$ is injective then $C^*(X, \sigma) \cong \mathcal{O}(X, \alpha, L)$.

Proof. By [4, 2.3] the map

$$\Phi: \widetilde{X} \to X,$$
$$(x_0, x_1, x_2, \ldots) \mapsto x_0$$

is a homeomorphism. Moreover, since $\Phi \circ \tilde{\sigma} = \sigma \circ \Phi$ then $C(\tilde{X}) \rtimes_{\tilde{\theta}} \mathbb{Z} \cong C(X) \rtimes_{\theta} \mathbb{Z}$. By the previous lemma $C(X) \rtimes_{\theta} \mathbb{Z} \cong \mathcal{O}(X, \alpha, L)$. \Box

3.2. Cuntz-Krieger algebras

We show examples of partial dynamical systems $\sigma_A: U \to X_A$ such that there does not exist an invertible function $\rho \in C(U)$ such that $\mathcal{O}(X, \alpha, L_{\rho})$ and $C^*(X, \alpha)$ are *-isomorphic. The examples are based on the Cuntz-Krieger algebras.

Let *A* be a $n \times n$ matrix with $A(i, j) = A_{i,j} \in \{0, 1\}$. Denote by Gr(A) the directed graph of *A*, that is, the vertex set is $\{1, \ldots, n\}$ and A(i, j) is the number of oriented edges from *i* to *j*. A path is a sequence x_1, \ldots, x_m such that $A(x_i, x_{i+1}) = 1$ for each *i*. The graph Gr(A) is transitive if for each *i* and *j* there exists a path from *i* to *j*, that is, a path x_1, \ldots, x_m such that $x_1 = i$ and $x_m = j$. The graph is a cycle if for each *i* there exists only one *j* such that A(i, j) = 1. Let

$$X_A = \left\{ x = (x_1, x_2, \ldots) \in \{1, \ldots, n\}^{\mathbb{N}} : A(x_i, x_{i+1}) = 1 \; \forall i \right\} \subseteq \{1, \ldots, n\}^{\mathbb{N}}$$

and

$$\sigma_A : X_A \to X_A,$$

$$(x_0, x_1, \ldots) \mapsto (x_1, x_2, \ldots).$$

Consider the set

$$\overline{X_A} = \left\{ (x_i)_{i \in \mathbb{Z}} \in \{1, \dots, n\}^{\mathbb{Z}} \colon A(x_i, x_i + 1) = 1 \; \forall i \right\} \subseteq \{1, \dots, n\}^{\mathbb{Z}}$$

and the map $\overline{\sigma_A}: \overline{X_A} \to \overline{X_A}$ defined by $\overline{\sigma_A}((x_i)_{i \in Z}) = (x_{i+1})_{i \in \mathbb{Z}}$. It is showed in [4, 2.8] that there exists a homeomorphism $\Phi: \widetilde{X_A} \to \overline{X_A}$ such that $\Phi \circ \widetilde{\sigma_A} = \overline{\sigma_A} \circ \Phi$. Therefore $\mathcal{O}(\widetilde{X_A}, \alpha, L) \cong \mathcal{O}(\overline{X_A}, \alpha, L)$ and so $C^*(X_A, \sigma_A) \cong \mathcal{O}(\overline{X_A}, \alpha, L)$. So we may analyze the ideal structure of $C^*(X_A, \sigma_A)$ by using the theory developed for $\mathcal{O}(\overline{X_A}, \alpha, L)$ in [3]. This theory is based on the $\overline{\sigma_A}, \overline{\sigma_A}^{-1}$ invariant open subsets of $\overline{X_A}$. (In a system $\sigma: U \to X$, a subset $V \subseteq X$ is σ, σ^{-1} invariant if $\sigma(U \cap V) \subseteq V$ and $\sigma^{-1}(V) \subseteq V$.)

Proposition 3.5. If Gr(A) is transitive and is not a cycle then there exists at least one open nontrivial $\overline{\sigma_A}, \overline{\sigma_A}^{-1}$ invariant subset of $\overline{X_A}$.

Proof. Let $r = x_1, x_2, ..., x_n$ be an admissible word (that is, $A(x_i, x_{i+1}) = 1$ for each *i*). Let $V_r = \{x \in \overline{X_A}: r \in x\}$. Note that V_r is open and $\overline{\sigma_A}, \overline{\sigma_A}^{-1}$ invariant. We show that there exists such a nontrivial V_r . Take $x_1 \in \{1, ..., n\}$. Consider an admissible word $x_1, ..., x_m$ where $x_j \neq x_1$ for each j > 1 and $A(x_m, x_1) = 1$. Such a word exists because Gr(A) is transitive. Let $r = x_1, ..., x_m, x_1$. Then

$$y = (\dots, x_m, \dot{x}_1, x_2, \dots, x_m, x_1, x_2, \dots) \in V_r$$

where \dot{x}_1 means $y_0 = x_1$.

We conclude the proof by showing that $V_r \neq \overline{X_A}$. Suppose that there exists $y_0 \in \{1, ..., n\}$ with $y_0 \notin \{x_1, ..., x_m\}$. Let $x_1, y_1, ..., y_t, y_0, s_1, ..., s_l$ be an admissible word such that $y_j \neq x_1$ and $s_j \neq x_1$ for each j and $A(s_l, x_1) = 1$. Then

$$(\ldots, s_l, \dot{x}_1, y_1, \ldots, y_t, y_0, s_1, \ldots, s_l, x_1 \ldots) \notin V_r.$$

If $\{x_1, \ldots, x_m\} = \{1, \ldots, n\}$, since Gr(A) is not a cycle, for some x_i there exists x_t such that $A(x_i, x_t) = 1$ and $x_t \neq x_{i+1}$ (if i = m consider $x_{i+1} = x_1$). If $x_t = x_1$ (and so $i \neq m$) consider an admissible word x_1, \ldots, x_i, x_1 and note that

$$(\ldots, x_i, \mathring{x}_1, x_2, \ldots, x_i, x_1, \ldots) \notin V_r.$$

If $x_t \neq x_1$ consider an admissible word $x_1, x_2, \dots, x_i, x_t, y_1, \dots, y_l$ such that $y_j \neq x_1$ and $A(y_l, x_1) = 1$ (if there does not exist $y_1 \neq x_1$ such that $A(x_t, y_1) = 1$ then y_1, \dots, y_l is the empty word) and so

$$(\ldots, y_l, \dot{x}_1, x_2, \ldots, x_i, x_t, y_1, \ldots, y_l, y_1, \ldots) \notin V_r$$

So $V_r \neq \overline{X_A}$. \Box

Now we analyze the σ_A , σ_A^{-1} invariant subsets of X_A .

Proposition 3.6. If Gr(A) is transitive and is not a cycle, then the unique open σ_A -invariant subsets of X_A are \emptyset and X_A .

Proof. Let $V \subseteq X_A$ be an open nonempty σ_A invariant subset of X_A . Let $x \in V$ and V_m be an open neighbourhood of $x, V_m \subseteq V$,

 $V_m = \{y \in X_A : x_i = y_i \text{ for each } 1 \leq i \leq m\}.$

Given $z \in X_A$ take $r = r_1, \ldots, r_t$ a path from x_m to z_1 . Then

 $s = (x_1, \ldots, x_m, r_2, \ldots, r_{t-1}, z_1, z_2, \ldots) \in V_m$

and since V is σ_A invariant then $z = \sigma_A^{m+t-2}(s) \in V$. So $V = X_A$. \Box

According to [3] a partial dynamical system $\sigma : U \to X$ is topologically free if the closure of $V^{i,j} = \{x \in U: \sigma^i(x) = \sigma^j(x)\}$ has empty interior for each $i, j \in \mathbb{N}, i \neq j$.

Proposition 3.7. If Gr(A) is transitive and is not a cycle then (X_A, σ_A) is topologically free.

Proof. Suppose that $\overline{V^{i,j}}$ has nonempty interior and i < j, j = i + k. Let x' be an interior point of $\overline{V^{i,j}}$ and $V_{x'} \subseteq \overline{V^{i,j}}$ be an open neighbourhood of x'. Take $x \in V^{i,j} \cap V_{x'}$. Since $\sigma_A^i(x) =$

 $\sigma_A^j(x)$ then $z_{i+t} = z_{j+t}$ for each $t \in \mathbb{N}$ and since j = i + k then $x = (x_1, \dots, x_{i-1}, r, r, \dots)$ where $r = x_i x_{i+1} \dots x_{i+k-1}$. Consider the open subset

$$V_m = \{ z \in X_A \colon z_i = x_i, \ 1 \leq i \leq m \},\$$

where *m* is such that $m \ge i + k$ and $V_m \subseteq V_{x'}$. Then, if $y \in V_m$ with $y \in V^{i,j}$ then y = x. Therefore $V_m = \{x\}$. We show that there exists $z \in V_m$ with $z \ne x$, and that will be a contradiction. Suppose $y_0 \in \{1, ..., n\}$ and $y_0 \notin \{x_i, ..., x_{i+k-1}\}$. Take a path $s = s_1, ..., s_t$ from x_i to x_{i+k-1} such that $s_j = y_0$ for some *j*. Then $z = (x_1, ..., x_{i-1}, r, r, ..., r, s, s, ...) \in V_m$ (where *r* is repeated *m* times) but $z \ne x$. Suppose $\{1, ..., n\} = \{x_i, ..., x_{i+k-1}\}$. Since Gr(*A*) is not a cycle then for some x_j there exists $x_t \ne x_{j+1}$ (consider $x_{j+1} = x_i$ if j = i + k - 1) such that $A(x_i, x_t) = 1$. Let *s* be a path from x_t to x_{i+k-1} and define $p = x_i, ..., x_j, x_t, s$. Then

$$z = (x_1, \ldots, x_{i-1}, r, r, \ldots, r, x_i, \ldots, x_j, x_t, p, p, p, \ldots) \in V_m$$

(where *r* is repeated *m* times) and $z \neq x$. So, it is showed that there exists $z \in V_m$, $z \neq x$. Therefore, $V^{i,j}$ has empty interior for each *i*, *j*. \Box

Theorem 3.8. If Gr(A) is transitive and is not a cycle then $C^*(X_A, \sigma_A)$ and $\mathcal{O}(X_A, \alpha, L)$ are not *-isomorphic C^* -algebras.

Proof. By Lemma 3.2, $C^*(X_A, \sigma_A) \cong \mathcal{O}(\widetilde{X}_A, \alpha, L)$ and since $\mathcal{O}(\widetilde{X}_A, \alpha, L) \cong \mathcal{O}(\overline{X}_A, \alpha, L)$ then $C^*(X_A, \sigma_A) \cong \mathcal{O}(\overline{X}_A, \alpha, L)$. By Proposition 3.5, \overline{X}_A has at least one nontrivial open $\overline{\sigma}_A, \overline{\sigma}_A^{-1}$ invariant subset and by [3, 3.9] $\mathcal{O}(\overline{X}_A, \alpha, L)$ has at least one nontrivial ideal. On the other hand, by Proposition 3.6, (X_A, σ_A) has no open σ_A, σ_A^{-1} invariant subsets and by Proposition 3.7, (X_A, σ_A) is topologically free. By [3, 4.8], $\mathcal{O}(X_A, \alpha, L)$ is simple. So $C^*(X_A, \sigma_A)$ and $\mathcal{O}(X_A, \alpha, L)$ are not *-isomorphic. \Box

Corollary 3.9. If Gr(A) is transitive and is not a cycle then there does not exist a transfer operator L_{ρ} , with $\rho(x) \neq 0$ for each $x \in U$ such that $C^*(X_A, \sigma_A)$ and $\mathcal{O}(X_A, \alpha, L)$ are *-isomorphic C^* -algebras.

Proof. Follows by the previous theorem and by Corollary 2.4. \Box

Acknowledgment

The author expresses his thanks to R. Exel for the many stimulating conversations.

References

- R. Exel, Circle actions on C*-algebras, partial automorphisms and a generalized Pimsner–Voiculescu exact sequence, J. Funct. Anal. 122 (1994) 361–401.
- [2] R. Exel, A new look at the crossed-product of a C*-algebra by an endomorphism, Ergodic Theory Dynam. Systems 23 (2003) 1733–1750.
- [3] R. Exel, D. Royer, The crossed product by a partial endomorphism, preprint, 2004, math.OA/0410192.
- [4] B.K. Kwasniewski, Covariance algebra of a partial dynamical system, preprint, 2004, math.OA/0407352.