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Abstract

Given a local homeomorphism σ :U → X where U ⊆ X is clopen and X is a compact and Hausdorff
topological space, we obtain the possible transfer operators Lρ which may occur for α :C(X) → C(U)

given by α(f ) = f ◦ σ . We obtain examples of partial dynamical systems (XA,σA) such that the con-
struction of the covariance algebra C∗(XA,σA), proposed by B.K. Kwasniewski, and the crossed product
by a partial endomorphism O(XA,α,L), recently introduced by the author and R. Exel, associated to this
system are not equivalent, in the sense that there does not exist an invertible function ρ ∈ C(U) such that
O(XA,α,Lρ) ∼= C∗(XA,σA).
© 2005 Elsevier Inc. All rights reserved.

Keywords: Partial endomorphism; Crossed product; Covariance algebra

1. Introduction

We begin with a summary of the construction of the crossed product by a partial endo-
morphism. Details may be seen in [3]. A partial C∗-dynamical system (A,α,L) consists of a
(closed) ideal I of a C∗-algebra A, an idempotent self-adjoint ideal J of I (not necessarily
closed), a ∗-homomorphism α :A → M(I), where M(I) is the multiplier algebra of I , and
a linear positive map (which preserves ∗) L :J → A such that L(aα(b)) = L(a)b for each
a ∈ J and b ∈ A. The map L is called transfer operator, as in [2]. Define in J an inner product
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(which may be degenerated) by (x, y) = L(x∗y). Then we obtain an inner product 〈,〉 in the
quotient J0 = J/{x ∈ J : L(x∗x) = 0} defined by 〈x̃, ỹ〉 = L(x∗y), which induces a norm ‖ ‖.
Define M = J0

‖ ‖, which is a right Hilbert A-module and also a left A-module, where the
left multiplication is defined by the ∗-homomorphism ϕ :A → L(M) (the adjointable opera-
tors in M), where ϕ(a)(x̃) = ãx for each x ∈ J . The Toeplitz algebra associated to (A,α,L)

is the universal C∗-algebra T (A,α,L) generated by A ∪ M with the relations of A, of M , the
bi-module products and m∗n = 〈m,n〉. A redundancy in T (A,α,L) is a pair (a, k) ∈ A × K̂1,
(K̂1 = span{mn∗, m,n ∈ M}), such that am = km for every m ∈ M . The Crossed Product by
a Partial Endomorphism O(A,α,L) is the quotient of T (A,α,L) by the ideal generated by all
the elements (a − k) where (a, k) is a redundancy and a ∈ ker(ϕ)⊥ ∩ ϕ−1(K(M)). The algebra
O(A,α,L) is the Cuntz–Pimsner algebra associated to the C∗-correspondence ϕ :A → L(M).

In [3] it was introduced the crossed product by a partial endomorphism O(X,α,L) associated
to the C∗-dynamical system (C(X),α,L). This system is induced by a local homeomorphism
σ :U → X, where U is an open subset of a compact topological Hausdorff space X. More specif-
ically,

α : C(X) → Cb(U),

f �→ f ◦ σ,

where Cb(U) is the space of all continuous bounded functions in U and L :Cc(U) → C(X)

(Cc(U) is the set of the continuous functions with compact support in U ) is defined by

L(f )(x) =
{∑

y∈σ−1(x) f (y) if x ∈ σ(U),

0 otherwise,

for every x ∈ X and f ∈ Cc(U).
In [4] it was defined the algebra C∗(X,α), called covariance algebra. This algebra is also

constructed from a partial dynamical system, that is, a continuous map σ :U → X where X is a
topological compact Hausdorff space, U is a clopen subset of X and σ(U) is open.

If we suppose that σ :U → X is a local homeomorphism, U clopen (and so σ(U) is always
open) then (X,σ ) gives rise to two C∗-algebras, the covariance algebra C∗(X,σ ), proposed in
[4], and the crossed product by a partial endomorphism O(X,α,L), proposed in [3].

In this paper we identify the transfer operators Lρ which may occur for α. Moreover, we
show that the constructions of the covariance algebra and the crossed product by a partial
endomorphism are not equivalent in the following sense: we obtain examples of partial dy-
namical systems (XA,σA) such that there does not exist an invertible function ρ such that
O(XA,α,Lρ) ∼= C∗(X,α).

2. Transfer operators of X for α

Let σ :U → X be a local homeomorphism and U an open subset of the compact Hausdorff
space X. This local homeomorphism induces the ∗-homomorphism

α : C(X) → Cb(U),

f �→ f ◦ σ.

Given a positive function ρ ∈ C(U), for all f ∈ Cc(U) we may define

Lρ(f )(x) =
{∑

y∈σ−1(x) ρ(y)f (y) if x ∈ σ(U),

0 otherwise,
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for each x ∈ X. Note that Lρ(f ) = L(ρf ), and since ρf ∈ Cc(U) and L(ρf ) ∈ C(X) (see [3])
then Lρ(f ) in fact is an element of C(X). In this way we may define the map Lρ :Cc(U) →
C(X), which is linear and positive (by the fact that ρ is positive). It is easy to see that
Lρ(f α(g)) = Lρ(f )g for each f ∈ Cc(U) and g ∈ C(X). The following proposition shows
that if U is clopen in X then every transfer operator for α is of the form Lρ for some ρ ∈ C(U).

Proposition 2.1. Let L :Cc(U) → C(X) (U clopen in X) be a transfer operator for α, that is, L

is linear, positive, preserves ∗, and L(gα(f )) = L(g)f for each f ∈ C(X) and g ∈ Cc(U). Then
there exists ρ ∈ C(U) such that L = Lρ .

Proof. Let {Vi}ni=1 be an open cover of U such that σ |Vi
is a homeomorphism (such a cover

exists because U is compact and σ is a local homeomorphism). For each i take an open subset
Ui ⊆ Vi such that Ui ⊆ Vi and {Ui}i is also a cover for U . Consider the partition of unity {ϕi}i
subordinated to {Ui}i and define ξi = √

ϕi . Since ξi is positive for each i then L(ξi) is a positive
function. Define ρ = ∑n

i=1 α(L(ξi))ξi which is also positive. Given f ∈ Cc(U) define for each i,

gi(x) =
{

ξi(σ
−1(x))f (σ−1(x)), x ∈ σ(Vi),

0 otherwise.

Claim 1. gi ∈ C(X) for all i.

Let xj → x. Suppose x ∈ σ(Vi). Since σ(Vi) is open we may suppose that xj ∈ σ(Vi)

for each j . Since σ |Vi
is a homeomorphism then σ−1(xj ) → σ−1(x) in Vi and so gi(xj ) =

(ξif )(σ−1(xj )) → (ξif )(σ−1(x)) = gi(x). If x /∈ σ(Vi) then x /∈ σ(Ui), which is closed. There-
fore we may suppose that xj /∈ σ(Ui) and so gi(xj ) = 0 = gi(x).

Claim 2. ξiα(gi) = ϕif .

If x /∈ Ui then (ξiα(gi))(x) = 0 = (ϕif )(x). If x ∈ Ui then α(gi)(x) = gi(σ (x)) = ξi(x)f (x)

and so ξi(x)α(gi)(x) = ξ2(x)f (x) = ϕ(x)f (x).
Since ϕ is a partition of unity then f = ∑n

i=1 ϕif = ∑n
i=1 ξiα(gi), where the last equality

follows by Claim 2. Then

L(f ) =
n∑

i=1

L
(
ξiα(gi)

) =
n∑

i=1

L(ξi)gi .

We show that L = Lρ . If x /∈ σ(U) then Lρ(f )(x) = 0 = L(f )(x) by definition.
Given x ∈ σ(U),

Lρ(f )(x) =
∑

y∈σ−1(x)

ρ(y)f (y) =
∑

y∈σ−1(x)

n∑
i=1

α
(
L(ξi)

)
(y)ξi(y)f (y)

=
∑

y∈σ−1(x)

∑
i: y∈Ui

L(ξi)(x)ξi(y)f (y).

On the other hand,

L(f )(x) =
n∑

L(ξi)(x)gi(x) =
∑

L(ξi)(x)ξi

(
σ−1(x)

)
f

(
σ−1(x)

)
.

i=1 i: x∈σ(Ui)
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To see that∑
y∈σ−1(x)

∑
i: y∈Ui

L(ξi)(x)ξi(y)f (y) =
∑

i: x∈σ(Ui)

L(ξi)(x)ξi

(
σ−1(x)

)
f

(
σ−1(x)

)
note that summands of each side are the same. �

Denote by Mρ the Hilbert bi-module generated by Cc(U) with the inner product given by Lρ

and by K̂1ρ the algebra generated by nm∗ in T (X,α,Lρ). Moreover, denote by ϕρ :C(X) →
L(Mρ) the ∗-homomorphism given by the left product of A by Mρ .

Lemma 2.2. Let ρ,ρ′ ∈ C(U) positive functions. If ker(ρ) = ker(ρ′) then ker(ϕρ) = ker(ϕρ′).

Proof. Let f ∈ C(X). Then f ∈ ker(ϕρ) if and only if f m = 0 for each m ∈ Mρ , if and only if
f̃g = f g̃ = 0 for each g ∈ Cc(U). It is easy to check that f̃g = 0 in Mρ if and only if ρfg = 0.
Then f ∈ ker(ϕρ) if and only if ρfg = 0 for each g ∈ Cc(U). In the same way, f ∈ ker(ϕ′

ρ) if
and only if ρ′fg = 0 for each g ∈ Cc(U). Since ker(ρ) = ker(ρ′) then ρfg = 0 if and only if
ρ′fg = 0 for each g ∈ Cc(U). �
Proposition 2.3. If ρ and ρ′ are elements of C(U) such that there exists a positive function
r ∈ C(U) such that r(x) �= 0 for each x ∈ U and ρ = rρ′ then O(X,α,Lρ) and O(X,α,Lρ′)
are ∗-isomorphic.

Proof. Let us define a ∗-homomorphism from O(X,α,Lρ) to O(X,α,Lρ′). Define

ψ1 : C(X) → T (X,α,Lρ′),
f �→ f.

Let ξ = √
r , and note that for each g ∈ Cc(U),

‖g̃‖2
ρ = ∥∥Lρ(g∗g)

∥∥ = ∥∥L(ρg∗g)
∥∥ = ∥∥L(rρ′g∗g)

∥∥ = ∥∥Lρ′
(
(ξg)∗ξg

)∥∥ = ‖ξ̃g‖2
ρ′ ,

where ‖ ‖ρ is the norm in Mρ . So we may define ψ2 :Mρ → T (X,α,Lρ′) by ψ2(g̃) = ξ̃g. Let
ψ3 = ψ1 ∪ ψ2. We show that ψ3 extends to T (X,α,Lρ). For each f ∈ C(X) and g ∈ Cc(U) we
have

ψ3(f )ψ3(g̃) = f ξ̃g = ξ̃fg = ψ3(f̃g)

and

ψ3(g̃)ψ3(f ) = ξ̃gf = ˜ξgα(f ) = ψ3(g̃αf ).

Moreover, if h ∈ Cc(U) then

ψ3(g̃)∗ψ3(h̃) = ξ̃g
∗
ξ̃h = Lρ′

(
(ξg)∗ξh

) = Lρ′r (g
∗h) = Lρ(g∗h) = ψ3

(
Lρ(g∗h)

)
.

So ψ3 extends to T (X,α,Lρ). Let (f, k) ∈ C(X) × K̂1ρ a redundancy with f ∈ ker(ϕρ)⊥ ∩
ϕ−1

ρ (K(Mρ)). Since ψ3(Mρ) ⊆ Mρ′ it follows that ψ3(k) ∈ K̂1ρ′ and so (ψ3(f ),ψ3(k)) ∈
C(X) × K̂1ρ′ . Moreover, given g ∈ Cc(U) then ξ−1g ∈ Cc(U) and ψ3(ξ̃−1g) = g̃ from where
ψ3(Mρ) is dense in Mρ′ , and so, since f m = km for each m ∈ Mρ then ψ3(f )n = ψ3(k)n for
every n ∈ Mρ′ . Therefore (ψ3(f ),ψ3(k)) is a redundancy. Since f ∈ ker(ϕρ)⊥, by the previous
lemma, ψ3(f ) ∈ ker(ϕρ′)⊥. Then, since (ψ3(f ),ψ3(k)) is a redundancy of T (X,α,L) then by
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[3, 2.6], ψ3(f ) ∈ ϕ−1(K(Mρ′)). So ψ3(f ) ∈ ker(ϕρ′)⊥ ∩ ϕ−1
ρ′ (K(Mρ′)). This shows that if φ

is the quotient ∗-homomorphism from T (X,α,L) in O(X,α,L) then φ ◦ ψ3 :T (X,α,Lρ) →
O(X,α,L) is a homomorphism which vanishes on all the elements of the form (a − k) where
(a, k) is a redundancy and a ∈ ϕ−1

ρ (K(Mρ)) ∩ ker(ϕρ)⊥. So we obtain a ∗-homomorphism

ψ : O(X,α,Lρ) → O(X,α,Lρ′),
f �→ f,

g̃ �→ ξ̃g.

In the same way we may define the ∗-homomorphism

ψ0 : O(X,α,Lρ′) → O(X,α,Lρ),

f �→ f,

g̃ �→ ξ̃−1g.

Note that ψ0 is the inverse of ψ , showing that the algebras are ∗-isomorphic. �
Corollary 2.4. If ρ ∈ C(U) is a positive function such that ρ(x) �= 0 for all x ∈ U then
O(X,α,Lρ) is ∗-isomorphic to O(X,α,L).

Proof. Note that the transfer operator L associated to the algebra O(X,α,L) is the operator L1U
.

Since ρ = 1U is invertible, taking r = ρ−1, by the previous proposition follows the corollary. �
3. Relationship between the covariance algebra and the crossed product by a partial
endomorphism

We show here that given a partial dynamical system σ :U → X, where U is clopen, there
exists another partial dynamical system σ̃ : Ũ → X̃ (called in [4] the σ -extension of X) such that
C∗(X,σ ) ∼= O(X̃, α,L). Moreover, if σ is injective then C∗(X,σ ) ∼= O(X,α,L).

3.1. The covariance algebra as a crossed product by a partial endomorphism

Let us start with a summary of the construction of the covariance algebra. Let σ :U → X be
a continuous map, U ⊆ X clopen, X compact Hausdorff and σ(U) open. Denote σ(U) = U−1.
Consider the space X ∪ {0}, where {0} is a symbol, which we define to be clopen. So X ∪ {0} is
a compact and Hausdorff space.

Define X̃ ⊂ ∏∞
i=0 X ∪ {0},

X̃ =
∞⋃

N=0

XN ∪ X∞,

where

XN = {
(x0, x1, . . . , xN ,0,0, . . .): σ(xi) = xi−1 and xN /∈ U−1

}
and

X∞ = {
(x0, x1, . . .): σ(xi) = xi−1

}
.

In X̃ we consider the product topology induced from
∏∞

i=0 X ∪ {0}.
By [4, 2.2], X̃ is compact. Define
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Φ : X̃ → X,

(x0, x1, x2, . . .) �→ x0,

which is continuous and surjective. Consider the clopen subsets Ũ = Φ−1(U) and Ũ−1 =
Φ−1(U−1) and the continuous map

σ̃ : Ũ → Ũ−1,

(x0, x1, x2, . . .) �→ (
σ(x0), x0, x1, . . .

)
.

Those maps satisfies the relation

Φ
(
σ̃ (x̃)

) = σ
(
Φ(x̃)

)
.

Note that σ̃ is in fact a homeomorphism. This homeomorphism induces the ∗-isomorphism

θ : C(Ũ−1) → C(Ũ),

f �→ f ◦ σ̃ .

So we may consider the partial crossed product C(X̃) �θ Z (see [1]).

Definition 3.1. [4, 4.2] The covariance algebra associated to the partial dynamical system (X,σ )

is the algebra C(X̃) �θ Z and will be denoted C∗(X,σ ).

Lemma 3.2. If σ :U → X is injective, U clopen and U−1 open then C(X) �θ Z ∼= O(X,α,L),
where θ :C(U−1) → C(U) is given by θ(f ) = f ◦ σ .

Proof. Define ψ1 :C(X) ∪ M → C(X) �θ Z by ψ1(f ) = f δ0 and ψ1(1̃U) = 1Uδ1. It is easy
to check that ψ1 extends to T (X,α,L). We show that Ψ1 vanishes on the redundancies.
Let (f, k) be a redundancy with f ∈ ker(ϕ)⊥ ∩ ϕ−1(K(M)). By [3, 2.6], f ∈ C(U). Then
ψ1(f̃ )ψ1(1̃U)∗ = f δ11U−1δ−1 = θ(θ−1(f )1U−1)δ0 = ψ1(f ). Take (kn)n ⊆ K̂1, kn = ∑

i mni l
∗
ni

where mni, lni ∈ M . Then(
ψ1(f ) − ψ(k)

)(
ψ1(f ) − ψ(k)

)∗

= (
ψ1(f ) − ψ1(k)

)
ψ1(f − k) = ψ1(f − k)

(
ψ1(f̃ 1̃U

∗
) − ψ1(k)

)∗

= ψ(f − k)(1̃U f̃ ∗ − k) = lim
n→∞ψ(f − k)(1̃U f̃ ∗ − kn) = 0.

The last equality follows by the fact that (f − k)m = 0 for each m ∈ M . So, by passage to the
quotient we may consider ψ :O(X,α,L) → C(X) �θ Z. On the other hand, define

ψ0 : C(X) → O(X,α,L),

f �→ f,

which is a ∗-homomorphism. Note that for each f ∈ C(U−1),

1̃Uψ0(f )1̃U
∗ = 1̃Uα(f )1̃U

∗ = 1Uα(f ) = θ(f ) = ψ0
(
θ(f )

)
and moreover 1̃U is a partial isometry such that 1̃U 1̃U

∗ = 1U and 1̃U
∗
1̃U = 1U−1 . Then, since

(ψ0, 1̃U) is a covariant representation of C(X) in O(X,α,L), there exists a ∗-homomorphism
ψ ′ :C(X) �θ Z → O(X,α,L) such that ψ ′(f δn) = f 1̃U

n
(see [1, 5]). The ∗-homomorphisms

ψ and ψ ′ are inverses of each other, and so the algebras are ∗-isomorphic. �
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Corollary 3.3. C∗(X,σ ) ∼= O(X̃, α,L).

Proof. Follows by the definition of covariance algebras and by the previous lemma. �
By the following proposition, if σ is injective then the constructions of covariance algebra

and crossed product by a partial endomorphism are equivalent.

Proposition 3.4. If σ :U → X is injective then C∗(X,σ ) ∼= O(X,α,L).

Proof. By [4, 2.3] the map

Φ : X̃ → X,

(x0, x1, x2, . . .) �→ x0

is a homeomorphism. Moreover, since Φ ◦ σ̃ = σ ◦ Φ then C(X̃) �θ̃ Z ∼= C(X) �θ Z. By the
previous lemma C(X) �θ Z ∼= O(X,α,L). �
3.2. Cuntz–Krieger algebras

We show examples of partial dynamical systems σA :U → XA such that there does not exist
an invertible function ρ ∈ C(U) such that O(X,α,Lρ) and C∗(X,α) are ∗-isomorphic. The
examples are based on the Cuntz–Krieger algebras.

Let A be a n×n matrix with A(i, j) = Ai,j ∈ {0,1}. Denote by Gr(A) the directed graph of A,
that is, the vertex set is {1, . . . , n} and A(i, j) is the number of oriented edges from i to j . A path
is a sequence x1, . . . , xm such that A(xi, xi+1) = 1 for each i. The graph Gr(A) is transitive if
for each i and j there exists a path from i to j , that is, a path x1, . . . , xm such that x1 = i and
xm = j . The graph is a cycle if for each i there exists only one j such that A(i, j) = 1.

Let

XA = {
x = (x1, x2, . . .) ∈ {1, . . . , n}N: A(xi, xi+1) = 1 ∀i

} ⊆ {1, . . . , n}N

and

σA :XA → XA,

(x0, x1, . . .) �→ (x1, x2, . . .).

Consider the set

XA = {
(xi)i∈Z ∈ {1, . . . , n}Z: A(xi, xi + 1) = 1 ∀i

} ⊆ {1, . . . , n}Z

and the map σA :XA → XA defined by σA((xi)i∈Z) = (xi+1)i∈Z. It is showed in [4, 2.8]
that there exists a homeomorphism Φ : X̃A → XA such that Φ ◦ σ̃A = σA ◦ Φ . Therefore
O(X̃A,α,L) ∼= O(XA,α,L) and so C∗(XA,σA) ∼= O(XA,α,L). So we may analyze the ideal
structure of C∗(XA,σA) by using the theory developed for O(XA,α,L) in [3]. This theory is
based on the σA, σA

−1 invariant open subsets of XA. (In a system σ :U → X, a subset V ⊆ X is
σ , σ−1 invariant if σ(U ∩ V ) ⊆ V and σ−1(V ) ⊆ V .)

Proposition 3.5. If Gr(A) is transitive and is not a cycle then there exists at least one open
nontrivial σA, σA

−1 invariant subset of XA.
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Proof. Let r = x1, x2, . . . , xn be an admissible word (that is, A(xi, xi+1) = 1 for each i). Let
Vr = {x ∈ XA: r ∈ x}. Note that Vr is open and σA, σA

−1 invariant. We show that there ex-
ists such a nontrivial Vr . Take x1 ∈ {1, . . . , n}. Consider an admissible word x1, . . . , xm where
xj �= x1 for each j > 1 and A(xm,x1) = 1. Such a word exists because Gr(A) is transitive. Let
r = x1, . . . , xm, x1. Then

y = (. . . , xm, x̊1, x2, . . . , xm, x1, x2, . . .) ∈ Vr

where x̊1 means y0 = x1.
We conclude the proof by showing that Vr �= XA. Suppose that there exists y0 ∈ {1, . . . , n}

with y0 /∈ {x1, . . . , xm}. Let x1, y1, . . . , yt , y0, s1, . . . , sl be an admissible word such that yj �= x1
and sj �= x1 for each j and A(sl, x1) = 1. Then

(. . . , sl, x̊1, y1, . . . , yt , y0, s1, . . . , sl, x1 . . .) /∈ Vr .

If {x1, . . . , xm} = {1, . . . , n}, since Gr(A) is not a cycle, for some xi there exists xt such that
A(xi, xt ) = 1 and xt �= xi+1 (if i = m consider xi+1 = x1). If xt = x1 (and so i �= m) consider an
admissible word x1, . . . , xi, x1 and note that

(. . . , xi, x̊1, x2, . . . , xi, x1, . . .) /∈ Vr .

If xt �= x1 consider an admissible word x1, x2, . . . , xi, xt , y1, . . . , yl such that yj �= x1 and
A(yl, x1) = 1 (if there does not exist y1 �= x1 such that A(xt , y1) = 1 then y1, . . . , yl is the empty
word) and so

(. . . , yl, x̊1, x2, . . . , xi, xt , y1, . . . , yl, y1, . . .) /∈ Vr .

So Vr �= XA. �
Now we analyze the σA,σ−1

A invariant subsets of XA.

Proposition 3.6. If Gr(A) is transitive and is not a cycle, then the unique open σA-invariant
subsets of XA are ∅ and XA.

Proof. Let V ⊆ XA be an open nonempty σA invariant subset of XA. Let x ∈ V and Vm be an
open neighbourhood of x, Vm ⊆ V ,

Vm = {y ∈ XA: xi = yi for each 1 � i � m}.
Given z ∈ XA take r = r1, . . . , rt a path from xm to z1. Then

s = (x1, . . . , xm, r2, . . . , rt−1, z1, z2, . . .) ∈ Vm

and since V is σA invariant then z = σm+t−2
A (s) ∈ V . So V = XA. �

According to [3] a partial dynamical system σ :U → X is topologically free if the closure of
V i,j = {x ∈ U : σ i(x) = σ j (x)} has empty interior for each i, j ∈ N, i �= j .

Proposition 3.7. If Gr(A) is transitive and is not a cycle then (XA,σA) is topologically free.

Proof. Suppose that V i,j has nonempty interior and i < j , j = i + k. Let x′ be an interior point
of V i,j and Vx′ ⊆ V i,j be an open neighbourhood of x′. Take x ∈ V i,j ∩ Vx′ . Since σ i (x) =
A
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A(x) then zi+t = zj+t for each t ∈ N and since j = i + k then x = (x1, . . . , xi−1, r, r, . . .)

where r = xixi+1 . . . xi+k−1. Consider the open subset

Vm = {z ∈ XA: zi = xi, 1 � i � m},
where m is such that m � i + k and Vm ⊆ Vx′ . Then, if y ∈ Vm with y ∈ V i,j then y = x.
Therefore Vm = {x}. We show that there exists z ∈ Vm with z �= x, and that will be a contradic-
tion. Suppose y0 ∈ {1, . . . , n} and y0 /∈ {xi, . . . , xi+k−1}. Take a path s = s1, . . . , st from xi to
xi+k−1 such that sj = y0 for some j . Then z = (x1, . . . , xi−1, r, r, . . . , r, s, s, . . .) ∈ Vm (where
r is repeated m times) but z �= x. Suppose {1, . . . , n} = {xi, . . . , xi+k−1}. Since Gr(A) is not a
cycle then for some xj there exists xt �= xj+1 (consider xj+1 = xi if j = i + k − 1) such that
A(xj , xt ) = 1. Let s be a path from xt to xi+k−1 and define p = xi, . . . , xj , xt , s. Then

z = (x1, . . . , xi−1, r, r, . . . , r, xi, . . . , xj , xt ,p,p,p, . . .) ∈ Vm

(where r is repeated m times) and z �= x. So, it is showed that there exists z ∈ Vm, z �= x. There-
fore, V i,j has empty interior for each i, j . �
Theorem 3.8. If Gr(A) is transitive and is not a cycle then C∗(XA,σA) and O(XA,α,L) are
not ∗-isomorphic C∗-algebras.

Proof. By Lemma 3.2, C∗(XA,σA) ∼= O(X̃A,α,L) and since O(X̃A,α,L) ∼= O(XA,α,L) then
C∗(XA,σA) ∼= O(XA,α,L). By Proposition 3.5, XA has at least one nontrivial open σA,σA

−1

invariant subset and by [3, 3.9] O(XA,α,L) has at least one nontrivial ideal. On the other
hand, by Proposition 3.6, (XA,σA) has no open σA,σ−1

A invariant subsets and by Proposi-
tion 3.7, (XA,σA) is topologically free. By [3, 4.8], O(XA,α,L) is simple. So C∗(XA,σA)

and O(XA,α,L) are not ∗-isomorphic. �
Corollary 3.9. If Gr(A) is transitive and is not a cycle then there does not exist a transfer opera-
tor Lρ , with ρ(x) �= 0 for each x ∈ U such that C∗(XA,σA) and O(XA,α,L) are ∗-isomorphic
C∗-algebras.

Proof. Follows by the previous theorem and by Corollary 2.4. �
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