The crossed product by a partial endomorphism and the covariance algebra

Danilo Royer ${ }^{1}$
Departamento de Matemática, Universidade Federal de Santa Catarina, 88040-900, Florianópolis SC, Brazil

Received 23 May 2005
Available online 10 November 2005
Submitted by R. Curto

Abstract

Given a local homeomorphism $\sigma: U \rightarrow X$ where $U \subseteq X$ is clopen and X is a compact and Hausdorff topological space, we obtain the possible transfer operators L_{ρ} which may occur for $\alpha: C(X) \rightarrow C(U)$ given by $\alpha(f)=f \circ \sigma$. We obtain examples of partial dynamical systems (X_{A}, σ_{A}) such that the construction of the covariance algebra $C^{*}\left(X_{A}, \sigma_{A}\right)$, proposed by B.K. Kwasniewski, and the crossed product by a partial endomorphism $\mathcal{O}\left(X_{A}, \alpha, L\right)$, recently introduced by the author and R. Exel, associated to this system are not equivalent, in the sense that there does not exist an invertible function $\rho \in C(U)$ such that $\mathcal{O}\left(X_{A}, \alpha, L_{\rho}\right) \cong C^{*}\left(X_{A}, \sigma_{A}\right)$. © 2005 Elsevier Inc. All rights reserved.

Keywords: Partial endomorphism; Crossed product; Covariance algebra

1. Introduction

We begin with a summary of the construction of the crossed product by a partial endomorphism. Details may be seen in [3]. A partial C^{*}-dynamical system (A, α, L) consists of a (closed) ideal I of a C^{*}-algebra A, an idempotent self-adjoint ideal J of I (not necessarily closed), a $*$-homomorphism $\alpha: A \rightarrow M(I)$, where $M(I)$ is the multiplier algebra of I, and a linear positive map (which preserves $*$) $L: J \rightarrow A$ such that $L(a \alpha(b))=L(a) b$ for each $a \in J$ and $b \in A$. The map L is called transfer operator, as in [2]. Define in J an inner product

[^0](which may be degenerated) by $(x, y)=L\left(x^{*} y\right)$. Then we obtain an inner product \langle,$\rangle in the$ quotient $J_{0}=J /\left\{x \in J: L\left(x^{*} x\right)=0\right\}$ defined by $\langle\tilde{x}, \tilde{y}\rangle=L\left(x^{*} y\right)$, which induces a norm \|\|. Define $M=\bar{J}_{0}\| \|$, which is a right Hilbert A-module and also a left A-module, where the left multiplication is defined by the $*$-homomorphism $\varphi: A \rightarrow L(M)$ (the adjointable operators in M), where $\varphi(a)(\tilde{x})=\widetilde{a x}$ for each $x \in J$. The Toeplitz algebra associated to (A, α, L) is the universal C^{*}-algebra $\mathcal{T}(A, \alpha, L)$ generated by $A \cup M$ with the relations of A, of M, the bi-module products and $m^{*} n=\langle m, n\rangle$. A redundancy in $\mathcal{T}(A, \alpha, L)$ is a pair $(a, k) \in A \times \widehat{K_{1}}$, $\left(\widehat{K_{1}}=\overline{\operatorname{span}}\left\{m n^{*}, m, n \in M\right\}\right)$, such that $a m=k m$ for every $m \in M$. The Crossed Product by a Partial Endomorphism $\mathcal{O}(A, \alpha, L)$ is the quotient of $\mathcal{T}(A, \alpha, L)$ by the ideal generated by all the elements $(a-k)$ where (a, k) is a redundancy and $a \in \operatorname{ker}(\varphi)^{\perp} \cap \varphi^{-1}(K(M))$. The algebra $\mathcal{O}(A, \alpha, L)$ is the Cuntz-Pimsner algebra associated to the C^{*}-correspondence $\varphi: A \rightarrow L(M)$.

In [3] it was introduced the crossed product by a partial endomorphism $\mathcal{O}(X, \alpha, L)$ associated to the C^{*}-dynamical system $(C(X), \alpha, L)$. This system is induced by a local homeomorphism $\sigma: U \rightarrow X$, where U is an open subset of a compact topological Hausdorff space X. More specifically,

$$
\begin{aligned}
\alpha: C(X) & \rightarrow C^{b}(U), \\
f & \mapsto f \circ \sigma,
\end{aligned}
$$

where $C^{b}(U)$ is the space of all continuous bounded functions in U and $L: C_{c}(U) \rightarrow C(X)$ ($C_{c}(U)$ is the set of the continuous functions with compact support in U) is defined by

$$
L(f)(x)= \begin{cases}\sum_{y \in \sigma^{-1}(x)} f(y) & \text { if } x \in \sigma(U) \\ 0 & \text { otherwise }\end{cases}
$$

for every $x \in X$ and $f \in C_{c}(U)$.
In [4] it was defined the algebra $C^{*}(X, \alpha)$, called covariance algebra. This algebra is also constructed from a partial dynamical system, that is, a continuous map $\sigma: U \rightarrow X$ where X is a topological compact Hausdorff space, U is a clopen subset of X and $\sigma(U)$ is open.

If we suppose that $\sigma: U \rightarrow X$ is a local homeomorphism, U clopen (and so $\sigma(U)$ is always open) then (X, σ) gives rise to two C^{*}-algebras, the covariance algebra $C^{*}(X, \sigma)$, proposed in [4], and the crossed product by a partial endomorphism $\mathcal{O}(X, \alpha, L)$, proposed in [3].

In this paper we identify the transfer operators L_{ρ} which may occur for α. Moreover, we show that the constructions of the covariance algebra and the crossed product by a partial endomorphism are not equivalent in the following sense: we obtain examples of partial dynamical systems $\left(X_{A}, \sigma_{A}\right)$ such that there does not exist an invertible function ρ such that $\mathcal{O}\left(X_{A}, \alpha, L_{\rho}\right) \cong C^{*}(X, \alpha)$.

2. Transfer operators of X for α

Let $\sigma: U \rightarrow X$ be a local homeomorphism and U an open subset of the compact Hausdorff space X. This local homeomorphism induces the $*$-homomorphism

$$
\begin{aligned}
\alpha: C(X) & \rightarrow C^{b}(U), \\
f & \mapsto f \circ \sigma .
\end{aligned}
$$

Given a positive function $\rho \in C(U)$, for all $f \in C_{c}(U)$ we may define

$$
L_{\rho}(f)(x)= \begin{cases}\sum_{y \in \sigma^{-1}(x)} \rho(y) f(y) & \text { if } x \in \sigma(U) \\ 0 & \text { otherwise }\end{cases}
$$

for each $x \in X$. Note that $L_{\rho}(f)=L(\rho f)$, and since $\rho f \in C_{c}(U)$ and $L(\rho f) \in C(X)$ (see [3]) then $L_{\rho}(f)$ in fact is an element of $C(X)$. In this way we may define the map $L_{\rho}: C_{c}(U) \rightarrow$ $C(X)$, which is linear and positive (by the fact that ρ is positive). It is easy to see that $L_{\rho}(f \alpha(g))=L_{\rho}(f) g$ for each $f \in C_{c}(U)$ and $g \in C(X)$. The following proposition shows that if U is clopen in X then every transfer operator for α is of the form L_{ρ} for some $\rho \in C(U)$.

Proposition 2.1. Let $L: C_{c}(U) \rightarrow C(X)(U$ clopen in $X)$ be a transfer operator for α, that is, L is linear, positive, preserves ${ }^{*}$, and $L(g \alpha(f))=L(g) f$ for each $f \in C(X)$ and $g \in C_{c}(U)$. Then there exists $\rho \in C(U)$ such that $L=L_{\rho}$.

Proof. Let $\left\{V_{i}\right\}_{i=1}^{n}$ be an open cover of U such that $\left.\sigma\right|_{V_{i}}$ is a homeomorphism (such a cover exists because U is compact and σ is a local homeomorphism). For each i take an open subset $U_{i} \subseteq V_{i}$ such that $\overline{U_{i}} \subseteq V_{i}$ and $\left\{U_{i}\right\}_{i}$ is also a cover for U. Consider the partition of unity $\left\{\varphi_{i}\right\}_{i}$ subordinated to $\left\{U_{i}\right\}_{i}$ and define $\xi_{i}=\sqrt{\varphi_{i}}$. Since ξ_{i} is positive for each i then $L\left(\xi_{i}\right)$ is a positive function. Define $\rho=\sum_{i=1}^{n} \alpha\left(L\left(\xi_{i}\right)\right) \xi_{i}$ which is also positive. Given $f \in C_{c}(U)$ define for each i,

$$
g_{i}(x)= \begin{cases}\xi_{i}\left(\sigma^{-1}(x)\right) f\left(\sigma^{-1}(x)\right), & x \in \sigma\left(V_{i}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Claim 1. $g_{i} \in C(X)$ for all i.
Let $x_{j} \rightarrow x$. Suppose $x \in \sigma\left(V_{i}\right)$. Since $\sigma\left(V_{i}\right)$ is open we may suppose that $x_{j} \in \sigma\left(V_{i}\right)$ for each j. Since $\left.\sigma\right|_{V_{i}}$ is a homeomorphism then $\sigma^{-1}\left(x_{j}\right) \rightarrow \sigma^{-1}(x)$ in V_{i} and so $g_{i}\left(x_{j}\right)=$ $\left(\xi_{i} f\right)\left(\sigma^{-1}\left(x_{j}\right)\right) \rightarrow\left(\xi_{i} f\right)\left(\sigma^{-1}(x)\right)=g_{i}(x)$. If $x \notin \sigma\left(V_{i}\right)$ then $x \notin \sigma\left(\overline{U_{i}}\right)$, which is closed. Therefore we may suppose that $x_{j} \notin \sigma\left(\overline{U_{i}}\right)$ and so $g_{i}\left(x_{j}\right)=0=g_{i}(x)$.

Claim 2. $\xi_{i} \alpha\left(g_{i}\right)=\varphi_{i} f$.
If $x \notin U_{i}$ then $\left(\xi_{i} \alpha\left(g_{i}\right)\right)(x)=0=\left(\varphi_{i} f\right)(x)$. If $x \in U_{i}$ then $\alpha\left(g_{i}\right)(x)=g_{i}(\sigma(x))=\xi_{i}(x) f(x)$ and so $\xi_{i}(x) \alpha\left(g_{i}\right)(x)=\xi^{2}(x) f(x)=\varphi(x) f(x)$.

Since φ is a partition of unity then $f=\sum_{i=1}^{n} \varphi_{i} f=\sum_{i=1}^{n} \xi_{i} \alpha\left(g_{i}\right)$, where the last equality follows by Claim 2. Then

$$
L(f)=\sum_{i=1}^{n} L\left(\xi_{i} \alpha\left(g_{i}\right)\right)=\sum_{i=1}^{n} L\left(\xi_{i}\right) g_{i} .
$$

We show that $L=L_{\rho}$. If $x \notin \sigma(U)$ then $L_{\rho}(f)(x)=0=L(f)(x)$ by definition.
Given $x \in \sigma(U)$,

$$
\begin{aligned}
L_{\rho}(f)(x) & =\sum_{y \in \sigma^{-1}(x)} \rho(y) f(y)=\sum_{y \in \sigma^{-1}(x)} \sum_{i=1}^{n} \alpha\left(L\left(\xi_{i}\right)\right)(y) \xi_{i}(y) f(y) \\
& =\sum_{y \in \sigma^{-1}(x)} \sum_{i: y \in U_{i}} L\left(\xi_{i}\right)(x) \xi_{i}(y) f(y)
\end{aligned}
$$

On the other hand,

$$
L(f)(x)=\sum_{i=1}^{n} L\left(\xi_{i}\right)(x) g_{i}(x)=\sum_{i: x \in \sigma\left(U_{i}\right)} L\left(\xi_{i}\right)(x) \xi_{i}\left(\sigma^{-1}(x)\right) f\left(\sigma^{-1}(x)\right)
$$

To see that

$$
\sum_{y \in \sigma^{-1}(x)} \sum_{i: y \in U_{i}} L\left(\xi_{i}\right)(x) \xi_{i}(y) f(y)=\sum_{i: x \in \sigma\left(U_{i}\right)} L\left(\xi_{i}\right)(x) \xi_{i}\left(\sigma^{-1}(x)\right) f\left(\sigma^{-1}(x)\right)
$$

note that summands of each side are the same.
Denote by M_{ρ} the Hilbert bi-module generated by $C_{c}(U)$ with the inner product given by L_{ρ} and by $\widehat{K_{1 \rho}}$ the algebra generated by $n m^{*}$ in $\mathcal{T}\left(X, \alpha, L_{\rho}\right)$. Moreover, denote by $\varphi_{\rho}: C(X) \rightarrow$ $L\left(M_{\rho}\right)$ the $*$-homomorphism given by the left product of A by M_{ρ}.

Lemma 2.2. Let $\rho, \rho^{\prime} \in C(U)$ positive functions. If $\operatorname{ker}(\rho)=\operatorname{ker}\left(\rho^{\prime}\right)$ then $\operatorname{ker}\left(\varphi_{\rho}\right)=\operatorname{ker}\left(\varphi_{\rho^{\prime}}\right)$.
Proof. Let $f \in C(X)$. Then $f \in \operatorname{ker}\left(\varphi_{\rho}\right)$ if and only if $f m=0$ for each $m \in M_{\rho}$, if and only if $\widetilde{f g}=f \tilde{g}=0$ for each $g \in C_{c}(U)$. It is easy to check that $\widetilde{f g}=0$ in M_{ρ} if and only if $\rho f g=0$. Then $f \in \operatorname{ker}\left(\varphi_{\rho}\right)$ if and only if $\rho f g=0$ for each $g \in C_{c}(U)$. In the same way, $f \in \operatorname{ker}\left(\varphi_{\rho}^{\prime}\right)$ if and only if $\rho^{\prime} f g=0$ for each $g \in C_{c}(U)$. Since $\operatorname{ker}(\rho)=\operatorname{ker}\left(\rho^{\prime}\right)$ then $\rho f g=0$ if and only if $\rho^{\prime} f g=0$ for each $g \in C_{c}(U)$.

Proposition 2.3. If ρ and ρ^{\prime} are elements of $C(U)$ such that there exists a positive function $r \in C(U)$ such that $r(x) \neq 0$ for each $x \in U$ and $\rho=r \rho^{\prime}$ then $\mathcal{O}\left(X, \alpha, L_{\rho}\right)$ and $\mathcal{O}\left(X, \alpha, L_{\rho^{\prime}}\right)$ are $*$-isomorphic.

Proof. Let us define a $*$-homomorphism from $\mathcal{O}\left(X, \alpha, L_{\rho}\right)$ to $\mathcal{O}\left(X, \alpha, L_{\rho^{\prime}}\right)$. Define

$$
\begin{aligned}
\psi_{1}: C(X) & \rightarrow \mathcal{T}\left(X, \alpha, L_{\rho^{\prime}}\right), \\
f & \mapsto f .
\end{aligned}
$$

Let $\xi=\sqrt{r}$, and note that for each $g \in C_{c}(U)$,

$$
\|\tilde{g}\|_{\rho}^{2}=\left\|L_{\rho}\left(g^{*} g\right)\right\|=\left\|L\left(\rho g^{*} g\right)\right\|=\left\|L\left(r \rho^{\prime} g^{*} g\right)\right\|=\left\|L_{\rho^{\prime}}\left((\xi g)^{*} \xi g\right)\right\|=\|\tilde{\xi g}\|_{\rho^{\prime}}^{2}
$$

where $\left\|\|_{\rho}\right.$ is the norm in M_{ρ}. So we may define $\psi_{2}: M_{\rho} \rightarrow \mathcal{T}\left(X, \alpha, L_{\rho^{\prime}}\right)$ by $\psi_{2}(\tilde{g})=\tilde{\xi g}$. Let $\psi_{3}=\psi_{1} \cup \psi_{2}$. We show that ψ_{3} extends to $\mathcal{T}\left(X, \alpha, L_{\rho}\right)$. For each $f \in C(X)$ and $g \in C_{c}(U)$ we have

$$
\psi_{3}(f) \psi_{3}(\tilde{g})=f \widetilde{\xi g}=\widetilde{\xi f g}=\psi_{3}(\widetilde{f g})
$$

and

$$
\psi_{3}(\tilde{g}) \psi_{3}(f)=\widetilde{\xi g} f=\widetilde{\xi g \alpha(f)}=\psi_{3}(\widetilde{g \alpha f})
$$

Moreover, if $h \in C_{c}(U)$ then

$$
\psi_{3}(\tilde{g})^{*} \psi_{3}(\tilde{h})=\widetilde{\xi}^{*} \widetilde{\xi h}=L_{\rho^{\prime}}\left((\xi g)^{*} \xi h\right)=L_{\rho^{\prime} r}\left(g^{*} h\right)=L_{\rho}\left(g^{*} h\right)=\psi_{3}\left(L_{\rho}\left(g^{*} h\right)\right)
$$

So ψ_{3} extends to $\mathcal{T}\left(X, \alpha, L_{\rho}\right)$. Let $(f, k) \in C(X) \times \widehat{K_{1 \rho}}$ a redundancy with $f \in \operatorname{ker}\left(\varphi_{\rho}\right)^{\perp} \cap$ $\varphi_{\rho}^{-1}\left(K\left(M_{\rho}\right)\right)$. Since $\psi_{3}\left(M_{\rho}\right) \subseteq M_{\rho^{\prime}}$ it follows that $\psi_{3}(k) \in \widehat{K_{1 \rho^{\prime}}}$ and so $\left(\psi_{3}(f), \psi_{3}(k)\right) \in$ $C(X) \times \widehat{K_{1 \rho^{\prime}}}$. Moreover, given $g \in C_{c}(U)$ then $\xi^{-1} g \in C_{c}(U)$ and $\psi_{3}\left(\widetilde{\xi^{-1} g}\right)=\tilde{g}$ from where $\psi_{3}\left(M_{\rho}\right)$ is dense in $M_{\rho^{\prime}}$, and so, since $f m=k m$ for each $m \in M_{\rho}$ then $\psi_{3}(f) n=\psi_{3}(k) n$ for every $n \in M_{\rho^{\prime}}$. Therefore $\left(\psi_{3}(f), \psi_{3}(k)\right)$ is a redundancy. Since $f \in \operatorname{ker}\left(\varphi_{\rho}\right)^{\perp}$, by the previous lemma, $\psi_{3}(f) \in \operatorname{ker}\left(\varphi_{\rho^{\prime}}\right)^{\perp}$. Then, since $\left(\psi_{3}(f), \psi_{3}(k)\right)$ is a redundancy of $\mathcal{T}(X, \alpha, L)$ then by
[3, 2.6], $\psi_{3}(f) \in \varphi^{-1}\left(K\left(M_{\rho^{\prime}}\right)\right)$. So $\psi_{3}(f) \in \operatorname{ker}\left(\varphi_{\rho^{\prime}}\right)^{\perp} \cap \varphi_{\rho^{\prime}}^{-1}\left(K\left(M_{\rho^{\prime}}\right)\right)$. This shows that if ϕ is the quotient $*$-homomorphism from $\mathcal{T}(X, \alpha, L)$ in $\mathcal{O}(X, \alpha, L)$ then $\phi \circ \psi_{3}: \mathcal{T}\left(X, \alpha, L_{\rho}\right) \rightarrow$ $\mathcal{O}(X, \alpha, L)$ is a homomorphism which vanishes on all the elements of the form $(a-k)$ where (a, k) is a redundancy and $a \in \varphi_{\rho}^{-1}\left(K\left(M_{\rho}\right)\right) \cap \operatorname{ker}\left(\varphi_{\rho}\right)^{\perp}$. So we obtain a $*$-homomorphism

$$
\begin{aligned}
\psi: \mathcal{O}\left(X, \alpha, L_{\rho}\right) & \rightarrow \mathcal{O}\left(X, \alpha, L_{\rho^{\prime}}\right), \\
f & \mapsto \tilde{g} \\
\tilde{g} & \mapsto \tilde{\xi g} .
\end{aligned}
$$

In the same way we may define the $*$-homomorphism

$$
\begin{aligned}
\psi_{0}: \mathcal{O}\left(X, \alpha, L_{\rho^{\prime}}\right) & \rightarrow \mathcal{O}\left(X, \alpha, L_{\rho}\right), \\
f & \mapsto \overline{f,} \\
\tilde{g} & \mapsto \overline{\xi^{-1} g .}
\end{aligned}
$$

Note that ψ_{0} is the inverse of ψ, showing that the algebras are $*$-isomorphic.
Corollary 2.4. If $\rho \in C(U)$ is a positive function such that $\rho(x) \neq 0$ for all $x \in U$ then $\mathcal{O}\left(X, \alpha, L_{\rho}\right)$ is $*$-isomorphic to $\mathcal{O}(X, \alpha, L)$.

Proof. Note that the transfer operator L associated to the algebra $\mathcal{O}(X, \alpha, L)$ is the operator $L_{1_{U}}$. Since $\rho=1_{U}$ is invertible, taking $r=\rho^{-1}$, by the previous proposition follows the corollary.

3. Relationship between the covariance algebra and the crossed product by a partial endomorphism

We show here that given a partial dynamical system $\sigma: U \rightarrow X$, where U is clopen, there exists another partial dynamical system $\tilde{\sigma}: \widetilde{U} \rightarrow \widetilde{X}$ (called in [4] the σ-extension of X) such that $C^{*}(X, \sigma) \cong \mathcal{O}(\widetilde{X}, \alpha, L)$. Moreover, if σ is injective then $C^{*}(X, \sigma) \cong \mathcal{O}(X, \alpha, L)$.

3.1. The covariance algebra as a crossed product by a partial endomorphism

Let us start with a summary of the construction of the covariance algebra. Let $\sigma: U \rightarrow X$ be a continuous map, $U \subseteq X$ clopen, X compact Hausdorff and $\sigma(U)$ open. Denote $\sigma(U)=U_{-1}$. Consider the space $X \cup\{0\}$, where $\{0\}$ is a symbol, which we define to be clopen. So $X \cup\{0\}$ is a compact and Hausdorff space.

Define $\widetilde{X} \subset \prod_{i=0}^{\infty} X \cup\{0\}$,

$$
\widetilde{X}=\bigcup_{N=0}^{\infty} X_{N} \cup X_{\infty}
$$

where

$$
X_{N}=\left\{\left(x_{0}, x_{1}, \ldots, x_{N}, 0,0, \ldots\right): \sigma\left(x_{i}\right)=x_{i-1} \text { and } x_{N} \notin U_{-1}\right\}
$$

and

$$
X_{\infty}=\left\{\left(x_{0}, x_{1}, \ldots\right): \sigma\left(x_{i}\right)=x_{i-1}\right\} .
$$

In \widetilde{X} we consider the product topology induced from $\prod_{i=0}^{\infty} X \cup\{0\}$.
By [4, 2.2], \widetilde{X} is compact. Define

$$
\begin{aligned}
\Phi: \tilde{X} & \rightarrow X, \\
\left(x_{0}, x_{1}, x_{2}, \ldots\right) & \mapsto x_{0},
\end{aligned}
$$

which is continuous and surjective. Consider the clopen subsets $\widetilde{U}=\Phi^{-1}(U)$ and $\widetilde{U_{-1}}=$ $\Phi^{-1}\left(U_{-1}\right)$ and the continuous map

$$
\begin{aligned}
\tilde{\sigma}: \widetilde{U} & \rightarrow \widetilde{U_{-1}} \\
\left(x_{0}, x_{1}, x_{2}, \ldots\right) & \mapsto\left(\sigma\left(x_{0}\right), x_{0}, x_{1}, \ldots\right)
\end{aligned}
$$

Those maps satisfies the relation

$$
\Phi(\tilde{\sigma}(\tilde{x}))=\sigma(\Phi(\tilde{x}))
$$

Note that $\tilde{\sigma}$ is in fact a homeomorphism. This homeomorphism induces the $*$-isomorphism

$$
\begin{aligned}
\theta: C\left(\widetilde{U_{-1}}\right) & \rightarrow C(\tilde{U}), \\
f & \mapsto f \circ \tilde{\sigma} .
\end{aligned}
$$

So we may consider the partial crossed product $C(\widetilde{X}) \rtimes_{\theta} \mathbb{Z}$ (see [1]).
Definition 3.1. $[4,4.2]$ The covariance algebra associated to the partial dynamical system (X, σ) is the algebra $C(\widetilde{X}) \rtimes_{\theta} \mathbb{Z}$ and will be denoted $C^{*}(X, \sigma)$.

Lemma 3.2. If $\sigma: U \rightarrow X$ is injective, U clopen and U_{-1} open then $C(X) \rtimes_{\theta} \mathbb{Z} \cong \mathcal{O}(X, \alpha, L)$, where $\theta: C\left(U_{-1}\right) \rightarrow C(U)$ is given by $\theta(f)=f \circ \sigma$.

Proof. Define $\psi_{1}: C(X) \cup M \rightarrow C(X) \rtimes_{\theta} \mathbb{Z}$ by $\psi_{1}(f)=f \delta_{0}$ and $\psi_{1}\left(\widetilde{1_{U}}\right)=1_{U} \delta_{1}$. It is easy to check that ψ_{1} extends to $\mathcal{T}(X, \alpha, L)$. We show that Ψ_{1} vanishes on the redundancies. Let (f, k) be a redundancy with $f \in \operatorname{ker}(\varphi)^{\perp} \cap \varphi^{-1}(K(M))$. By [3, 2.6], $f \in C(U)$. Then $\psi_{1}(\tilde{f}) \psi_{1}\left(\widetilde{1_{U}}\right)^{*}=f \delta_{1} 1_{U_{-1}} \delta_{-1}=\theta\left(\theta^{-1}(f) 1_{U_{-1}}\right) \delta_{0}=\psi_{1}(f)$. Take $\left(k_{n}\right)_{n} \subseteq \widehat{K_{1}}, k_{n}=\sum_{i} m_{n i} l_{n i}^{*}$ where $m_{n i}, l_{n i} \in M$. Then

$$
\begin{aligned}
& \left(\psi_{1}(f)-\psi(k)\right)\left(\psi_{1}(f)-\psi(k)\right)^{*} \\
& \quad=\left(\psi_{1}(f)-\psi_{1}(k)\right) \psi_{1}(f-k)=\psi_{1}(f-k)\left(\psi_{1}\left(\tilde{f}{\widetilde{1_{U}}}^{*}\right)-\psi_{1}(k)\right)^{*} \\
& \quad=\psi(f-k)\left(\widetilde{1_{U}} \tilde{f}^{*}-k\right)=\lim _{n \rightarrow \infty} \psi(f-k)\left(\widetilde{1_{U}} \tilde{f}^{*}-k_{n}\right)=0
\end{aligned}
$$

The last equality follows by the fact that $(f-k) m=0$ for each $m \in M$. So, by passage to the quotient we may consider $\psi: \mathcal{O}(X, \alpha, L) \rightarrow C(X) \rtimes_{\theta} \mathbb{Z}$. On the other hand, define

$$
\begin{aligned}
\psi_{0}: C(X) & \rightarrow \mathcal{O}(X, \alpha, L), \\
f & \mapsto f,
\end{aligned}
$$

which is a $*$-homomorphism. Note that for each $f \in C\left(U_{-1}\right)$,

$$
\widetilde{1_{U}} \psi_{0}(f) \widetilde{1_{U}}=\widetilde{1_{U}} \alpha(f) \widetilde{1_{U}}=1_{U} \alpha(f)=\theta(f)=\psi_{0}(\theta(f))
$$

and moreover $\widetilde{1_{U}}$ is a partial isometry such that $\widetilde{1_{U}}{\widetilde{1_{U}}}^{*}=1_{U}$ and ${\widetilde{1_{U}}}^{*} \widetilde{1_{U}}=1_{U_{-1}}$. Then, since ($\psi_{0}, \widetilde{1_{U}}$) is a covariant representation of $C(X)$ in $\mathcal{O}(X, \alpha, L)$, there exists a $*$-homomorphism $\psi^{\prime}: C(X) \rtimes_{\theta} \mathbb{Z} \rightarrow \mathcal{O}(X, \alpha, L)$ such that $\psi^{\prime}\left(f \delta_{n}\right)=f{\widetilde{1_{U}}}^{n}$ (see [1,5]). The $*$-homomorphisms ψ and ψ^{\prime} are inverses of each other, and so the algebras are $*$-isomorphic.

Corollary 3.3. $C^{*}(X, \sigma) \cong \mathcal{O}(\tilde{X}, \alpha, L)$.
Proof. Follows by the definition of covariance algebras and by the previous lemma.
By the following proposition, if σ is injective then the constructions of covariance algebra and crossed product by a partial endomorphism are equivalent.

Proposition 3.4. If $\sigma: U \rightarrow X$ is injective then $C^{*}(X, \sigma) \cong \mathcal{O}(X, \alpha, L)$.
Proof. By $[4,2.3]$ the map

$$
\begin{aligned}
\Phi: \widetilde{X} & \rightarrow X, \\
\left(x_{0}, x_{1}, x_{2}, \ldots\right) & \mapsto x_{0}
\end{aligned}
$$

is a homeomorphism. Moreover, since $\Phi \circ \tilde{\sigma}=\sigma \circ \Phi$ then $C(\tilde{X}) \rtimes_{\tilde{\theta}} \mathbb{Z} \cong C(X) \rtimes_{\theta} \mathbb{Z}$. By the previous lemma $C(X) \rtimes_{\theta} \mathbb{Z} \cong \mathcal{O}(X, \alpha, L)$.

3.2. Cuntz-Krieger algebras

We show examples of partial dynamical systems $\sigma_{A}: U \rightarrow X_{A}$ such that there does not exist an invertible function $\rho \in C(U)$ such that $\mathcal{O}\left(X, \alpha, L_{\rho}\right)$ and $C^{*}(X, \alpha)$ are $*$-isomorphic. The examples are based on the Cuntz-Krieger algebras.

Let A be a $n \times n$ matrix with $A(i, j)=A_{i, j} \in\{0,1\}$. Denote by $\operatorname{Gr}(A)$ the directed graph of A, that is, the vertex set is $\{1, \ldots, n\}$ and $A(i, j)$ is the number of oriented edges from i to j. A path is a sequence x_{1}, \ldots, x_{m} such that $A\left(x_{i}, x_{i+1}\right)=1$ for each i. The $\operatorname{graph} \operatorname{Gr}(A)$ is transitive if for each i and j there exists a path from i to j, that is, a path x_{1}, \ldots, x_{m} such that $x_{1}=i$ and $x_{m}=j$. The graph is a cycle if for each i there exists only one j such that $A(i, j)=1$.

Let

$$
X_{A}=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in\{1, \ldots, n\}^{\mathbb{N}}: A\left(x_{i}, x_{i+1}\right)=1 \forall i\right\} \subseteq\{1, \ldots, n\}^{\mathbb{N}}
$$

and

$$
\begin{aligned}
\sigma_{A}: X_{A} & \rightarrow X_{A}, \\
\left(x_{0}, x_{1}, \ldots\right) & \mapsto\left(x_{1}, x_{2}, \ldots\right) .
\end{aligned}
$$

Consider the set

$$
\overline{X_{A}}=\left\{\left(x_{i}\right)_{i \in \mathbb{Z}} \in\{1, \ldots, n\}^{\mathbb{Z}}: A\left(x_{i}, x_{i}+1\right)=1 \forall i\right\} \subseteq\{1, \ldots, n\}^{\mathbb{Z}}
$$

and the map $\overline{\sigma_{A}}: \overline{X_{A}} \rightarrow \overline{X_{A}}$ defined by $\overline{\sigma_{A}}\left(\left(x_{i}\right)_{i \in Z}\right)=\left(x_{i+1}\right)_{i \in \mathbb{Z}}$. It is showed in [4, 2.8] that there exists a homeomorphism $\Phi: \widetilde{X_{A}} \rightarrow \overline{X_{A}}$ such that $\Phi \circ \widetilde{\sigma_{A}}=\overline{\sigma_{A}} \circ \Phi$. Therefore $\mathcal{O}\left(\widetilde{X_{A}}, \alpha, L\right) \cong \mathcal{O}\left(\overline{X_{A}}, \alpha, L\right)$ and so $C^{*}\left(X_{A}, \sigma_{A}\right) \cong \mathcal{O}\left(\overline{X_{A}}, \alpha, L\right)$. So we may analyze the ideal structure of $C^{*}\left(X_{A}, \sigma_{A}\right)$ by using the theory developed for $\mathcal{O}\left(\overline{X_{A}}, \alpha, L\right)$ in [3]. This theory is based on the $\overline{\sigma_{A}},{\overline{\sigma_{A}}}^{-1}$ invariant open subsets of $\overline{X_{A}}$. (In a system $\sigma: U \rightarrow X$, a subset $V \subseteq X$ is σ, σ^{-1} invariant if $\sigma(U \cap V) \subseteq V$ and $\sigma^{-1}(V) \subseteq V$.)

Proposition 3.5. If $\operatorname{Gr}(A)$ is transitive and is not a cycle then there exists at least one open nontrivial $\overline{\sigma_{A}},{\overline{\sigma_{A}}}^{-1}$ invariant subset of $\overline{X_{A}}$.

Proof. Let $r=x_{1}, x_{2}, \ldots, x_{n}$ be an admissible word (that is, $A\left(x_{i}, x_{i+1}\right)=1$ for each i). Let $V_{r}=\left\{x \in \overline{X_{A}}: r \in x\right\}$. Note that V_{r} is open and $\overline{\sigma_{A}},{\overline{\sigma_{A}}}^{-1}$ invariant. We show that there exists such a nontrivial V_{r}. Take $x_{1} \in\{1, \ldots, n\}$. Consider an admissible word x_{1}, \ldots, x_{m} where $x_{j} \neq x_{1}$ for each $j>1$ and $A\left(x_{m}, x_{1}\right)=1$. Such a word exists because $\operatorname{Gr}(A)$ is transitive. Let $r=x_{1}, \ldots, x_{m}, x_{1}$. Then

$$
y=\left(\ldots, x_{m}, \dot{x}_{1}, x_{2}, \ldots, x_{m}, x_{1}, x_{2}, \ldots\right) \in V_{r}
$$

where \dot{x}_{1} means $y_{0}=x_{1}$.
We conclude the proof by showing that $V_{r} \neq \overline{X_{A}}$. Suppose that there exists $y_{0} \in\{1, \ldots, n\}$ with $y_{0} \notin\left\{x_{1}, \ldots, x_{m}\right\}$. Let $x_{1}, y_{1}, \ldots, y_{t}, y_{0}, s_{1}, \ldots, s_{l}$ be an admissible word such that $y_{j} \neq x_{1}$ and $s_{j} \neq x_{1}$ for each j and $A\left(s_{l}, x_{1}\right)=1$. Then

$$
\left(\ldots, s_{l}, \dot{x}_{1}, y_{1}, \ldots, y_{t}, y_{0}, s_{1}, \ldots, s_{l}, x_{1} \ldots\right) \notin V_{r}
$$

If $\left\{x_{1}, \ldots, x_{m}\right\}=\{1, \ldots, n\}$, since $\operatorname{Gr}(A)$ is not a cycle, for some x_{i} there exists x_{t} such that $A\left(x_{i}, x_{t}\right)=1$ and $x_{t} \neq x_{i+1}$ (if $i=m$ consider $x_{i+1}=x_{1}$). If $x_{t}=x_{1}$ (and so $i \neq m$) consider an admissible word $x_{1}, \ldots, x_{i}, x_{1}$ and note that

$$
\left(\ldots, x_{i}, \dot{\circ}_{1}, x_{2}, \ldots, x_{i}, x_{1}, \ldots\right) \notin V_{r} .
$$

If $x_{t} \neq x_{1}$ consider an admissible word $x_{1}, x_{2}, \ldots, x_{i}, x_{t}, y_{1}, \ldots, y_{l}$ such that $y_{j} \neq x_{1}$ and $A\left(y_{l}, x_{1}\right)=1$ (if there does not exist $y_{1} \neq x_{1}$ such that $A\left(x_{t}, y_{1}\right)=1$ then y_{1}, \ldots, y_{l} is the empty word) and so

$$
\left(\ldots, y_{l}, \dot{x}_{1}, x_{2}, \ldots, x_{i}, x_{t}, y_{1}, \ldots, y_{l}, y_{1}, \ldots\right) \notin V_{r}
$$

So $V_{r} \neq \overline{X_{A}}$.
Now we analyze the $\sigma_{A}, \sigma_{A}^{-1}$ invariant subsets of X_{A}.
Proposition 3.6. If $\operatorname{Gr}(A)$ is transitive and is not a cycle, then the unique open σ_{A}-invariant subsets of X_{A} are \emptyset and X_{A}.

Proof. Let $V \subseteq X_{A}$ be an open nonempty σ_{A} invariant subset of X_{A}. Let $x \in V$ and V_{m} be an open neighbourhood of $x, V_{m} \subseteq V$,

$$
V_{m}=\left\{y \in X_{A}: x_{i}=y_{i} \text { for each } 1 \leqslant i \leqslant m\right\}
$$

Given $z \in X_{A}$ take $r=r_{1}, \ldots, r_{t}$ a path from x_{m} to z_{1}. Then

$$
s=\left(x_{1}, \ldots, x_{m}, r_{2}, \ldots, r_{t-1}, z_{1}, z_{2}, \ldots\right) \in V_{m}
$$

and since V is σ_{A} invariant then $z=\sigma_{A}^{m+t-2}(s) \in V$. So $V=X_{A}$.
According to [3] a partial dynamical system $\sigma: U \rightarrow X$ is topologically free if the closure of $V^{i, j}=\left\{x \in U: \sigma^{i}(x)=\sigma^{j}(x)\right\}$ has empty interior for each $i, j \in \mathbb{N}, i \neq j$.

Proposition 3.7. If $\operatorname{Gr}(A)$ is transitive and is not a cycle then $\left(X_{A}, \sigma_{A}\right)$ is topologically free.
Proof. Suppose that $\overline{V^{i, j}}$ has nonempty interior and $i<j, j=i+k$. Let x^{\prime} be an interior point of $\overline{V^{i, j}}$ and $V_{x^{\prime}} \subseteq \overline{V^{i, j}}$ be an open neighbourhood of x^{\prime}. Take $x \in V^{i, j} \cap V_{x^{\prime}}$. Since $\sigma_{A}^{i}(x)=$
$\sigma_{A}^{j}(x)$ then $z_{i+t}=z_{j+t}$ for each $t \in \mathbb{N}$ and since $j=i+k$ then $x=\left(x_{1}, \ldots, x_{i-1}, r, r, \ldots\right)$ where $r=x_{i} x_{i+1} \ldots x_{i+k-1}$. Consider the open subset

$$
V_{m}=\left\{z \in X_{A}: z_{i}=x_{i}, 1 \leqslant i \leqslant m\right\},
$$

where m is such that $m \geqslant i+k$ and $V_{m} \subseteq V_{x^{\prime}}$. Then, if $y \in V_{m}$ with $y \in V^{i, j}$ then $y=x$. Therefore $V_{m}=\{x\}$. We show that there exists $z \in V_{m}$ with $z \neq x$, and that will be a contradiction. Suppose $y_{0} \in\{1, \ldots, n\}$ and $y_{0} \notin\left\{x_{i}, \ldots, x_{i+k-1}\right\}$. Take a path $s=s_{1}, \ldots, s_{t}$ from x_{i} to x_{i+k-1} such that $s_{j}=y_{0}$ for some j. Then $z=\left(x_{1}, \ldots, x_{i-1}, r, r, \ldots, r, s, s, \ldots\right) \in V_{m}$ (where r is repeated m times) but $z \neq x$. Suppose $\{1, \ldots, n\}=\left\{x_{i}, \ldots, x_{i+k-1}\right\}$. Since $\operatorname{Gr}(A)$ is not a cycle then for some x_{j} there exists $x_{t} \neq x_{j+1}$ (consider $x_{j+1}=x_{i}$ if $j=i+k-1$) such that $A\left(x_{j}, x_{t}\right)=1$. Let s be a path from x_{t} to x_{i+k-1} and define $p=x_{i}, \ldots, x_{j}, x_{t}, s$. Then

$$
z=\left(x_{1}, \ldots, x_{i-1}, r, r, \ldots, r, x_{i}, \ldots, x_{j}, x_{t}, p, p, p, \ldots\right) \in V_{m}
$$

(where r is repeated m times) and $z \neq x$. So, it is showed that there exists $z \in V_{m}, z \neq x$. Therefore, $\overline{V^{i, j}}$ has empty interior for each i, j.

Theorem 3.8. If $\operatorname{Gr}(A)$ is transitive and is not a cycle then $C^{*}\left(X_{A}, \sigma_{A}\right)$ and $\mathcal{O}\left(X_{A}, \alpha, L\right)$ are not $*$-isomorphic C^{*}-algebras.

Proof. By Lemma 3.2, $C^{*}\left(X_{A}, \sigma_{A}\right) \cong \mathcal{O}\left(\widetilde{X_{A}}, \alpha, L\right)$ and since $\mathcal{O}\left(\widetilde{X_{A}}, \alpha, L\right) \cong \mathcal{O}\left(\overline{X_{A}}, \alpha, L\right)$ then $C^{*}\left(X_{A}, \sigma_{A}\right) \cong \mathcal{O}\left(\overline{X_{A}}, \alpha, L\right)$. By Proposition 3.5, $\overline{X_{A}}$ has at least one nontrivial open $\overline{\sigma_{A}}, \overline{\sigma_{A}}-1$ invariant subset and by [3, 3.9] $\mathcal{O}\left(\overline{X_{A}}, \alpha, L\right)$ has at least one nontrivial ideal. On the other hand, by Proposition 3.6, $\left(X_{A}, \sigma_{A}\right)$ has no open $\sigma_{A}, \sigma_{A}^{-1}$ invariant subsets and by Proposition 3.7, $\left(X_{A}, \sigma_{A}\right)$ is topologically free. By [3, 4.8], $\mathcal{O}\left(X_{A}, \alpha, L\right)$ is simple. So $C^{*}\left(X_{A}, \sigma_{A}\right)$ and $\mathcal{O}\left(X_{A}, \alpha, L\right)$ are not $*$-isomorphic.

Corollary 3.9. If $\operatorname{Gr}(A)$ is transitive and is not a cycle then there does not exist a transfer operator L_{ρ}, with $\rho(x) \neq 0$ for each $x \in U$ such that $C^{*}\left(X_{A}, \sigma_{A}\right)$ and $\mathcal{O}\left(X_{A}, \alpha, L\right)$ are $*$-isomorphic C^{*}-algebras.

Proof. Follows by the previous theorem and by Corollary 2.4.

Acknowledgment

The author expresses his thanks to R. Exel for the many stimulating conversations.

References

[1] R. Exel, Circle actions on C^{*}-algebras, partial automorphisms and a generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal. 122 (1994) 361-401.
[2] R. Exel, A new look at the crossed-product of a C^{*}-algebra by an endomorphism, Ergodic Theory Dynam. Systems 23 (2003) 1733-1750.
[3] R. Exel, D. Royer, The crossed product by a partial endomorphism, preprint, 2004, math.OA/0410192.
[4] B.K. Kwasniewski, Covariance algebra of a partial dynamical system, preprint, 2004, math.OA/0407352.

[^0]: E-mail address: royer@mtm.ufsc.br.
 ${ }^{1}$ Supported by Cnpq.

